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Inflation is a period of accelerated  
expansion driven by a single scalar  
field with very flat potential

¥ They are approximately scale invariant  

¥ They approximately Gaussian

Vanilla Inflation

Generic predictions on the properties of the scalar 
density perturbations:
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The four-dimensional e! ect ive act ion for the distance between the branes, Y , can be
writ ten in the following form
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where R is the Ricci scalar in 4 dimensions, M 2
P = M 2

s V6 g! 2
s = M 2

s (2" RM s)6 g! 2
s =

2.4 # 1018 GeV is the four-dimensional Planck mass, R is the radius of each square torus
and V6 is the total volume of the compact dimensions. Then, the canonically normalised
Þeld associated to the brane separat ion, Y , is given by

" = Y

$
TpAT

2
= (YM s)M s

%
M p! 3

s AT

2gs (2" )p . (3.2)

Note that since AT $ Rp! 3 the normalised Þeld " has dimensions of mass, as it should.
Let us now recall the standard equat ions of mot ion of a Friedmann-Robertson-Walker

universe with a scalar Þeld. These are given by
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where H is the Hubble parameter. The slow roll condit ions require that | ¬" | % 3H | ú" | and
ú" 2 % V, i.e. that the frict ion and potent ial terms dominate. From these condit ions one
can derive the two slow-roll parameters
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which should be small in accordance with the Þeld equat ions, so that |#| % 1 and |$| % 1
for slow roll inßat ion to occur. The primes above denote derivat ives with respect to the
inßaton Þeld " .

The number of e-foldings occurring after the scales probed by the COBE data leave
the horizon can be computed as [29]

N =
!

H dt =
1

M 2
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! ! !

! end

V (" )
V "(" )

d" , (3.5)

where " # $ Y# is the brane separat ion when the primordial density perturbat ion exits the
de Sit ter horizon during inßat ion. Since in this model the end of inßat ion is not given by
the cease of the slow-roll condit ions in what follows, we will assume that Y# & Yend. This
is a common assumpt ion in hybrid inßat ionary models and we will just ify it later.

The amplitude of the density perturbat ion when it re-enters the horizon, as observed
by Cosmic Microwave Background (CMB) experiments is given by:
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2
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M 3
p V " = 1.91 # 10! 5 , (3.6)

where the value of %H is implied by the COBE results [28].
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where H is the Hubble parameter. The slow roll conditions require that | "̈ | % 3H |"̇ | and
"̇ 2 % V , i.e. that the friction and potential terms dominate. From these conditions one
can derive the two slow-roll parameters
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which should be small in accordance with the field equations, so that |ε| % 1 and |η| % 1
for slow roll inflation to occur. The primes above denote derivatives with respect to the
inflaton field " .

The number of e-foldings occurring after the scales probed by the COBE data leave
the horizon can be computed as [29]
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where " ∗ ∝ Y∗ is the brane separation when the primordial density perturbation exits the
de Sitter horizon during inflation. Since in this model the end of inflation is not given by
the cease of the slow-roll conditions in what follows, we will assume that Y∗ & Yend. This
is a common assumption in hybrid inflationary models and we will justify it later.

The amplitude of the density perturbation when it re-enters the horizon, as observed
by Cosmic Microwave Background (CMB) experiments is given by:
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where the value of δH is implied by the COBE results [28].
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f NL = 2 .7 ± 5.8

f NL = ! 42± 75

f NL = ! 25± 39

Non-Gaussianity

ns vs.

local 

equilateral

orthogonal

Planck Inflation 2013

PlanckCollaboration:ThePlanck mission

Table 9. Cosmologicalparametervaluesfor thePlanck-only best-Þt6-parameter�CDM model(Planck temperaturedataplus lensing)andfor
thePlanck best-Þtcosmologyincludingexternaldatasets(Planck temperaturedata,lensing,WMAP polarization[WP] at low multipoles,high-⌃
experiments,andBAO, labelled[Planck+WP+highL+BAO] in PlanckCollaborationXVI (2013)).DeÞnitionsandunitsfor all parameterscanbe
foundin PlanckCollaborationXVI (2013).

Planck (CMB+lensing) Planck+WP+highL+BAO

Parameter BestÞt 68% limits BestÞt 68% limits

⇥bh2 . . . . . . . . . . 0.022242 0.02217± 0.00033 0.022161 0.02214± 0.00024

⇥ch2 . . . . . . . . . . 0.11805 0.1186± 0.0031 0.11889 0.1187± 0.0017

100�MC . . . . . . . . 1.04150 1.04141± 0.00067 1.04148 1.04147± 0.00056

⌅ . . . . . . . . . . . . 0.0949 0.089± 0.032 0.0952 0.092± 0.013

ns . . . . . . . . . . . 0.9675 0.9635± 0.0094 0.9611 0.9608± 0.0054

ln(1010As) . . . . . . . 3.098 3.085± 0.057 3.0973 3.091± 0.025

⇥� . . . . . . . . . . . 0.6964 0.693± 0.019 0.6914 0.692± 0.010

⇤8 . . . . . . . . . . . 0.8285 0.823± 0.018 0.8288 0.826± 0.012

zre . . . . . . . . . . . 11.45 10.8+3.1
! 2.5 11.52 11.3± 1.1

H0 . . . . . . . . . . . 68.14 67.9± 1.5 67.77 67.80± 0.77

Age/Gyr . . . . . . . 13.784 13.796± 0.058 13.7965 13.798± 0.037

100�" . . . . . . . . . 1.04164 1.04156± 0.00066 1.04163 1.04162± 0.00056

rdrag . . . . . . . . . . 147.74 147.70± 0.63 147.611 147.68± 0.45

rdrag/DV(0.57) . . . . 0.07207 0.0719± 0.0011

for ÒrunningÓof thespectralindex. Thespectrumdoes,however,
deviatesigniÞcantly(6⇤) from scaleinvariance,aspredictedby
mostmodelsof inßation (seebelow). The uniquecontribution
of Planck, comparedto previousexperiments,is that thedepar-
turefrom scaleinvarianceis robustto changesin theunderlying
theoreticalmodel.

WeÞndnoevidencefor extrarelativistic species,beyondthe
threespeciesof (almost)masslessneutrinosandphotons.The
maine⇤ectof massiveneutrinosis asuppressionof clusteringon
scaleslarger thanthehorizonsizeat thenon-relativisitic transi-
tion. This a⇤ectsbothC⇧⇧L with a dampingfor L > 10,andCTT

⌃
reducingthe lensinginducedsmoothingof the acousticpeaks.
Using Planck datain combinationwith polarizationmeasured
by WMAP andhigh-⌃ anisotropiesfrom ACT andSPTallows
for a constraintof

�
m⇥ < 0.66eV (95% CL) basedon the

[Planck+WP+highL] model.Curiously, this constraintis weak-
enedby the additionof the lensinglikelihood

�
m⇥ < 0.85eV

(95% CL), reßectingmild tensionsbetweenthemeasuredlens-
ing and temperaturepower spectra,with the former preferring
larger neutrinomassesthan the latter. Possibleorigins of this
tensionareexploredfurtherin PlanckCollaborationXVI (2013)
andarethoughtto involve both theC⇧⇧L measurementsandfea-
turesin the measuredCTT

⌃ on large scales(⌃ < 40) andsmall
scales⌃ > 2000thatarenot Þt well by the�CDM+foreground
model.Thesignal-to-noiseon thelensingmeasurementwill im-
prove with the full missiondata,including polarization,and it
will beinterestingto seehow this storydevelops.

Thecombinationof large lever arm,sensitivity to isocurva-
tureßuctuationsandnon-GaussianitymakesPlanck particularly
powerful at probinginßation.Constraintson inßationarymod-
elsarepresentedin PlanckCollaborationXXII (2013)andover-
whelmingly favor a single,weakly coupled,neutralscalarÞeld
driving theacceleratedexpansionandgeneratingcurvatureper-
turbations.ThemodelsthatÞtbesthaveacanonicalkinetic term
andaÞeldslowly rolling down a featurelesspotential.
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Fig. 26.Marginalized68% and95% conÞdencelevelsfor ns andr from
Planck+WP andBAO data,comparedto the theoreticalpredictionsof
selectedinßationarymodels.

Of themodelsconsidered,thosewith locally concavepoten-
tials arefavoredandoccupy mostof theregion in thens,rplane
allowed at 95% conÞdencelevel (seeFig. 23). Power law in-
ßation,hybrid modelsdrivenby aquadratictermandmonomial
largeÞeldpotentialswith apower largerthantwo lie outsidethe
95% conÞdencecontours.The quadraticlarge Þeld model, in
thepastoftencitedasthesimplestinßationarymodel,is now at
theboundaryof the95% conÞdencecontoursof Planck+ WP
+ CMB high ⌃ data.

Theaxionandcurvatonscenarios,in whichtheCDM isocur-
vaturemodeis uncorrelatedor fully correlatedwith theadiabatic
mode,respectively, arenot favoredby Planck, which constrains
thecontributionof theisocurvaturemodeto theprimordialspec-
tra at k = 0.05Mpc! 1 to be lessthan3.9% and0.25% (at 95%
CL), respectively.

ThePlanck resultscomecloseto thetightestupperlimit on
the tensor-to-scalaramplitudepossiblefrom temperaturedata
alone.The precisedeterminationof the higher acousticpeaks
breaksdegeneraciesthat have weakenedearliermeasurements.

36

10 Planck Collaboration: Constraints on inßation

Model Parameter Planck+WP Planck+WP+lensing Planck+ WP+high-! Planck+WP+BAO

! CDM + tensor ns 0.9624± 0.0075 0.9653± 0.0069 0.9600± 0.0071 0.9643+ 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

! 2" ln L max 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the! CDM+r model fromPlanckcombined with other data sets.
The constraints are given at the pivot scalek" = 0.002Mpc! 1.

1.00

Planck+WP
Planck+WP+highL
Planck+WP+BAO
Natural Inßation
Power law inßation
Low Scale SSB SUSY

R2 Inßation

V ! ! 2/ 3

V ! !

V ! ! 2

V ! ! 3

N! =50

N! =60

Fig. 1. Marginalized joint 68% and 95% CL regions forns andr0.002 from Planckin combination with other data sets compared to
the theoretical predictions of selected inßationary models.

reheating priors allowingN" < 50 could reconcile this model
with thePlanckdata.

Exponential potential and power law inßation

Inßation with an exponential potential

V(" ) = ! 4 exp
!
! #

"
Mpl

"
(35)

is called power law inßation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) # t2/ #2

. This model is incomplete, since inßation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodiÞed, this class of models predicts
r = ! 8(ns ! 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(" ) = ! 4
!

"
Mpl

"! $

(36)

lead to inßation witha(t) # exp(Atf ), with A > 0 and0 < f < 1,
where f = 4/ (4 + $) and$ > 0. In intermediate inßation there
is no natural end to inßation, but if the exit mechanism leaves
the inßationary predictions on cosmological perturbations un-
modiÞed, this class of models predictsr $ ! 8$(ns ! 1)/ ($ ! 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any$.

Hill-top models

In another interesting class of potentials, the inßaton rolls away
from an unstable equilibrium as in the Þrst new inßationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(" ) $ ! 4
!
1 !

" p

µp + ...
"

, (37)

where the ellipsis indicates higher order terms negligible during
inßation, but needed to ensure the positiveness of the potential
later on. An exponent ofp = 2 is allowed only as a large Þeld
inßationary model and predictsns ! 1 $ ! 4M2

pl/µ
2 + 3r/ 8 and

r $ 32" 2
" M2

pl/µ
4. This potential leads to predictions in agree-

ment withPlanck+WP+BAO joint 95% CL contours for super-
Planckian values ofµ, i.e.,µ ! 9 Mpl.

Models with p %3 predictns ! 1 $ ! (2/N)(p ! 1)/ (p ! 2)
whenr & 0. The hill-top potential withp = 3 lies outside the

= spectral index 

= tensor 2 scalar 
   ratio (small field)

ns

r

ns rvs.
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¥ Not obvious that sugra and string th. models are necessary 
simple. Generically the opposite is true!

¥ Can we embed Planck inflation (slow roll single small field) 
models into sugra and string theory frameworks? 

¥ Due to high value of potential energy natural to consider 
inflation in more fundamental frameworks such as 
supergravity (sugra) and string theory

¥ Usually at least two fields around (fields come in pairs). They 
can naturally acquire Hubble masses. 

Fundamental origin of inflaton?



supergravity

V = eK
!
K i øj D i WDøj W ! 3W W

"

Di W = ! i W + ! i K W

¥ Theory is fully specified by 

- gravity multiplet: 

- n-chiral multiplets: 

gMN , ψµ

! i ,

¥ Matter content 

- Kähler potential           
- Holomorphic superpotential,  

scalars organise 
themselves into a 
complex manifold

i = 1 , . . . , n

¥ The scalar potential is thus given by:

! i ! øj K = K i øj

W (! )
K (! , ø! )

! i

! i , K i øj

N = 1

K i øj ! ! i ! ø! øj



¥ During inflation SUSY                 . A spectrum of 
scalar masses  below and above Hubble scale 

¥ sGoldstini directions in moduli 
space are  singled out as SUSY 
directions. (Useful to determine 
scalar instabilities.)  

DaW != 0

ii)  non-negligible overlap between inflaton and sGoldstini 
directions 

A geometric bound on F-term inflation

(m2
3/ 2 ! 1TeV)

Single field inflation
Slow roll inflation
Small field

¥ In F-term sugra (vector fields subdominant), under 
assumptions:

i) gravitino mass well below inflationary scale

scalar partners of the 
Goldstino that are eaten up 
by the gravitino when SUSY 

is broken

m2

H 2 ! V0

H 2

m2
inf

only two conditions 
can be satisÞed:

[Borghese, Roest, IZ, Õ12]

[G—mez-Reino et al. Õ06-Õ08]
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sGoldstino inflation

For a single superfield: inflaton !" sGoldstino "

- Geometric bound applies  

W = f (! )- Taking K = !
1
2

!
! ! ø!

"2
,

Re(! ) = !V = ! 3f (! )2 + f !(! )2

The potential becomes

Small single field slow roll inflation severely constrained

[Alvarez-GaumŽ et al. Õ10-Õ11]

[Achœcarro et al. Õ12]



Orthogonal inflation

- To overcome geometric bound, introduce a 
second superfield, orthogonal to sG: inflaton

-  Single field inflation with an arbitrary scalar potential  
   can be implemented un sugra under assumptions:

sG

inßaton
! , S

KŠhler and superpotential are of the form

K = K
!
(! ! ! )2, S øS, S2, øS2"

, W = Sf (! )

Im ! = 0

S = 0

V (! ) = f (! )2

Re! = !
{

Inßaton potential Inßationary trajectory

shift symmetry !  inßaton direction "

!

S

[Kallosh-Linde-Rube Õ10]
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the general scalar potential becomes (@            ,        )

In string theory a combination of S, Φ	
  which appears 

in several models is:

X = �+ �̄ ! SS̄
� ! �+ ia+ b̄S +

1

2
|b|2

S ! S + b

b 2 Ca ! R ,

Heisenberg symmetry

Focus on interesting KŠhler potential:

V =
X 1�! f (! )2

"

Im ! = 0 S = 0

K = ! ! ln(X )

! ! S !geometric modulus, matter Þeld



Two interesting models

For a linear superpotential of the form:

 ! = 3 ,

W = 3MS (! ! 1)

m2 = (0 , 4H 2, ! 2H 2)

m2 = (0 , 24H 2, 6H 2)

H 2 = V/3

N = 50 : ns = 0 .961, r = 0 .0015
N = 60 : ns = 0 .967, r = 0 .0011

 

corresponds to Starobinsky’s model!

but mass spectrum: 

need to add S-stabilising terms to K(S)

now mass spectrum: ! = 1 ,

no need to add S-stabilising terms to K!

Inflationary predictions:

[Roest, Scalisi, IZ Õ13]

[Cecotti, Õ87]

[Kallosh-Linde, Õ13]
[BuchmŸller et al., Õ13]

[Farakos et al., Õ13]

[Ellis, Nanopoulos, Olive, Õ13]



Summary

! Discussed KŠhler potentials which allow truncation to a 
single scalar, identified with the inflaton, in F-term sugra

! To evade η-problem shift symmetry or logarithm function 
can be used. 

! To circumvent geometric bound, a second field needs to 
be introduced, orthogonal to sGoldstino: inflation

! For Heisenberg invariant K, general potential can be 
generated in sugra and string theory

! For linear W, two choices of !" allow for small single field 
slow roll inflation, compatible with Planck 


