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Introduction

• Primordial non-Gaussianity is reflected in departures from a
Gaussian distribution of the Cosmic Microwave Background
(CMB) anisotropies.

• Measurements of the non-Gausianity of the CMB therefore
put constraints on models of inflation that complement
constraints based on measurements of the power spectrum.

• In particular, non-Gaussianity in the CMB anisotropies carries
information about interactions of the fields responsible for
inflation and the primordial curvature perturbations.

• The dimensionless non-linearity parameter fnl provides a
measure for the amplitude of primordial non-Gaussianity; it
provides a bridge between the observations of the CMB and
modeling of the physics of the early Universe.



• Inspired by the Higgs/Dark Matter inflation model, we
investigate fnl in an inflation model with two real scalar fields.

• Depending on the frame in which it is viewed, the scalar fields
either have non-minimal couplings to the curvature scalar or
non-canonical kinetic terms.



Model

We consider a model with two real scalar fields, h and s,
non-minimally coupled to the curvature scalar. The Jordan frame
action is
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A conformal transformation gµν = f (h, s)g̃µν removes the
non-minimal couplings but introduces a non-trivial field-space
metric. The Einstein frame action is
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Approximate SO(2) symmetry

• The model has an exact rotation symmetry if λ = κ = λs , and
ξ = ξs .

• The parameters δ1, δ2, and α quantify the amount and type
of symmetry breaking and are defined as

δ1 ≡ 1

2
(λ− λs)
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4
(2κ− λ− λs)

α ≡ 1

2
(ξ − ξs)

• The potential is flat in the “radial” direction due to the
non-minimal coupling of the scalar fields.

• If the symmetry breaking parameters are small, then the
potential is also flat in the “azimuthal” direction.



Illustration of the potential

• Parameters: λ = 1 and ξ = 10.

• Symmetry breaking parameters: δ2 = 0 and α = 0.
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• Symmetry breaking creates valleys and ridges in the potential.



Time evolution

• The time evolution of the Universe is determined by the
Einstein equation and the field equations for h and s.

• The scalar fields are expanded around their classical
background values

h(xµ) = h(t) + δh(xµ)

s(xµ) = s(t) + δs(xµ)

• Similary, the metric is expanded around the FRW metric.

• The time evolution of the background fields is then given by
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Trajectories

Results for h0 = 2.7978, λ = 1, ξ = 10.4.
Symmetry breaking parameters: δ1 = 0.004, δ2 = 0, and α = 0.
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Calculation of fnl

• The parameter fnl characterizes the bi-spectrum of the gauge
invariant curvature perturbations. It can be calculated as

fnl = −5

6

DANDBNDADBN

(DCNDCN)2
, with A,B,C = h, s.

• Twenty-five neighboring trajectories for the evolution of the
Universe are calculated numerically.

• The end of inflation for each trajectory is established as the
time when the first slow roll parameter first exceeds unity.

• The number of e-folds is determined for each trajectory. A
finite differences method is employed to calculate the
covariant derivatives of N.



fnl as a function of s0

Results for λ = 1.0.
Symmetry breaking parameters: δ1 = 0.004, δ2 = 0, and α = 0.

0.0000 0.0002 0.0004 0.0006 0.0008
-100

-50

0

50

100

s0

f n
l

Red: ξ = 9.6, h0 = 2.9101, N = 60.
Blue: ξ = 10.0, h0 = 2.8523, N = 60.
Green: ξ = 10.4, h0 = 2.7978, N = 60.



fnl as a function of s0, continued

Results for λ = 1.0.
Symmetry breaking parameters: δ1 = 0, δ2 = 0.001, and α = 0.
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Scaling of fnl(ξ, s0)

The function fnl(ξ, s0) is observed to obey the approximate scaling
relation

fnl(ξ + δξ, s0) = (1 + δx1)fnl(ξ, (1 + δx2)s0).

This scaling relation implies that fnl satisfies the differential
equation
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∂ξ
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∂fnl
∂s0

.

The solution to this differential equation takes the form

fnl(ξ, s0) = e
δx1
δξ

ξFnl(e
δx2
δξ

ξs0).



How well does this scaling relation work?

δx1
δξ

= 3.52

δx2
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= 0.935
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Extrapolation of scaling behavior
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• ∆s0 is the difference between the values of s0 for which fnl is
maximal and minimal (large in magnitude but negative). It is
a measure of the range in s0 for which non-Gaussianity is
significant.

• Increasing ξ produces an exponentially increasing maximum
value of fnl .

• At the same time, the range of s0 for which a significant value
of fnl is obtained is exponentially suppressed.



Implications for Higgs-Dark Matter inflation

• In a very minimal scenario, a combination of the Standard
Model Higgs field and a singlet scalar dark matter field can
double as the inflaton fields of slow roll inflationary models.

• Consistency with the observed power spectrum requires large
non-minimal couplings (ξ ≈ 104) of the Higgs and dark
matter scalars to the gravitational scalar curvature.

• Unitarity violation provides a challenge to this scenario and
may require the introduction of additional fields or higher
dimension interaction terms for its resolution.

• Applying our preliminary analysis of fnl to this scenario hints
that non-Gaussianity will be small except in highly fine-tuned
slices of parameter space.


