New physics searches with flavour in ATLAS

Marcella Bona Queen Mary, University of London

on behalf of the ATLAS Collaboration

21st International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY'13) Trieste, Italy August 26th, 2013

outline

- ATLAS data, detector and triggers
- search for rare decays B_s to $\mu\mu$
- angular analysis of semirare decays B_d to K*μμ
- CP violation measurement in $B_s \rightarrow J/\psi \phi$
- conclusions

SUSY 2013

NP searches with flavour with ATLAS

ATLAS

Tracking

- Silicon (Pixel+Semiconductor tracker) and Transition Radiation Tracker
- 2T solenoidal field

Muon identification:

- Dedicated tracking chambers
- 0.5-2 T toroidal field

- bb-production mostly at large η
 ATLAS sensitive to |η| < 2.5 region
 expect about ~150G B⁰-pairs
 - ~30M B_s \rightarrow J/ $\psi \phi$ events for 5 fb⁻¹

 di-muon triggers are our main tool
 we ran with constant trigger thresholds for di-muons all across 2011

- $> 20 \text{ fb}^{-1}$ of data collected in 2012
 - specific di-muon selections with Barrel/Endcap logic
 - new dedicated µµX trigger

search for rare decays: $B_s \ \rightarrow \ \mu \mu$

search for rare decays: $B_s \rightarrow \mu\mu$

flavour changing neutral currents (FCNC) are highly suppressed in the Standard Model

• expected $B_s \rightarrow \mu\mu$ SM branching ratio:

 $(3.23 \pm 0.27) \ 10^{-9}$ Buras et al., Eur.Phys.J. C72 (2012) 2172 time-integrated expected value:

 $(3.54 \pm 0.30) 10^{-9}$ *K.De Bruyn et al., Phys.Rev.Lett. 109 (2012) 041801* evidences from CMS and LHCb:

 $(2.9 \pm 0.7) \ 10^{-9}$

CMS and LHCb Collaborations

LHCb: arXiv:1307.5024 CMS: arXiv:1307.5025

 B to μμ branching ratio might be substantially enhanced by coupling to non-SM particles

- being the SM well under control this channel provides a powerful method to peek into NP...
 - .. or further constraining it.
- orthogonal search for physics beyond the standard model: can reach higher scales wrt the direct search

NP searches with flavour with ATLAS

Integrated luminosity 4.9 fb⁻¹ used Relative BR measurement:

- partial cancellation of uncertainties: on luminosity, cross-section, ...
- reference channel ($B^{\pm} \rightarrow J/\psi K^{\pm}$, $J/\psi \rightarrow \mu + \mu$ -)
- ightarrow blind analysis: signal region ± 300 MeV around B_s
- Iimit placed using CLs method

4.9fb⁻¹
7 ATLAS Online Luminosity
$$\sqrt{s} = 7$$
 Tev
6 ATLAS Recorded
5 Total Delivered: 5.61 fb¹
7 Total Recorded: 5.25 fb¹
2 2011
2 28/02 30/04 30/06 30/08 31/10
Day in 2011

[otal Integrated Luminosity [fb ⁻]

$$BR(B_s o \mu\mu) = N_{B_s o \mu\mu} rac{1}{N_{B^\pm o J/\psi K^\pm}} BR(B^\pm o J/\psi K^\pm) rac{f_u}{f_s} \; rac{arepsilon_{B^\pm o J/\psi K^\pm} A_{B^\pm o J/\psi K^\pm}}{arepsilon_{B_s o \mu\mu}} rac{A_{B^\pm o J/\psi K^\pm}}{A_{B_s o \mu\mu}}$$

Signal extraction:

SUSY 2013

- event count in "signal region"
- "subtraction" of sidebands: interpolation from 50% of sidebands (even events)

Background composition:

- resonant: B \rightarrow hh, with hadrons misidentified as muons estimated from MC.
 Currently still negligible but included in the analysis
- continuum: dominated by non-resonant $\overline{b}b$ production with $\mu\mu X$ final states. Contains real muons. Has a smooth shape in the di-muon mass.

ATLAS-CONF-2013-076

analysis strategy @ ATLAS:

Relative BR measurement:

partial cancellation of uncertainties:

on luminosity, cross-section, ..

• reference channel ($B^{\pm} \rightarrow J/\psi K^{\pm}$, $J/\psi \rightarrow \mu^{+}\mu^{-}$)

blind analysis: signal region ± 300 MeV around B_s mass blinded

limit placed using CLs method

$$BR(B_s o \mu\mu) = N_{B_s o \mu\mu} rac{1}{N_{B^\pm o J/\psi K^\pm}} \left[BR(B^\pm o J/\psi K^\pm) rac{f_u}{f_s} \; rac{arepsilon_{B^\pm o J/\psi K^\pm} A_{B^\pm o J/\psi K^\pm}}{arepsilon_{B_s o \mu\mu}} rac{A_{B^\pm o J/\psi K^\pm}}{A_{B_s o \mu\mu}}
ight]$$

Efficiencies & acceptances

derived from simulation ("calibrated" on data)

 $\epsilon \cdot A = (N_{\text{reconstructed and selected}}/N_{\text{generated}})$

ightarrow reference channel (B[±] \rightarrow J/K[±]) selected with as-close-as-possible selection

systematics taken from the data-MC discrepancies in signal distributions

BR of the reference channel and relative production rate f_u/f_s

taken from PDG and the latest LHCb results

ATLAS-CONF-2013-076

background discrimination

continuum:

- \rightarrow dominated by non-resonant b production with $\mu\mu X$ final states \rightarrow real muons
- to discriminate against this background 13 discriminating variables used in a boosted decision tree (BDT) trained on simulated events
- best BDT configuration and selection criteria optimised on half of the sideband data (odd events) and signal MC.
- contamination to the signal region measured by interpolation from sideband data into the signal region

data-MC agreement for the continuum background in two of the most powerful variables Marcella Bona, QMUL

background discrimination

continuum:

- \rightarrow dominated by non-resonant b production with $\mu\mu X$ final states \rightarrow real muons
- to discriminate against this background 13 discriminating variables used in a boosted decision tree (BDT) trained on simulated events
- best BDT configuration and selection criteria optimised on half of the sideband data (odd events) and signal MC.
- contamination to the signal region measured by interpolation from sideband data into the signal region

background (sidebands) vs B_s signal (MC)

reference channel

- selections synchronised and same signal BDT used to minimise systematics
- yield extraction via unbinned maximum likelihood fit
- ${\color{black} \bullet}$ inclusion of per-event mass resolution δm in the fit
- main systematics estimated by varying continuum background models

 $N_{J/\psi K^+} = 15214 \pm 1.1\%(stat) \pm 2.4\%(syst)$

ATLAS-CONF-2013-076

signal and CLs extraction

- single event sensitivity: (2.07 ± 0.26) 10⁻⁹
 systematics on the SES: 12.5% dominated by contribution from reference channel BR and acceptance and efficiency ratio
- number of expected background events in the signal window: 6.75
- number of events observed in the signal window: 6

expected upper limit obtained using the number of expected background events (6.75)
 < 1.6 10⁻⁹ @ 95%
 measured upper limit from the number of observed events
 < 1.5 10⁻⁹ @ 95%

angular analysis of decays: $B_d \rightarrow K^* \mu \mu$

SUSY 2013

angular analysis of decays: $B_d \rightarrow K^* \mu \mu$

- another way to look at FCNC
 - ${\color{red}\bullet}$ occurs through a b ${\color{red}\to}$ s transition
 - BR ~ 1.1 10⁻⁶
- angular distribution of the 4 particles in the final state sensitive to new physics for the interference of NP and SM diagrams
- Jecay described by three angles (θ_L , θ_K , ϕ) and the di-muon mass q^2 study the 2D distributions:

$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d} \cos \theta_L} = \frac{3}{4} F_L(q^2) \left(1 - \cos^2 \theta_L\right) + \frac{3}{8} \left(1 - F_L(q^2)\right) \left(1 + \cos^2 \theta_L\right) + A_{FB}(q^2) \cos \theta_L$$

$$\frac{1}{\Gamma}\frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_K} = \frac{3}{2}F_L(q^2)\cos^2\theta_K + \frac{3}{4}\left(1 - F_L(q^2)\right)\left(1 - \cos^2\theta_K\right).$$

 Measure forward-backward asymmetry (A_{FB}) and longitudinal polarization fraction (F_L) with unbinned maximum likelihood fit in q² bins

 B_d^0

 θ_K

 π

signal observation

• full di-muon mass range with J/ ψ and ψ (2S) regions excluded • signal yield: N_{sig} = 466 ± 34

NP searches with flavour with ATLAS ATLAS-CONF-2013-038

SUSY 2013

measurements of A_{FB} and F_L

 A_{FB} and F_L in different regions of q²: 8 bins used defined à la Belle
 use unbinned maximum likelihood fit sequential fit approach applied use mass to separate signal and background contributions angular fit with yields fixed to the results from the mass fit

 $4.30 < q^2 < 8.68 \text{ GeV}^2$

$\Delta\Gamma_{s}$ and φ_{s} measurement from $B_{s}\rightarrow J/\psi\varphi$

$\Delta\Gamma_{s}$ and ϕ_{s} measurement from $B_{s}\rightarrow J/\psi\phi$

The time evolution of the meson B_s and B_s is described by the superposition of B_H and B_L states, with masses $m_s \pm \Delta m_s/2$ and lifetimes $\Gamma_s \pm \Delta \Gamma_s /2$. These states deviate from defined values $CP = \pm 1$, as described in the SM by the mixing phase ϕ_s ($\phi_s = -2\beta_s$), *SM prediction (fit):* $\phi_s = -0.0368 \pm 0.0018$ rad $\Delta \Gamma_s = 0.082 \pm 0.021$ ps⁻¹

New Physics can contribute to ϕ_s , and change the ratio $\Delta\Gamma_s / \Delta m_s$.

In general, the decay to a final state that is coupled to B_s and/or \overline{B}_s , exhibits fast oscillations driven by Δm_s . Interference between amplitudes for both states generates CP violation, and conveys information on ϕ_s .

the B/B flavour at production is now determined.

SUSY 2013

flavour with ATLAS NP searches with

ATLAS-CONF-2013-039

K⁺

 ϕ rest frame

angular analysis in $B_s \rightarrow J/\psi \phi$

 \gg in the decay $B_s(B_s) \rightarrow J/\psi \phi \rightarrow I^+I^- K^+K^$ different components in the angular-distributions amplitudes correspond to CP = +1 or -1

the "transversity angles" are used to describe the angular distributions

analysis using data collected in 2011, corresponding to 4.9 fb⁻¹ updated using flavour tagging: update of JHEP 12 (2012) 072 signal extracted from a maximum likelihood fit: the signal with amplitude f.

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\rm s} \cdot \mathcal{F}_{\rm s}(m_i, t_i, \Omega_i) + f_{\rm s} \cdot f_{\rm B^0} \cdot \mathcal{F}_{\rm B^0}(m_i, t_i, \Omega_i) + (1 - f_{\rm s} \cdot (1 + f_{\rm B^0}))\mathcal{F}_{\rm bkg}(m_i, t_i, \Omega_i) \} + \ln P(\delta_{\perp})$$

θ

 J/ψ rest frame

V

the prompt and non-prompt combinatorial the background due to $B^0 \rightarrow J/\psi K^{*0}$ background described with empirical angular and $B^0 \rightarrow J/\psi K\pi$ with amplitude f_{B0} distribution. (No K- π discrimination.) w_i describes a small trigger inefficiency (~1%).

SUSY 2013

NP searches with flavour with ATLAS

Muon Tagger

decay

Identify the muon

Calculate muon

cone charge Q_u

from semileptonic

ATLAS-CONF-2013-039

flavour tagging

determine flavour eigenstate of B_s meson at production
opposite side flavour tagging used

Jet Charge Tagger

- Identify jet originating from same primary
 - vertex
- Calculate jet charge Q_{jet}
 - Two different methods applied in hierarchy of performance

flavour tagging

> determine probability that signal decay contains \overline{b} as function of Q_{μ} and Q_{jet} using calibration sample $B^+ \to J/\psi K^+$

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]	
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02	
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04	
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03	
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05	

Efficiency ε : fraction of successfully tagged candidates Dilution D: 1-2w (where w is the wrong-tag fraction) Tagging power: $\varepsilon D^2 = \sum_i \varepsilon_i D_i^2$

Combined Muon: a muon with inner detector and muon spectrometer track information Segment Tagged Muon: muons with only muon spectrometer track information

flavour tagging

> determine probability that signal decay contains \overline{b} as function of Q_{μ} and Q_{jet} using calibration sample $B^+ \to J/\psi K^+$

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]	
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02	
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04	
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03	
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05	

In the likelihood fit to B_s data, the per-candidate probability and probability distributions are considered. P=0.5 in absence of tagging information.

SUSY 2013

NP searches with flavour with ATLAS

ATLAS-CONF-2013-039

results of the fit

observables: mass, proper decay time and their errors, three transversity angles and the tagging probability

projection on B_s mass and proper decay time: 22,670 ± 150 signal events from fit.

results of the fit

observables: mass, proper decay time and their errors, three transversity angles and the tagging probability

projections on the three transversity angles: ϕ_T , $\cos(\theta_T)$ and $\cos(\psi_T)$

results for ϕ_{S} and $\Delta\Gamma_{\text{S}}$ in $B_{\text{s}}\to J/\psi\phi$

- uncertainty of φ_s improved by 40% compared to untagged analysis
- $> \Delta \Gamma_{s}$ central value and uncertainty unchanged
- > also the strong phase δ_{\perp} can now be determined
- dominant systematic uncertainty: uncorrelated description of background angle distributions

$$\begin{split} \phi_s &= 0.12 \pm 0.25 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad} \\ \Delta \Gamma_s &= 0.053 \pm 0.021 \text{ (stat.)} \pm 0.009 \text{ (syst.) ps}^{-1} \\ \Gamma_s &= 0.677 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (syst.) ps}^{-1} \\ |A_0(0)|^2 &= 0.529 \pm 0.006 \text{ (stat.)} \pm 0.011 \text{ (syst.)} \\ |A_{\parallel}(0)|^2 &= 0.220 \pm 0.008 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \\ \delta_{\perp} &= 3.89 \pm 0.46 \text{ (stat.)} \pm 0.13 \text{ (syst.) rad} \end{split}$$

Likelihood profiles in the $\phi_{\text{S}} - \Delta \Gamma_{\text{S}}$ plane

ATLAS-CONF-2013-039

results for ϕ_{S} and $\Delta\Gamma_{\text{S}}$ in $B_{\text{s}}\to J/\psi\phi$

SUSY 2013

NP searches with flavour with ATLAS

ATLAS-CONF-2013-039

conclusions

- ATLAS able to provide high quality B-physics measurements:
 - search for the rare decay $B_s \to \mu \mu$ \$ATLAS-CONF-2013-076\$
 - angular analysis of the decay $B^0 \rightarrow K^{0*}\mu\mu$ AT
 - measurement of CP violating phase ϕ_s and the decay width difference $\Delta\Gamma_s$ in the decay $B_s \rightarrow J/\psi\phi$ ATLAS-CONF-2013-039 (to be published soon)
- all measurements are consistent
 with predictions from the Standard Model
 no sign for physics beyond the Standard Model
- all measurements are statistically limited
- analyses including 2012 data (~20/fb) ongoing
 - plenty of possibilities for improvements

ATLAS-CONF-2013-038

backup

performances

- good mass resolution required for good S/B performance
 - limited particle ID: only for p_T < 1GeV/c K/π separation possible

 good impact parameter resolution required for lifetime measurements

tracking-vertexing performance in pile-up

- Vertex resolution important for precision B-physics measurements: lifetime, CPV, rare decays.
- Quality of vertexing monitored over 2011 as pileup increased
- d₀ (top plot) of the reconstructed tracks with respect to the PV for 2 different number of pileups:
 - The tails are sensitive to the rate of secondaries and fakes. No significant increase in the fake rate observed.
- Good z-resolution of primary vertex (bottom plot) important at high luminosities

background composition and discrimination

Continuum background:	Variable	Description
discriminating variables to separate between	a20	Absolute value of the angle in the transverse
	pointing angle	plane between $\Delta \vec{x}$ and \vec{p}^*
B signals and continuum;	ΔR	Angle $\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between $\Delta \vec{x}$ and \vec{p}^B
14 variables explored to build a unique	L.,	Scalar product in the transverse plane of
discriminating variable: Boosted Decision	-7	$(\Delta \mathbf{X} \cdot \mathbf{p}^{w})/ \mathbf{p}_{\mathrm{T}}^{w} $
Trop (PDT) gives the best performances:	ct significance	Proper decay length $ct = L_{xy} \times m_B / p_T^B$
Tree (BDT) gives the best performances,	0	divided by its uncertainty
best BDT configuration and selection criteria	x^{2} x^{2}	Vertex separation significance $\Delta \vec{x}^T \cdot (\sigma_{\Delta \vec{x}}^2)^{-1} \cdot \Delta \vec{x}$
optimised on half of the sideband data	A19742	in (x, y) and z, respectively
, (odd-numbered events) and signal MC		Ratio of $ \vec{p}_{T}^{B} $ to the sum of $ \vec{p}_{T}^{B} $ and
(oud numbered events) and signal mo.	I _{0.7} isolation	the transverse momenta of all tracks with $p_{\rm T} > 0.5$ GeV within a cone $\Delta R < 0.7$ from
		the B direction, excluding B decay products
Peaking background:		Absolute values of the maximum and
\bigcirc fake rates for $\pi^{\pm}/K^{+}/K^{-}$ obtained on MC.	dol ^{max} , dol ^{min}	minimum impact parameter in the
		transverse plane of the <i>B</i> decay products relative to the primary vertex
2.1/4.1/3.3 ‰		Absolute values of the minimum distance of
Iatest BR from HFAG used;	$ D_{xy} ^{\min}$, $ D_{z} ^{\min}$	closest approach in the <i>xy</i> plane (or along <i>z</i>)
> 0.3 ev contribution to the signal region:		of tracks in the event to the B vertex
included in the entimication precedure and	, min	Minimum momentum of the two
	<i>P</i> 1	muon candidates along the B direction
in the upper limit calculation.	p_{T}^{B}	B transverse momentum

 $B_s \rightarrow \mu \mu$

32

background discrimination: isolation variable

 $B_s \rightarrow \mu \mu$

Isolation variable:

$$I^{\Delta R} = \frac{P_T^B}{P_T^B + \sum_i^{\Delta R} p_T^i}$$

tracks with $p_T > 0.5 \text{ GeV}$ excluding B daughters in the cone $\Delta R < 0.7$, where $\Delta R = \text{sqrt}((\Delta \eta)^2 + (\Delta \phi)^2)$

- PV association of tracks:
 - gets rid of the interference from the other interactions
 - isolation cut efficiency is pile-up independent

SUSY 2013

final selection optimisation

- optimisation on half sideband data (odd-numbered events) and reweighted signal MC;
- optimisation for a selection on the BDT classifier and the signal region width;
- maximisation of the Punzi estimator:

background from sidebands

 \blacksquare The odd-numbered event optimisation gives a maximum \mathscr{P} value of 0.0145. The corresponding final selection cuts on the mass window and the BDT variable are:

BDT classifier > 0.118 and $|\Delta m| < 121$ MeV

$$\mathcal{P} = \frac{\epsilon}{1 + \sqrt{B}}$$

$$B_s \rightarrow \mu \mu$$

NP searches with flavour with ATLAS

acceptance x efficiency ratio

$$B_s \rightarrow \mu \mu$$

$$BR(B_s o \mu\mu) = N_{B_s o \mu\mu} rac{1}{N_{B^\pm o J/\psi K^\pm}} \; \; BR(B^\pm o J/\psi K^\pm) rac{f_u}{f_s} \left[rac{arepsilon_{B^\pm o J/\psi K^\pm}}{arepsilon_{B_s o \mu\mu}} rac{A_{B^\pm o J/\psi K^\pm}}{A_{B_s o \mu\mu}}
ight]$$

 \Rightarrow determined on reweighted B_s and B⁺ MC samples wrt the fiducial volume:

 $N^{B}_{generated}$: $p_{T}^{B} > 8 \text{ GeV and } |\eta_{B}| < 2.5$

 $\epsilon \times A = N^{B}_{reconstructed} / N^{B}_{generated}$

 \Rightarrow systematic uncertainties:

⇒ main contribution from data-MC discrepancies of separation variables two main discrepancies on isolation and L_{xy} isolation depends on the flavour of the B L_{xy} is correlated with the vertex reconstruction so with some other discriminant variables but it does not depend on the flavour

of the B

acceptance x efficiency ratio

$$B_s \rightarrow \mu \mu$$

$$BR(B_s o \mu\mu) = N_{B_s o \mu\mu} rac{1}{N_{B^\pm o J/\psi K^\pm}} \; \; BR(B^\pm o J/\psi K^\pm) rac{f_u}{f_s} \left[rac{arepsilon_{B^\pm o J/\psi K^\pm}}{arepsilon_{B_s o \mu\mu}} rac{A_{B^\pm o J/\psi K^\pm}}{A_{B_s o \mu\mu}}
ight]$$

 \Rightarrow determined on reweighted B_s and B⁺ MC samples wrt the fiducial volume:

 $N^{B}_{generated}$: $p_{T}^{B} > 8 \text{ GeV and } |\eta_{B}| < 2.5$

 $\varepsilon \times A = N^{B}_{reconstructed} / N^{B}_{generated}$

 \Rightarrow systematic uncertainties:

⇒ main contribution from data-MC discrepancies of separation variables two main discrepancies on isolation and L_{xy}

single event sensitivity

 $B_s \rightarrow \mu \mu$

from the interpolation of 50% of the sideband events (8 even events) we expect: 6.75 background events in the optimised search window

$$BR(B_s o \mu \mu) = N_{B_s o \mu}$$

$$rac{1}{N_{B^{\pm}
ightarrow J/\psi K^{\pm}}} \left[BR(B^{\pm}
ightarrow J/\psi K^{\pm}) rac{f_{u}}{f_{s}}
ight] rac{arepsilon_{B^{\pm}
ightarrow J/\psi K^{\pm}}{arepsilon_{B_{s}
ightarrow \mu \mu}} rac{A_{B^{\pm}
ightarrow J/\psi K}}{A_{B_{s}
ightarrow \mu \mu}}
ight]$$

reference channel branching ratio is taken from the PDG and the relative hadronisation f_u/f_s is taken from LHCb.

Single Event Sensitivity (SES)

corresponds to the $B_s \rightarrow \mu^+ \mu^-$ branching fraction which would yield one observed signal event in the data sample.

quantity	value			
$N_{J/\psi K^{\pm}}$	$15214 \pm 1.10\% \pm 2.39\%$			
$R_{A\epsilon}$	$0.267 \pm 1.8\% \pm 6.9\%$			
SES	$(2.07 \pm 0.26) \cdot 10^{-9}$			
R^{obs}_{bkq}	1.240 ± 0.050			
N_{SR}^{exp}	6.75			
$N_{bkq,SB}^{obs}$	8			
$N_{B \rightarrow hh}$	0.30			

systematics summary on the SES

description	contribution
PDG branching fractions and f_s/f_d	8.5%
K^{\pm} tracking efficiency	5%
vertexing efficiency	2%
K^{\pm} charge asymmetry. in $B^{\pm} \rightarrow J/\psi K^{\pm}$	1%
$B^{\pm} \rightarrow J/\psi K^{\pm}$ yield	2.4%
$R_{A\epsilon}$	6.9%
total (comb. in quadrature)	12.5%

contributions from backgrounds:

- background interpolation from sidebands \rightarrow 4% on R_{bkg}
- $B \rightarrow hh'$ negligible

dominant contributions from BR and f_u/f_s from the acc-vs-eff ratio (data-MC discrepancies) and then from the K tracking efficiency statistical uncertainty on SES: 2.1%

 $B_s \rightarrow \mu \mu$

upper limit extraction

SUSY 2013

CLs method with profile likelihood ratio: likelihood for CLs:

the expected UL is calculated assuming as number of events in the signal region as the number of expected events obtained from the sideband interpolation (6.75 events):

 \rightarrow we obtain BR(B_s $\rightarrow \mu^+ \mu^-) < 1.6 \ 10^{-8}$ [expected UL]

analysis strategy @ ATLAS:

Relative BR measurement:

- partial cancellation of uncertainties:
 - on luminosity, cross-section, ..
- reference channel (B[±] → J/ψK[±], J/ψ → μ+μ-)
- blind analysis: signal region ± 300 GeV around B_s mass blinded
- limit placed using CLs method

$$BR(B_s o \mu\mu) = N_{B_s o \mu} \left[rac{1}{N_{B^\pm o J/\psi K^\pm}} \; BR(B^\pm o J/\psi K^\pm) rac{f_u}{f_s} \; rac{arepsilon_{B^\pm o J/\psi K^\pm}}{arepsilon_{B_s o \mu\mu}} rac{A_{B^\pm o J/\psi K^\pm}}{A_{B_s o \mu\mu}}
ight]$$

Single Event Sensitivity (SES)

corresponds to the $B_s \to \mu^+ \mu^-$ branching fraction which would yield one observed signal event in the data sample.

background composition

$$B_s \ \rightarrow \ \mu \mu$$

continuum:

- \bigcirc dominated by non-resonant bb production with $\mu\mu X$ final states
- real muons
- smooth shape in the di-muon mass
- limited MC statistics available in ATLAS
- measured by interpolation from sideband data into the signal region

resonant:

- B → hh, with hadrons misidentified as muons
- → mainly B → K⁺π⁻/π⁺π⁻ decays
- BR x (fake rate) ≈ 10⁻⁹ close to the SM B_s to μμ BR
 similar decay topology → hard to suppress
- contribution estimated from MC currently still quite small

reconstruction and event selection

 $P_t(B_s)$

- 2, 3 or 4 prong vertex constraint depending on decay topology
- Primary Vertex selection:
 - the closest in z to the B candidate
 - Re-fit excluding B daughters
- Tracks:
 - At least 1 pixel, 6 SCT and 9 TRT hits (good tracks)
 - |η| < 2.5 and p_T > 4 (2.5) GeV for muons (kaons)
 - tracks from the tracking systems matched to muon spectrometer tracks
- B candidates: $p_T > 8$ GeV and $|\eta| < 2.5$
 - select events based on their decay topology
 - discriminating variables to distinguish between B and continuum events
 - 14 variables identified and used in a boosted decision tree (BDT):
 - not correlated with invariant mass
 - highest discriminating power
 - highly correlated variables excluded

B.Vtx

P.Vtx

(background)

B.Vtx

(signal)

P.Vtx

SUSY 2013

NP searches with flavour with ATLAS

discriminating variables

Exploit:

- Primary Vertex-Secondary Vertex separation: L_{xy}, cτ significance
- Symmetry of final state: pointing angle, $d_0...$
- Full reconstruction: pointing angle, D_{min}...
- B hadronization features: Isolation, p_T of the B...

Binning in q²

 $B_d \rightarrow K^* \mu \mu$

Bins are identical to those used by Belle $0.04 < q^2 < 2.00 \text{ GeV}^2$ (no angular analysis performed due to low statistics) $2.00 < q^2 < 4.30 \text{ GeV}^2$ $4.30 < q^2 < 8.68 \text{ GeV}^2$ $8.68 < q^2 < 10.09 \text{ GeV}^2$ (J/ ψ mass region, excluded) $10.09 < q^2 < 12.86 \text{ GeV}^2$ $12.86 < q^2 < 14.18 \text{ GeV}^2$ (ψ (2S) mass region, excluded) $14.18 < q^2 < 16.00 \text{ GeV}^2$ $16.00 < q^2 < 19.00 \text{ GeV}^2$

 $1.00 < q^2 < 6.00 \text{ GeV}^2$

Fit strategy

 $B_d \rightarrow K^* \mu \mu$

Extended unbinned maximum likelihood fit in each q^2 bin Sequential fit: first fit m(K $\pi\mu\mu$) distribution, then the angular distributions with mass term parameters fixed.

The procedure checked to give same results as single-step fit except the lowest q^2 bin (included in systematics there).

• Mass fit (in each q^2 bin):

$$\mathcal{L} = \prod_{i=1}^{N} \left[N_{\text{sig}} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i}) + N_{\text{bckg}} \cdot \mathcal{M}_{\text{bckg}}(m_i) \right]$$

► Signal mass PDF – gaussian with per-candidate errors:

$$\mathcal{M}_{\rm sig}(m_i, \delta_{m_i}) = \frac{1}{\sqrt{2\pi} s_m \delta_{m_i}} \exp\left(\frac{-(m_i - m_{B_d^0})^2}{2(s_m \delta_{m_i})^2}\right)$$

Background mass PDF – exponential

$$\mathcal{M}_{\mathrm{bckg}}(m_i) = e^{-\lambda \cdot m_i}$$

<u>SUSY 2013</u>

 $B_d \rightarrow K^* \mu \mu$

Fit strategy (2)

• Angular fit (in each q^2 bin):

$$\mathcal{L} = \prod_{i=1}^{N} [N_{\text{sig}}^{\text{fix}} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i} | \text{fixed}) \cdot \mathcal{A}_{L, \text{sig}}(\cos \theta_{L, i}) \cdot \alpha_L(\cos \theta_{L, i}) \cdot$$

$$\mathcal{A}_{K,\mathrm{sig}}(\cos\theta_{K,i})\cdot\alpha_K(\cos\theta_{K,i})+$$

 $N_{\text{bckg}}^{\text{fix}} \cdot \mathcal{M}_{\text{bckg}}(m_i | \text{fixed}) \cdot \mathcal{A}_{L,\text{bckg}}(\cos \theta_{L,i}) \cdot \mathcal{A}_{K,\text{bckg}}(\cos \theta_{K,i})]$

► Signal PDFs:

$$\mathcal{A}_{L,\text{sig}}(\cos\theta_{L,i}) = \frac{3}{4} F_L(q^2) \left(1 - \cos^2\theta_{L,i}\right) + \frac{3}{8} \left(1 - F_L(q^2)\right) \left(1 + \cos^2\theta_{L,i}\right) + A_{FB}(q^2) \cos\theta_{L,i}$$

$$\mathcal{A}_{K,\text{sig}}(\cos\theta_{K,i}) = \frac{3}{2} F_L(q^2) \cos^2\theta_{K,i} + \frac{3}{4} \left(1 - F_L(q^2)\right) \left(1 - \cos^2\theta_{K,i}\right)$$

► Background PDF – linear combination of Chebyshev polynomials up to 2nd order:

$$\mathcal{A}_{L(K),\text{bkg}} = 1 + p_{1L(K)} \cos \theta_{L(K),i} + p_{2L(K)} \left(2\cos^2 \theta_{L(K),i} - 1 \right)$$

• $\alpha_L(\cos \theta_{L,i})$, $\alpha_K(\cos \theta_{K,i})$ – acceptance functions taking into account detector and selection effect on the angular shapes

 $B_d \rightarrow K^* \mu \mu$

Systematic uncertainties

Ranges of the mass fit region

Differ in q^2 bins due to ΔM cut effect

Angular background shapes

Varied between 2nd and 3rd Chebyshev polynomials

Contribution of $B^{\pm} \rightarrow \mu^{+} \mu^{-} K^{\pm}$ events

Estimated by removing potential $B^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$ candidates

Angular acceptance effects

Mainly from limited MC statistics

Various signal angular shapes tested

Sequential fitting approach

Non-negligible effect only in $2.00 < q^2 < 4.30 \text{ GeV}^2$ bin due to low statistics

Following sources found to be negligible

Contribution from S-wave $(B^0_{\ d} \rightarrow \mu^+\mu^-K^+\pi^- \text{ decays})$ Contribution from $B_s \rightarrow \phi (\rightarrow K^+K^-) \mu^+\mu^-$ events Background mass shape Possible bias due to angular fit approach (neglecting correlation)

 $B_s \rightarrow J/\psi \phi$

flavour tagging

Analysis updated including flavour tagging: previous analysis: JHEP 12 (2012) 072

determine flavour eigenstate of Bs meson at production time

Opposite side flavour tagging used Two different methods applied in hierarchy of performance

> Muon Tagger Identify the muon from semileptonic decay Calculate muon cone charge Q_u

Jet Charge Tagger Identify jet originating from same primary vertex Calculate jet charge Q_{jet}

Determine probability that signal decay contains b as function of Qµ and Qjet using calibration sample B+g $J/\psi K+$

 $B_s \rightarrow J/\psi \phi$

angular analysis in $B_s \to J/\psi \varphi$

In the J/ ψ (or ϕ) rest frames, the direction of ϕ (opposite to J/ ψ) defines the x axis, and the xy-plane is defined by the K⁺K⁻ decay plane, with K⁺ oriented towards positive y; θ_T and ϕ_T are the polar angles of I⁺, ψ_T is the angle between K⁺ and x-axis

the measurement of ATLAS in $B_s \to J/\psi \varphi$

$$B_s \rightarrow J/\psi \phi$$

Analysis using data collected in 2011 (4.7 fb⁻¹). Trigger selection based in di-muon and single-muon triggers $(p_T \text{ threshold 4 GeV or higher})$ Offline selection based on J/ ψ and ϕ invariant masses, χ^2 /NDF< 3 in fit to decay vertex, $|\eta| < 2.5$ for all tracks, $p_T > 0.5$ GeV for kaon candidates. Decay time computed in the plane normal to collision axis. Average number of primary interactions 5.6: wrong association to primary vertex is < 1% and effects are negligible. Acceptance computed on large samples of signal and background channels (e.g.: $B^0 \rightarrow J/\psi K^{*0}$, $bb \rightarrow J/\psi X$, $pp \rightarrow J/\psi X$).

Efficiency via data-driven procedures.

systematic uncertainties

Systematic	$\phi_s(\mathrm{rad})$	$\Delta\Gamma_s(\mathrm{ps}^{-1})$	$\Gamma_s(\mathrm{ps}^{-1})$	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$
Inner Detector alignment	0.04	< 0.001	0.001	< 0.001	< 0.001	< 0.01
Trigger efficiency	< 0.01	< 0.001	0.002	< 0.001	< 0.001	< 0.01
Signal mass model	0.02	0.002	< 0.001	< 0.001	< 0.001	< 0.01
Background mass model	0.03	0.001	< 0.001	0.001	< 0.001	< 0.01
Resolution model	0.05	< 0.001	0.001	< 0.001	< 0.001	< 0.01
Background lifetime model	0.02	0.002	< 0.001	< 0.001	< 0.001	< 0.01
Background angles model	0.05	0.007	0.003	0.007	0.008	0.02
B^0 contribution	0.05	< 0.001	< 0.001	< 0.001	0.005	< 0.01
Totals	0.10	0.008	0.004	0.007	0.009	0.02

These are calculated with different techniques, including:

changes in detector simulation (alignment),

data based studies (efficiency),

pseudo-experiments Montecarlo (mass models, background angles) and variations in analysis methods and assumptions.

51

SUSY 2013

symmetries in the likelihood

$$B_s \rightarrow J/\psi \phi$$

The term describing $B_s \rightarrow J/\psi \phi$ in the likelihood is invariant under the transformations:

$$\{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}\} \to \{\pi - \phi_s, -\Delta\Gamma_s, \pi - \delta_{\perp}, 2\pi - \delta_{\parallel}\}$$
$$\{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}\} \to \{-\phi_s, \Delta\Gamma_s, \pi - \delta_{\perp}, 2\pi - \delta_{\parallel}\}$$

with the latter characteristic of untagged analyses.

The ATLAS analysis favours values of ϕ_s close to 0 (π), for which an untagged analysis is scarcely sensitive to the phase δ_{\perp} .

We therefore proceed as follows:

we constrain the value of δ_⊥ to 2.95 ± 0.39 rad
as recently measured (LHCb) [or its complement to π].
the four minima of the likelihood do not overlap, only one of them is compatible with previous measurements, and we show the result for that minimum.

result for ϕ_{S} and $\Delta\Gamma_{\text{S}}$ in $B_{\text{s}}\to J/\psi\phi$

0<u>~</u>___ -1.5

-0.5

(Statistical errors only)

Correla1on coefficients

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_0(0) ^2$	$ A_{\parallel}(0) ^2$	$ A_{S}(0) ^{2}$
ϕ_s	1.00	-0.13	0.38	-0.03	-0.04	0.02
$\Delta\Gamma_s$		1.00	-0.60	0.12	0.11	0.10
Γ_s			1.00	-0.06	-0.10	0.04
$ A_0(0) ^2$				1.00	-0.30	0.35
$ A_{\parallel}(0) ^2$					1.00	0.09
$ A_{S}(0) ^{2}$						1.00

φ^{J/ψφ}

0.5

1.5

[rad]