Planck inflation and the Kähler potential in supergravity and string theory

Ivonne Zavala University of Groningen

JHEP1209(2012)021 and 1307.4343 with A. Borghese, D. Roest, M.Scalisi

SUSY2013. ICTP, Trieste

Vanilla Inflation

Inflation is a period of accelerated expansion driven by a single scalar field with very flat potential

$$\epsilon = \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2, \quad \eta = M_P^2 \frac{V''}{V}$$

Generic predictions on the properties of the scalar density perturbations:

slow-roll

- They are approximately scale invariant $n_{\rm c} \sim 1$
- They approximately Gaussian $f_{NL} \sim 0$

Vanilla Inflation

Inflation is a period of accelerated expansion driven by a single scalar field with very flat potential

$$\epsilon = \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2 , \quad \eta = M_P^2 \frac{V''}{V}$$

Generic predictions on the properties of the scalar density perturbations:

slow-roll

- They are approximately scale invariant $n_{\rm c} \sim 1$
- They approximately Gaussian $f_{NL} \sim 0$

Planck Inflation 2013

Non-Gaussianity

$$f_{NL} = 2.7 \pm 5.8$$
 local
 $f_{NL} = -42 \pm 75$ equilateral
 $f_{NL} = -25 \pm 39$ orthogonal

 Due to high value of potential energy natural to consider inflation in more fundamental frameworks such as supergravity (sugra) and string theory

- Due to high value of potential energy natural to consider inflation in more fundamental frameworks such as supergravity (sugra) and string theory
- Not obvious that sugra and string th. models are necessary simple. Generically the opposite is true!

- Due to high value of potential energy natural to consider inflation in more fundamental frameworks such as supergravity (sugra) and string theory
- Not obvious that sugra and string th. models are necessary simple. Generically the opposite is true!
- Usually at least two fields around (fields come in pairs). They can naturally acquire Hubble masses.

- Due to high value of potential energy natural to consider inflation in more fundamental frameworks such as supergravity (sugra) and string theory
- Not obvious that sugra and string th. models are necessary simple. Generically the opposite is true!
- Usually at least two fields around (fields come in pairs). They can naturally acquire Hubble masses.
- Can we embed Planck inflation (slow roll single small field) models into sugra and string theory frameworks?

$\mathcal{N}=1$ supergravity

- Matter content
 - gravity multiplet: $g_{MN}, \ \psi_{\mu}$
 - n-chiral multiplets: χ_i , Φ_i

 $i=1,\ldots,n$

scalars organise themselves into a complex manifold

$$\Phi_i, K_{i\bar{j}}$$

- Theory is fully specified by
 - Kähler potential $K(\Phi, \bar{\Phi})$
 - Holomorphic superpotential, $W(\Phi)$
- The scalar potential is thus given by:

$$V = e^{K} \left[K^{i\overline{j}} D_{i} W D_{\overline{j}} \overline{W} - 3W \overline{W} \right]$$

 $D_i W = \partial_i W + \partial_i K W$

A geometric bound on F-term inflation

- During inflation SUSY $D_aW \neq 0$. A spectrum of scalar masses below and above Hubble scale
 - sGoldstini directions in moduli space are singled out as SUSY directions. (Useful to determine scalar instabilities.) [Gómez-Reino et al. '06-'08]
- In F-term sugra (vector fields subdominant), under assumptions:
 - i) gravitino mass well below inflationary scale
 - ii) non-negligible overlap between inflaton and sGoldstini directions

only two conditions can be satisfied:

scalar partners of the

Goldstino that are eaten up

by the gravitino when SUSY

is broken

- * Single field inflation
- * Slow roll inflation

* Small field

 $H^2 \sim V_0$ m^2 H^2 H^2 m^2_{inf}

 $(m_{3/2}^2 \sim 1 \text{TeV})$

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\overline{j}}D_{i}WD_{\overline{j}}\overline{W} - 3W\overline{W} \right] \qquad \qquad \eta = \frac{V''}{V}$

- Canonical Kähler potential: $K=\Phi ar{\Phi}$ [Copeland et al. '94]

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\overline{j}} D_{i} W D_{\overline{j}} \overline{W} - 3W \overline{W} \right] \qquad \qquad \eta = \frac{V''}{V}$

- Canonical Kähler potential: $K = \Phi \overline{\Phi}$

[Copeland et al. '94]

 $\rightarrow \eta \sim \mathcal{O}(1)$

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\overline{j}}D_{i}WD_{\overline{j}}\overline{W} - 3W\overline{W} \right] \qquad \qquad \eta = \frac{V''}{V}$

- Canonical Kähler potential: $K=\Phi ar{\Phi}$ [Copeland et al. '94]

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\bar{j}} D_{i} W D_{\bar{j}} \overline{W} - 3W \overline{W} \right] \qquad \qquad \eta = \frac{V''}{V}$

Tof atom

- Canonical Kähler potential: $K=\Phi ar{\Phi}$
- Symmetry protected Kähler: shift symmetry

$$\mathbf{V} K = -\frac{1}{2} \left(\Phi - \bar{\Phi} \right)^2 \longrightarrow \frac{\operatorname{Re}(\Phi)}{(\operatorname{Im}(\Phi) = 0)}$$

[Copeland et al. '94]

[Kawasaki et al. '00]

 $\Phi = \operatorname{Re}(\Phi) + i\operatorname{Im}(\Phi)$

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\bar{j}} D_{i} W D_{\bar{j}} \overline{W} - 3W \overline{W} \right]$

- Canonical Kähler potential: $K=\Phiar{\Phi}$
- Symmetry protected Kähler: shift symmetry

$$\mathbf{\nabla} K = -\frac{1}{2} \left(\Phi - \bar{\Phi} \right)^2 \longrightarrow \operatorname{Re}(\Phi) \\ (\operatorname{Im}(\Phi) = 0)$$

$$\Phi = \operatorname{Re}(\Phi) + i\operatorname{Im}(\Phi)$$

 $\eta = \frac{V''}{V}$

[Copeland et al. '94]

[Kawasaki et al. '00]

Inflaton

$$\boldsymbol{\boxtimes} \ K = \frac{1}{2} \left(\Phi + \bar{\Phi} \right)^2 \quad \rightarrow \quad \operatorname{Im}(\Phi) \\ \operatorname{(Re}(\Phi) = 0)$$

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\bar{j}} D_{i} W D_{\bar{j}} \overline{W} - 3W \overline{W} \right]$

- Canonical Kähler potential: $K=\Phiar{\Phi}$
- Symmetry protected Kähler: shift symmetry

$$\mathbf{V} K = -\frac{1}{2} \left(\Phi - \bar{\Phi} \right)^2 \longrightarrow \frac{\operatorname{Re}(\Phi)}{(\operatorname{Im}(\Phi) = 0)}$$

$$\boldsymbol{\boxtimes} \ K = \frac{1}{2} \left(\Phi + \bar{\Phi} \right)^2 \qquad \rightarrow \qquad \begin{array}{c} \text{Inflaton:} \\ \operatorname{Im}(\Phi) \\ (\operatorname{Re}(\Phi) = 0 \end{array}$$

 $\eta = \frac{V^{\prime\prime}}{V}$

[Copeland et al. '94]

[Kawasaki et al. '00]

 $\Phi = \operatorname{Re}(\Phi) + i\operatorname{Im}(\Phi)$

Kähler transformations $V \to V$ $K \to K + g(\Phi) + g(\bar{\Phi})$ $W \to e^{-g(\Phi)}W$

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\overline{j}}D_{i}WD_{\overline{j}}\overline{W} - 3W\overline{W} \right]$

- Canonical Kähler potential: $K=\Phiar{\Phi}$
- Symmetry protected Kähler: shift symmetry

$$\mathbf{\nabla} K = -\frac{1}{2} \left(\Phi - \bar{\Phi} \right)^2 \longrightarrow \operatorname{Re}(\Phi) \\ (\operatorname{Im}(\Phi) = 0)$$

$$K = \frac{1}{2} \left(\Phi + \bar{\Phi} \right)^2 \longrightarrow \begin{array}{c} \text{Inflaton:} \\ \operatorname{Im}(\Phi) \\ (\operatorname{Re}(\Phi) = 0) \end{array}$$

 $\eta = \frac{V^{\prime\prime}}{V}$

[Copeland et al. '94]

[Kawasaki et al. '00]

 $\Phi = \operatorname{Re}(\Phi) + i\operatorname{Im}(\Phi)$

Kähler transformations
$$V \to V$$
$$K \to K + g(\Phi) + g(\bar{\Phi})$$
$$W \to e^{-g(\Phi)}W$$

$$K = \Phi \bar{\Phi} \quad \stackrel{\text{KT}}{\Leftrightarrow} \quad K = -\frac{1}{2} \left(\Phi - \bar{\Phi} \right)^2 \quad \stackrel{\text{KT}}{\Leftrightarrow} \quad K = \frac{1}{2} \left(\Phi + \bar{\Phi} \right)^2$$

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\overline{j}}D_{i}WD_{\overline{j}}\overline{W} - 3W\overline{W} \right]$

- Canonical Kähler potential: $K=\Phi ar{\Phi}$
- Symmetry protected Kähler: shift symmetry
- Logarithmic Kähler potential:

$$\boxtimes K = -\alpha \ln(\Phi + \bar{\Phi}) \quad \rightarrow$$

$$\eta = \frac{V''}{V}$$

[Copeland et al. '94]

[Kawasaki et al. '00]

[Roest, Scalisi, IZ '13]

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\overline{j}}D_{i}WD_{\overline{j}}\overline{W} - 3W\overline{W} \right]$

- Canonical Kähler potential: $K = \Phi \overline{\Phi}$
- Symmetry protected Kähler: shift symmetry
- Logarithmic Kähler potential:

 $\underline{\text{Inflaton!}}$ $\mathbf{V} = -\alpha \ln(\Phi + \bar{\Phi}) \quad \rightarrow \quad \frac{\text{Re}(\Phi)}{\text{Re}(\Phi)}, \quad \text{Im}(\Phi) = 0$

 $\eta = \frac{V''}{V}$

[Copeland et al. '94]

[Kawasaki et al. '00]

[Roest, Scalisi, IZ '13]

Consider the F-term scalar potential in sugra: $V = e^{K} \left[K^{i\overline{j}}D_{i}WD_{\overline{j}}\overline{W} - 3W\overline{W} \right]$

- Canonical Kähler potential: $K = \Phi \overline{\Phi}$
- Symmetry protected Kähler: shift symmetry
- Logarithmic Kähler potential:

$$\mathbf{\nabla} \ K = -\alpha \ln(\Phi + \bar{\Phi}) \quad \rightarrow \quad \operatorname{Re}(\Phi), \qquad \operatorname{Im}(\Phi) = 0$$

Inflaton!

Arises in string theory for geometric moduli

$$\eta = \frac{V^{\prime\prime}}{V}$$

[Kawasaki et al. '00]

[Roest, Scalisi, IZ '13]

sGoldstino inflation

For a single superfield: inflaton \Leftrightarrow sGoldstino

- Geometric bound applies

- Taking
$$K = -\frac{1}{2} \left(\Phi - \overline{\Phi} \right)^2, \quad W = f(\Phi)$$

The potential becomes

$$V = -3f(\phi)^2 + f'(\phi)^2 \qquad \operatorname{Re}(\Phi) = \phi$$

Small single field slow roll inflation severely constrained

Orthogonal inflation

- To overcome geometric bound, introduce a second superfield, orthogonal to sG: inflaton Φ,S
- Single field inflation with an arbitrary scalar potential can be implemented un sugra under assumptions:
 - Kähler and superpotential are of the form

[Kallosh-Linde-Rube '10]

inflaton Φ

$$K = K\left((\Phi - \Phi)^2, S\bar{S}, S^2, \bar{S}^2\right), \quad W = Sf(\Phi)$$

<u>shift symmetry \Leftrightarrow inflaton direction</u>

Inflaton potential

 $V(\phi) = f(\phi)^2$ Re $\Phi = \phi$ Inflationary trajectory

$$\begin{cases} \operatorname{Im} \Phi = 0\\ S = 0 \end{cases}$$

[Roest, Scalisi, IZ '13]

Relax \mathbb{Z}_2 symmetry in Kähler potential, with same W

$$K = K\left(\Phi + \Phi, S\bar{S}, S^2, \bar{S}^2\right), \qquad W = Sf(\Phi)$$

can truncate consistently to single field inflation with general scalar potential, but now:

[Roest, Scalisi, IZ '13]

Relax \mathbb{Z}_2 symmetry in Kähler potential, with same W

$$K = K\left(\Phi + \Phi, S\bar{S}, S^2, \bar{S}^2\right), \qquad W = Sf(\Phi)$$

can truncate consistently to single field inflation with general scalar potential, but now:

<u>shift symmetry \Leftrightarrow inflaton direction!</u>

[Roest, Scalisi, IZ '13]

Relax \mathbb{Z}_2 symmetry in Kähler potential, with same W

$$K = K\left(\Phi + \Phi, S\bar{S}, S^2, \bar{S}^2\right), \qquad W = Sf(\Phi)$$

can truncate consistently to single field inflation with general scalar potential, but now:

<u>shift symmetry</u> *inflaton* direction!

[Roest, Scalisi, IZ '13]

Relax \mathbb{Z}_2 symmetry in Kähler potential, with same W

$$K = K\left(\Phi + \Phi, S\bar{S}, S^2, \bar{S}^2\right), \qquad W = Sf(\Phi)$$

can truncate consistently to single field inflation with general scalar potential, but now:

<u>shift symmetry *s* inflaton direction!</u>

Inflaton potential

ReΦ

Inflationary trajectory

$$V(\phi) = e^{K} K^{S\bar{S}} f(\phi)^{2}$$

Re $\Phi = \phi$

$$\begin{cases} \operatorname{Im} \Phi = 0\\ S = 0 \end{cases}$$

In string theory a combination of S, Φ which appears in several models is:

$$X = \Phi + \bar{\Phi} - S\bar{S}$$

 $\Phi \Leftrightarrow$ geometric modulus, $S \Leftrightarrow$ matter field

Heisenberg symmetry

$$\Phi \rightarrow \Phi + ia + \overline{b}S + \frac{1}{2}|b|^2$$

 $S \rightarrow S + b$
 $a \in \mathbb{R}, \quad b \in \mathbb{C}$

Focus on interesting Kähler potential:

$$K = -\alpha \ln(X)$$

the general scalar potential becomes (@ $Im \Phi = 0$, S = 0)

$$V = \frac{X^{1-\alpha} f(\phi)^2}{\alpha}$$

Two interesting models

For a linear superpotential of the form:

$$W = 3MS(\Phi - 1)$$

 $\checkmark \alpha = 3$, corresponds to Starobinsky's model! but mass spectrum: $m^2 = (0, 4H^2, -2H^2)$ need to add S-stabilising terms to K(S)

$$ec{lpha} = 1, \,\,$$
 now mass spectrum: $m^2 = (0, 24 H^2, 6 H^2)$

no need to add S-stabilising terms to K!

Inflationary predictions:

$$N = 50: \quad n_s = 0.961, \quad r = 0.0015$$
$$N = 60: \quad n_s = 0.967, \quad r = 0.0011$$

[Cecotti, '87]

[Kallosh-Linde, '13] [Buchmüller et al., '13] [Farakos et al., '13]

[Ellis, Nanopoulos, Olive, '13] [Roest, Scalisi, IZ '13]

Summary

- Discussed K\u00e4hler potentials which allow truncation to a single scalar, identified with the inflaton, in F-term sugra
- To evade η -problem shift symmetry or logarithm function can be used.
- To circumvent geometric bound, a second field needs to be introduced, orthogonal to sGoldstino: inflation
- For Heisenberg invariant K, general potential can be generated in sugra and string theory
- For linear W, two choices of α allow for small single field slow roll inflation, compatible with Planck