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Introduction

Primordial non-Gaussianity is reflected in departures from a
Gaussian distribution of the Cosmic Microwave Background
(CMB) anisotropies.

Measurements of the non-Gausianity of the CMB therefore
put constraints on models of inflation that complement
constraints based on measurements of the power spectrum.

In particular, non-Gaussianity in the CMB anisotropies carries
information about interactions of the fields responsible for
inflation and the primordial curvature perturbations.

The dimensionless non-linearity parameter f,; provides a
measure for the amplitude of primordial non-Gaussianity; it
provides a bridge between the observations of the CMB and
modeling of the physics of the early Universe.



e Inspired by the Higgs/Dark Matter inflation model, we
investigate f,; in an inflation model with two real scalar fields.

e Depending on the frame in which it is viewed, the scalar fields

either have non-minimal couplings to the curvature scalar or
non-canonical kinetic terms.



Model

We consider a model with two real scalar fields, h and s,
non-minimally coupled to the curvature scalar. The Jordan frame
action is
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A conformal transformation g, = f(h, s)g,., removes the
non-minimal couplings but introduces a non-trivial field-space
metric. The Einstein frame action is
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Cs = f(hl,s)(1+ f(ii))
G = Sy
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V(h,s) = V(hs)




Approximate SO(2) symmetry

e The model has an exact rotation symmetry if A = k = Ag, and
§ =¢&s.

e The parameters d1, 2, and a quantify the amount and type
of symmetry breaking and are defined as

(51 = %(A — AS)
0y = %(2/{ — A=)
a = %(f - gs)

e The potential is flat in the “radial” direction due to the
non-minimal coupling of the scalar fields.

o If the symmetry breaking parameters are small, then the
potential is also flat in the “azimuthal” direction.



lllustration of the potential

e Parameters: A =1 and ¢ = 10.

e Symmetry breaking parameters: § = 0 and a = 0.

01 = 0.4 (exaggerated value)

e Symmetry breaking creates valleys and ridges in the potential.



Time evolution

The time evolution of the Universe is determined by the
Einstein equation and the field equations for h and s.
The scalar fields are expanded around their classical
background values

h(x*) = h(t)+ dh(x*)

s(x") = s(t)+ ds(x*)

Similary, the metric is expanded around the FRW metric.

The time evolution of the background fields is then given by
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Trajectories

Results for hg = 2.7978, A =1, £ = 10.4.
Symmetry breaking parameters: ¢; = 0.004, J =0, and o = 0.
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Calculation of £,

The parameter f,; characterizes the bi-spectrum of the gauge
invariant curvature perturbations. It can be calculated as
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£, = —= . with A, B, C = h,s.
/ 6 (DCNDcN) ’

Twenty-five neighboring trajectories for the evolution of the
Universe are calculated numerically.

The end of inflation for each trajectory is established as the
time when the first slow roll parameter first exceeds unity.

The number of e-folds is determined for each trajectory. A
finite differences method is employed to calculate the
covariant derivatives of .



f,; as a function of sy

Results for A = 1.0.
Symmetry breaking parameters: 6; = 0.004, 5 = 0, and o = 0.
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f,; as a function of sy, continued

Results for A = 1.0.
Symmetry breaking parameters: 61 = 0, J, = 0.001, and @ = 0.
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Scaling of (&, so)

The function £,/(&, sp) is observed to obey the approximate scaling
relation

fnl(£ + 6{7 50) = (1 + 5X1)fn/(§7 (1 + 5X2)50)'

This scaling relation implies that f,; satisfies the differential
equation
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The solution to this differential equation takes the form
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How well does this scaling relation work?
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Extrapolation of scaling behavior
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e Asp is the difference between the values of sy for which £, is
maximal and minimal (large in magnitude but negative). It is
a measure of the range in sy for which non-Gaussianity is
significant.

e Increasing £ produces an exponentially increasing maximum
value of f,.

e At the same time, the range of sy for which a significant value
of f,; is obtained is exponentially suppressed.



Implications for Higgs-Dark Matter inflation

In a very minimal scenario, a combination of the Standard
Model Higgs field and a singlet scalar dark matter field can
double as the inflaton fields of slow roll inflationary models.

Consistency with the observed power spectrum requires large
non-minimal couplings (¢ =~ 10%) of the Higgs and dark
matter scalars to the gravitational scalar curvature.

Unitarity violation provides a challenge to this scenario and
may require the introduction of additional fields or higher
dimension interaction terms for its resolution.

Applying our preliminary analysis of f,; to this scenario hints
that non-Gaussianity will be small except in highly fine-tuned
slices of parameter space.



