Studies of CP Violation in B Hadron Decays

Kristof De Bruyn On behalf of the LHCb Collaboration

> SUSY 2013 August 26th, 2013

$B_q^0 \rightarrow h^- h^+$

 $B_s^0 \to J/\psi h^+ h^-$

 $B^{\pm} \rightarrow D^0 h^{\pm}$

The LHCb Detector

Forward arm spectrometer to study b- and c-hadron decays

- Good impact parameter resolution to identify secondary vertices: 20 μm
- Versatile & efficient trigger for b- and c-hadrons and forward EW signals
- Decay time resolution: 45 fs $(B_s^0 \rightarrow J/\psi \phi)$
- ► Invariant mass resolution: $8 \text{ MeV}/c^2 (B \rightarrow J/\psi X)$ $22 \text{ MeV}/c^2 (B \rightarrow hh)$
- Excellent particle identification: 95 % K ID efficiency (5 % $\pi \rightarrow K$ mis-ID)

$B_q^0 \rightarrow h^- h^+$

 $B_s^0 \rightarrow J/\psi h^+ h^-$

Measuring CP Violation: Interfering Paths

CP Violation in Mixing:

- $\mathsf{Prob}(B^0_q o ar{B}^0_q)
 eq \mathsf{Prob}(ar{B}^0_q o B^0_q)$
- Interference through <u>Virtual</u> (loops) and <u>Real</u> (intermediate decay) contributions
- Key Measurements: a_{sl}^s from $B_s^0 \to D_s^- \mu^+ \nu$

Direct CP Violation:

 $\operatorname{Prob}(B \to f) \neq \operatorname{Prob}(\overline{B} \to \overline{f})$

- Interference between multiple decay paths (for example: Tree + Penguin diagrams)
- Key Measurements: $B_a^0 \rightarrow h^+ h^-$; γ from $B^{\pm} \rightarrow D^0 h^{\pm}$

イロト イロト イヨト イヨト

$B_{g}^{0} \rightarrow D_{s}^{-}\mu^{+}\nu \qquad \qquad B_{q}^{0} \rightarrow h^{-}h^{+} \qquad \qquad B_{s}^{0} \rightarrow J/\psi h^{+}h^{-}$

a_{sl}^s from $B_s^0 \to D_s^- \mu^+ \nu$

arxiv 1308.1048

Introduction

► Search for New Physics in neutral *B* meson mixing.

Can be probed using wrong-charge asymmetry for flavour specific final state f

$$\mathbf{a}_{st}^{q} \equiv \frac{\Gamma\left(\bar{B}_{q}^{0}(t) \to f\right) - \Gamma\left(B_{q}^{0}(t) \to \bar{f}\right)}{\Gamma\left(\bar{B}_{q}^{0}(t) \to f\right) + \Gamma\left(B_{q}^{0}(t) \to \bar{f}\right)} \qquad \qquad \mathbf{SM} \qquad \mathbf{0}$$

- Decay time independent quantity
- ▶ Measured in semi-leptonic $B_q^0 \rightarrow D_q^- \mu^+ \nu$ decays
- World averages [HFAG]:

including results from CLEO, BABAR, BELLE & D0

$$a_{sl}^d = 0.0007 \pm 0.0027$$

 $a_{sl}^s = -0.0171 \pm 0.0055$

SUSY 2013

$B_s^0 \rightarrow D_s^- \mu^+ \nu$

$B_a^0 \rightarrow h^- h^+$

 $B_s^0 \rightarrow J/\psi h^+ h^-$

arxiv 1308.1048

LHC

Candidates / (3 MeV)

(3 MeV)

a_{sl}^s from $B_s^0 \to D_s^- \mu^+ \nu$

LHCb Measurement

(time integrated analysis)

- Data sample: 1 fb⁻¹ of 7 TeV data collected in 2011
- Determine

$$A_{\text{meas}} = \frac{\Gamma(D_{s}^{-}\mu^{+}) - \Gamma(D_{s}^{+}\mu^{-})}{\Gamma(D_{s}^{-}\mu^{+}) + \Gamma(D_{s}^{+}\mu^{-})} = \frac{1}{2}a_{sl}^{s} + O(10^{-4})$$

through measurement of the $B_s^0 o D_s^- (o \phi \pi^-) \mu^+ \nu$ yields

Crucial aspect: Asymmetries affecting the measurement of a^s_{sl}

$$A_{
m meas} = A_{\mu}^{C} - A_{
m track} - A_{
m bkg}$$

- All asymmetries determined on data
- *B* meson production asymmetry:

at most few percent (impact on $a_{sl}^s < 10^{-4}$)

- Detection charge asymmetry: $A_{\mu}^{C} = (0.04 \pm 0.25) \%$
- Track reconstruction asymmetry: $A_{\text{track}} = (0.02 \pm 0.13) \%$
- Background asymmetry: $A_{bkg} = (0.05 \pm 0.05) \%$

$B_a^0 \rightarrow h^- h^+$

 $B_s^0 \rightarrow J/\psi h^+ h^-$

arxiv 1308.1048

a_{sl}^s from $B_s^0 \to D_s^- \mu^+ \nu$

Latest LHCb Results

Measured CP asymmetry:

 $a_{sl}^s = (-0.06 \pm 0.50 \pm 0.36)\%$

Compatible with the SM

 $\exists \rightarrow$

$B_q^0 \rightarrow h^- h^+$

Introduction

- Charmless two-body decays offer sensitive probe to search for New Physics
- Problem: presence of hadronic factors in decay amplitude
- Solution: combine multiple measurements using approximate flavour symmetries

$$\Delta \equiv \frac{\mathcal{A}_{CP}(B_d^0 \to \pi^- K^+)}{\mathcal{A}_{CP}(B_s^0 \to K^- \pi^+)} + \frac{\mathcal{B}(B_s^0 \to K^- \pi^+)}{\mathcal{B}(B_d^0 \to \pi^- K^+)} \qquad \xrightarrow{\qquad SM \qquad 0}$$

- Allows extraction of CKM angle γ
- Demonstrate CP violation in B_s system

LHCb Measurements

- Data sample: 1 fb⁻¹ of 7 TeV data collected in 2011
- Modes: $B_s^0 \to K^- \pi^+$ and $B_d^0 \to \pi^- K^+$
- Modes: $B_s^0 \to K^- K^+$ and $B_d^0 \to \pi^- \pi^+$
- Crucial aspects: particle identification; $K \pi$ separation

(time integrated analysis)

(time dependent analysis)

$B_{\rm S}^0 \to D_{\rm S}^- \mu^+ \nu$

$B_q^0 \rightarrow h^- h^+$

$B_q^0 \rightarrow h^- h^+$

CP Asymmetries

Decay time distribution

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}t}\left(B_{q}^{0}(t)\to f\right)\propto\cosh\left(\frac{\Delta\Gamma_{q}}{2}t\right)-D_{f}\sinh\left(\frac{\Delta\Gamma_{q}}{2}t\right)+C_{f}\cos(\Delta m_{q}t)-S_{f}\sin(\Delta m_{q}t)$$

Leads to an asymmetry

$$\mathcal{A}_{\rm CP} \equiv \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)} = \frac{-C_f \cos(\Delta m_q t) + S_f \sin(\Delta m_q t)}{\cosh\left(\frac{\Delta \Gamma_q}{2}t\right) - D_f \sinh\left(\frac{\Delta \Gamma_q}{2}t\right)}$$

- Measured asymmetry needs to be corrected for detection and production asymmetries
- Time dependent analysis affected by resolution, acceptance, flavour tagging

$B_a^0 \rightarrow h^- h^+$

 $B_{s}^{0} \rightarrow J/\psi h^{+} h^{-}$

$B^{\pm} \rightarrow D^0 h^{\pm}$

9/20

arxiv 1308.1428

$B_s^0 \rightarrow K^- K^+$

Latest LHCb Results

 $B_d^0 \to \pi^- \pi^+$

 $B_s^0 \rightarrow J/\psi h^+ h^-$

arxiv 1308.1428

Latest LHCb Results

 $B_{\rm S}^0 \rightarrow D_{\rm S}^- \mu^+ \nu$

 $B_q^0 \rightarrow h^- h^+$

arxiv 1304.6173

Latest LHCb Results

$$\mathcal{A}_{CP}(B_s^0 \to K^- \pi^+) =$$

0.27 ± 0.04 ± 0.01

SM Test:

 $\Delta=-0.02\pm0.05\pm0.04$

- First observation of CP violation in the B_s system: $B_s^0 \rightarrow K^- \pi^+$
- Compatible with the SM

• CP violating phase associated with $B_s^0 - \overline{B}_s^0$ mixing

 $\phi_{\rm s}$ from $B_{\rm s}^0 \to J/\psi K^+ K^-$ and $B_{\rm s}^0 \to J/\psi \pi^+ \pi^-$

- Accessible due to interference between mixing and decay
- Precise SM prediction

 $\phi_{\rm s}^{\rm SM} = 0.0364 \pm 0.0016$ rad

Small magnitude offers excellent probe to search for New Physics

$$\phi_s = \phi_s^{\mathsf{SM}} + \phi_s^{\mathsf{NP}}$$

- Measured in Vector Vector final state: $B_s^0 \rightarrow J/\psi \phi (\rightarrow K^+ K^-)$
- Measured in Vector Pseudo-scalar final state: $B_s^0 \rightarrow J/\psi f_0(\rightarrow \pi^+\pi^-)$
- Simultaneous determination of the B_s lifetime parameters $\Delta \Gamma_s$ and Γ_s

12/20

J. Charles et al., [arxiv 1106.4041]

Introduction

 $B_q^0 \rightarrow h^- h^+$

ϕ_s from $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$

LHCb Measurement

(time integrated analysis)

arxiv 1304.2600

- Data sample: 1 fb⁻¹ of 7 TeV data collected in 2011
- Includes both resonant (P-wave) and non-resonant (S-wave) contributions
- Includes both opposite- and same-side tagging
- Per event resolution and mistag model
- Fit to signal candidates only (sWeighted)
- Unbinned maximum likelihood fit to decay time and decay angles:
 8 physics parameters
- $B_s^0 \to J/\psi \pi^+ \pi^-$ uses results on $\Delta \Gamma_s$ and Γ_s from $B_s^0 \to J/\psi K^+ K^-$

$B_q^0 \rightarrow h^- h^+$

14 / 20

ϕ_s from $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$

arxiv 1304.2600

Latest LHCb Results

B Hadron Decays

4 ⓓ ▷ < ≧ ▷ < ≧ ▷</p> SUSY 2013

15 / 20

γ from $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow D^0 \pi^{\pm}$

Introduction

- Precision test of the SM: overconstraining the Unitarity Triangle
- Discrepancies in position of apex form clear sign of New Physics
- Least constrained parameter: angle γ

 $\gamma = (66 \pm 12)^{\circ}$ [CKMfitter]

 $\gamma = (70.8 \pm 7.8)^{\circ}$ [UTfit]

(time integrated analysis) (time dependent analysis)

LHCb Measurements

- ▶ Using decay modes with only Tree diagrams: $B^{\pm} \rightarrow D^0 h^{\pm}$
- ▶ Using decay modes also with loop diagrams: $B_s^0 \rightarrow D_s^{_{\mp}}K^{_{\pm}}$
- Combination of the three $B^{\pm} \rightarrow D^0 h^{\pm}$ measurements by LHCb

arxiv 1305.2050

$B_s^0 \to D_s^- \mu^+ \nu$

$B_q^0 \rightarrow h^- h^+$

 $B_q^0 \rightarrow h^- h^+$

arxiv 1305.2050

γ from $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow D^0 \pi^{\pm}$

Combination Method

- Frequentist approach (cfr. CKMfitter)
- Maximise combined likelihood of experimental observables
- Includes information from the covariance matrices
- Result is limited by statistics
- Measurements use external input on hadronic parameters describing D meson decay

Input

- $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow D^0 \pi^{\pm}$ with $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-, K^{\pm} \pi^{\mp}$ [GLW/ADS Method]
- $B^{\pm} \rightarrow D^0 K^{\pm}$ with $D^0 \rightarrow K^0_S \pi^+ \pi^-, \ K^0_S K^+ K^-$ [GGSZ Method
- $B^{\pm} \to D^0 K^{\pm}$ and $B^{\pm} \to D^0 \pi^{\pm}$ with $D^0 \to K^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp}$

[GGSZ Method] [ADS Method]

▲冊▶▲目▶▲目▶ 目 少々⊙

 $B_q^0 \rightarrow h^- h^+$

 $B_s^0 \rightarrow J/\psi h^+ h^-$

γ from $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow D^0 \pi^{\pm}$

arxiv 1305.2050

- Data sample:
 1 fb⁻¹ of 7 TeV data collected in 2011
- Combination Fit:

24 input parameters (charge asymmetries, charge averages, ratios of suppressed to favoured final states)

< 17 ▶

- + 13 constraints on D^0 decay
- See also Mitesh Patel's talk

< ∃⇒

 $\iota^+ v \qquad B^0_q \to$

γ from $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow D^0 \pi^{\pm}$

Latest LHCb Results

Systematic uncertainties assigned for

- neglected correlations between fitted parameters
- undercoverage of the combination method

arxiv 1305.2050

 $B_q^0 \rightarrow h^- h^+$

 $B_s^0 \rightarrow J/\psi h^+ h^-$

γ from $B^{\pm} \rightarrow D^{0} (\rightarrow K^{0}_{S} h^{+} h^{-}) K^{\pm}$

Preliminary Results

- Data sample: 2 fb⁻¹ of 8 TeV data collected in 2012
- Same analysis procedure as [arxiv 1209.5869]
- Improved selection strategy
- Result combined with previous GGSZ result

$$\gamma = (57 \pm 16)^{\circ}$$

See Mitesh Patel's talk for more details

Preliminary Update on Average

LHCb-CONF-2013-004

- ► LHCb has produced many first and world's best CP asymmetry measurements, in many different *B* decay modes.
- Most of the LHCb results are limited by their statistical uncertainty.
- All results presented here are based on the 1 fb⁻¹ dataset collected in 2011. The 2 fb⁻¹ dataset collected in 2012 is currently being studied.

Expect many more updates soon!

Back-up

Kristof De Bruyn (Nikhef)

Studies of CP Violation in B Hadron Decays

SUSY 2013

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

シへで 21/20

Performance of the LHCb Detector

Data Taking

LHCb Integrated Luminosity pp collisions 2010-2012

Efficiencies

- Trigger efficiency:
 - Dimuon channels: \approx 90% Multibody hadronic channels: \approx 30%
- Track reconstruction efficiency: > 96%

- Data taking efficiency: 93.05%
- ► Percentage of working detector channels: ≈ 99%

Resolution

Momentum resolution:

 $\Delta p/p = 0.4\%$ at 5 GeV/c $\Delta p/p = 0.6\%$ at 100 GeV/c

ECAL resolution: 1% ± 10%

イロト イポト イヨト イヨト

$B_q^0 \rightarrow h^- h^+$

LHCb-CONF-2012-029

$\gamma - 2\beta_s$ from $B_s^0 \to D_s^{\mp} K^{\pm}$

LHCb Measurement

- Data sample: 1 fb⁻¹ of 7 TeV data collected in 2011
- ▶ Reconstructed final states: $D_s^- \to K^- K^+ \pi^-$, $K^- \pi^+ \pi^-$, $\pi^- \pi^+ \pi^-$
- Optimisation and background study done using $B_s^0 \rightarrow D_s^{\mp} \pi^{\pm}$ mode
- Many partially reconstructed background to consider
- Analysis affected by resolution, acceptance, flavour tagging

 $B_s^0 \rightarrow D_s^- \mu^+ \nu$

$B_q^0 \rightarrow h^- h^+$

LHCb-CONF-2012-029

$\gamma - 2\beta_s$ from $B_s^0 \to D_s^{\mp} K^{\pm}$

Latest LHCb Results

Decay time distribution for $B_s^0 \to f$ $\frac{\mathrm{d}\Gamma(t)}{\mathrm{d}t} \propto \cosh\left(\frac{\Delta\Gamma_s}{2}t\right) - D_f \sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + C_f \cos(\Delta m_s t) - S_f \sin(\Delta m_s t)$

С	=	$1.01 \pm 0.50 \pm 0.23$
Sf	=	$-1.25 \pm 0.56 \pm 0.24$
Sīf	=	$0.08 \pm 0.68 \pm 0.28$
D _f	=	$-1.33 \pm 0.60 \pm 0.26$
D∓	=	$-0.81 \pm 0.56 \pm 0.26$

$$= (1 - r^{2})/(1 + r^{2})$$

= 2r sin ($\delta_{s} - (\gamma - 2\beta_{s})$)/(1 + r²)
= 2r sin ($\delta_{s} + (\gamma - 2\beta_{s})$)/(1 + r²)
= 2r cos ($\delta_{s} - (\gamma - 2\beta_{s})$)/(1 + r²)
= 2r cos ($\delta_{s} + (\gamma - 2\beta_{s})$)/(1 + r²)

CP Violation in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$

LHCb-CONF-2013-003

LHCb Measurement

- Data sample: 1 fb⁻¹ of 7 TeV data collected in 2011
- Use $D^{*+} \rightarrow D^0 \pi_s^+$ to tag the initial flavour of the D^0
- Or use semileptonic *B* decays: $\bar{B} \rightarrow D^0 \mu^- \bar{\nu}_\mu X$

$$\mathcal{A}_{\rm CP}(f) \equiv \frac{\Gamma\left(D^0(t) \to f\right) - \Gamma\left(\bar{D}^0(t) \to f\right)}{\Gamma\left(D^0(t) \to f\right) + \Gamma\left(\bar{D}^0(t) \to f\right)}$$

 To cancel detector asymmetries (as much as possible) and eliminate the contribution of indirect CP violation, measure

$$\Delta \mathcal{A}_{\rm CP} \equiv \mathcal{A}_{\rm CP}(K^-K^+) - \mathcal{A}_{\rm CP}(\pi^-\pi^+)$$

Latest LHCb Results

$$\begin{aligned} \Delta \mathcal{A}_{CP} &= (-0.34 \pm 0.15 \pm 0.10)\% \quad \text{from } D^{*0} \\ &= (+0.49 \pm 0.30 \pm 0.14)\% \quad \text{from } \bar{B} \to D^0 \mu^- \bar{\nu}_{\mu} X \\ &= (-0.15 \pm 0.16)\% \quad \text{Combination} \end{aligned}$$

$B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ Analysis

Symmetry Transformation

$$\left(\phi_{s}, \Delta \Gamma_{s}, \delta_{0}, \delta_{\parallel}, \delta_{\perp}, \delta_{\mathsf{S}}\right) \leftrightarrow \left(\pi - \phi_{s}, -\Delta \Gamma_{s}, -\delta_{0}, -\delta_{\parallel}, \pi - \delta_{\perp}, -\delta_{\mathsf{S}}\right)$$

Flavour Tagging Performance

Taggin power: $\epsilon_{tag} \mathcal{D}^2 \equiv \epsilon_{tag} (1 - 2\omega)^2$

Opposite-side Tagger Only:

 $\begin{array}{rcl} \epsilon_{tag} & = & (33.00 \pm 0.28)\% \\ \langle \omega \rangle & = & (36.83 \pm 0.15)\% \\ \epsilon_{tag} \mathcal{D}^2 & = & (02.29 \pm 0.06)\% \end{array}$

Overlap region (OS+SS):

 $\begin{array}{lll} \epsilon_{tag} & = & (03.90 \pm 0.11)\% \\ \epsilon_{tag} \mathcal{D}^2 & = & (00.51 \pm 0.03)\% \end{array}$

Same-side Tagger Only:

$$\epsilon_{\text{tag}} = (10.26 \pm 0.18)\%$$

 $\epsilon_{\text{tag}} \mathcal{D}^2 = (00.89 \pm 0.17)\%$

arxiv 1304.2600

Total:

$$\begin{array}{rcl} \epsilon_{\rm tag} & = & (39.36 \pm 0.32)\% \\ \langle \omega \rangle & = & 35.9\% \\ \epsilon_{\rm tag} \mathcal{D}^2 & = & (03.13 \pm 0.13 \pm 0.20)\% \end{array}$$

Input for the γ Combination

arxiv 1305.2050

GGSZ Method

$$\begin{array}{lll} x_{-} &=& r_{B}^{K}\cos(\delta_{B}^{K}-\gamma)\\ y_{-} &=& r_{B}^{K}\sin(\delta_{B}^{K}-\gamma)\\ x_{+} &=& r_{B}^{K}\cos(\delta_{B}^{K}+\gamma)\\ y_{+} &=& r_{B}^{K}\sin(\delta_{B}^{K}+\gamma) \end{array}$$

ADS & GLW Method

• Ignoring corrections due to $D^0 - \overline{D}^0$ mixing

$$\begin{split} R^{f}_{K/\pi} &= \quad \frac{\Gamma(B^{-} \rightarrow D[\rightarrow f]K^{-}) + \Gamma(B^{+} \rightarrow D[\rightarrow \tilde{t}]K^{+})}{\Gamma(B^{-} \rightarrow D[\rightarrow f]\pi^{-}) + \Gamma(B^{+} \rightarrow D[\rightarrow \tilde{t}]\pi^{+})} \quad = R_{cab} \frac{1 + (r^{R}_{B})^{2} + 2r^{R}_{B} \cos \delta^{R}_{B} \cos \gamma}{1 + (r^{R}_{B})^{2} + 2r^{R}_{B} \cos \delta^{R}_{B} \cos \gamma} \\ A^{f}_{h} &= \quad \frac{\Gamma(B^{-} \rightarrow D[\rightarrow f]h^{-}) - \Gamma(B^{+} \rightarrow D[\rightarrow \tilde{t}]h^{+})}{\Gamma(B^{-} \rightarrow D[\rightarrow f]h^{-}) + \Gamma(B^{+} \rightarrow D[\rightarrow \tilde{t}]h^{+})} \quad = \frac{2r^{h}_{B} \sin \delta^{h}_{B} \sin \gamma}{1 + (r^{h}_{B})^{2} + 2r^{h}_{B} \cos \delta^{h}_{B} \cos \gamma} \\ R^{\pm}_{h} &= \quad \frac{\Gamma(B^{\pm} \rightarrow D[\rightarrow f]h^{\pm})}{\Gamma(B^{\pm} \rightarrow D[\rightarrow f]h^{\pm})} \qquad = \frac{r^{2}_{f} + (r^{h}_{B})^{2} + 2r^{h}_{B} r_{f} \kappa \cos(\delta^{h}_{B} + \delta_{f} \pm \gamma)}{1 + (r^{h}_{B} r_{f})^{2} + 2r^{h}_{B} r_{f} \kappa \cos(\delta^{h}_{B} - \delta_{f} \pm \gamma)} \end{split}$$

		0	
D:	Ε.	DU	6 ±
D	\rightarrow	0	11

 $B_{\rm s}^0 \rightarrow J/\psi h^+ h^-$

Input for the γ Combination

 $B_a^0 \rightarrow h^- h^+$

 $B_s^0 \to D_s^- \mu^+ \nu$

arxiv 1305.2050

GGSZ Method			[arxiv 1209.5869] GLW/ADS Method				[arxiv 1203.3662]			
	X	=	(0.0 ± 4)	.3 ± 1.5 ± 0 2 + 0 8 + 2	$(0.6) \times 10^{-2}$	$R^{K\pi}_{K/\pi}$	=	0.0774	± 0.0012	± 0.0018
	y –	_	(-10.3 ± 4)	.5 + 1.8 + 1	($R_{K/\pi}^{KK}$	=	0.0773	± 0.0030	± 0.0018
	V+	=	(-0.9 ± 3)	$.7 \pm 0.8 \pm 3$	$(3.0) \times 10^{-2}$	$R_{K/\pi}^{\pi\pi}$	=	0.0803	± 0.0056	± 0.0017
	2		,		,	$A_{\pi}^{K\pi}$	=	-0.0001	± 0.0036	± 0.0095
ADS I	Metho	d			[arxiv 1303.4646]	$A_K^{K\pi}$	=	0.0044	± 0.0144	± 0.0174
	$R_{K/\pi}^{K3\pi}$	=	0.0765	± 0.0017	± 0.0026	A_K^{KK}	=	0.148	± 0.037	± 0.010
	$A_{\pi}^{K3\pi}$	=	-0.006	± 0.005	± 0.010	$A_K^{\pi\pi}$	=	0.135	± 0.066	± 0.010
	$A_K^{K3\pi}$	=	-0.026	± 0.020	± 0.018	A_{π}^{KK}	=	-0.020	± 0.009	±0.012
	$R_{\kappa-}^{K3\pi}$	=	0.0071	± 0.0034	± 0.0008	$A_{\pi}^{\pi\pi}$	=	-0.001	± 0.017	± 0.010
	$R_{\kappa\perp}^{K3\pi}$	=	0.0155	± 0.0042	± 0.0010	R_K^-	=	0.0073	± 0.0023	± 0.0004
	$B^{K3\pi}$	_	0.00400) + 0 00052	P + 0 00011	R_{K}^{+}	=	0.0232	± 0.0034	± 0.0007
	- _π _ - K3π		0.00216 ± 0.0004			R_{π}^{-}	=	0.00469	0 ± 0.00038	8 ± 0.00008
	$\pi_{\pi+}$		0.00310	0.00310 ± 0.00040	5 ± 0.00011	R_{π}^+	=	0.00352	2 ± 0.00033	3 ± 0.00007

