Sequential supersymmetry breaking in $\mathcal{N} = 2$ SUSY

Jean-Claude Jacot

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Department of Physics, CERN Theory Division

SUSY 2013, ICTP Trieste, 26th August 2013

Based on arXiv:1204.2141 [hep-th] in collaboration with I. Antoniadis and J.-P. Derendinger

Review of partial/sequential SUSY breaking

No-Go Theorem

Suppose
$$Q^1 |0\rangle = \bar{Q}_1 |0\rangle = 0$$
. According to : $\operatorname{tr} \{Q^A, \bar{Q}_B\} = 4H\delta^A_B$, $\langle 0|H|0\rangle = 0 \Leftrightarrow ||Q^2|0\rangle||^2 + ||\bar{Q}_2|0\rangle||^2 = 0 \Leftrightarrow Q^2|0\rangle = \bar{Q}_2|0\rangle = 0$.

Evading the No-Go theorem [Hughes-Polchinski '86]:

• $\not\equiv \mathcal{Q}^{\mathbf{A}}, \, \bar{\mathcal{Q}}_{\mathbf{A}} \longrightarrow \text{Modification of the SUSY current algebra}$

$$\delta^{A}\lambda^{I}Z_{IJ}\left(\phi\right)\delta_{B}\bar{\lambda}^{J}=\delta^{A}_{\ B}V_{S}+C^{A}_{\ B}$$

• Non-positive-definiteness of the Hilbert space

$$\delta^{A} \lambda^{I} Z_{IJ} \left(\phi \right) \delta_{B} \bar{\lambda}^{J} - 3 M_{Pl}^{2} M^{*AC} M_{CB} = \delta^{A}_{B} V_{S}$$

("T-identity" [Cecotti-Girardello-Porrati '84])

Motivations

- Only one mechanism is known in $\mathcal{N}=2$ global SUSY, based on electric **AND** magnetic Fayet-Iliopoulos terms;
- Led to the discovery of new results in differential geometry: Kähler quotients of quaternionic-Kähler manifolds [Cortés-Louis-Smyth-Triendl '11];
- \bullet Could be a step towards a reconciliation between extended $(\mathcal{N}=2)$ SUSY and chirality ?
 - Is it possible to break the two SUSYs at two widely separated scales?
 - Is the effective $\mathcal{N} = 1$ theory chiral?

Problem addressed in this talk:

What are the minimal ingredients for seq. SUSY breaking in $\mathcal{N}=2$ models with hyper and vector multiplets?

Minimal $\mathcal{N} = 2$ model : Gauge sector

 $\mathcal{N}=2$ superspace formalism naturally describes partial/sequential SUSY breaking:

• General $\mathcal{N}=2$ chiral superfield $\mathcal{Z}(y,\theta,\tilde{\theta}), \, \bar{D}\mathcal{Z}=\bar{\tilde{D}}\mathcal{Z}=0$:

$$\mathcal{Z}(y,\theta,\tilde{\theta}) = Z(y,\theta) + \sqrt{2}\tilde{\theta}\omega(y,\theta) + \tilde{\theta}^2 \left(\Phi_Z(y,\theta) - \frac{1}{4}\bar{D}^2\bar{Z}(y,\theta)\right)$$

• Contraint defining a Maxwell multiplet: $D\widetilde{D}Z + \overline{D}\widetilde{D}\widetilde{Z} = 0$

$$\begin{cases} Z\left(y,\theta\right) = X\left(y,\theta\right) \\ \omega\left(y,\theta\right) = iW\left(y,\theta\right) & DW = \bar{D}\bar{W} \\ \Phi_{Z}\left(y,\theta\right) = -\frac{iu}{2\kappa} & |u| = 1, \kappa \in \mathbb{R} \end{cases}$$

$$\implies$$
 Non-linear realization of the SUSY algebra : $\tilde{\delta}\lambda = \sqrt{2}\tilde{\epsilon}\bar{F}^{\bar{x}} + \frac{1}{\sqrt{2}\kappa}\tilde{\epsilon} + \dots$

•
$$\mathcal{L}_{Max} = -\frac{i}{2} \int d^2\theta d^2\tilde{\theta} \mathcal{F}(\mathcal{W}^a - \frac{iu}{2\kappa}\tilde{\theta}^2) + \text{h.c.}$$

Minimal $\mathcal{N} = 2$ model : F.I. terms

• Auxiliary fields F^{x^a} and D^a embedded in triplets Y^{Ia} of $SU(2)_R$:

$$Y^{Ia} \equiv \left(-2\mathrm{Im}F^{x^a}, 2\mathrm{Re}F^{x^a}, \sqrt{2}D^a\right)$$

⇒ Triplet of electric F.I. terms with F.I. coefficients

$$E_a^I \equiv \left(-\mathrm{Im}e_a, -\mathrm{Re}e_a, \sqrt{2}\xi_a\right)$$

$$\mathcal{L}_{gauge} = \int d^4\theta \left[\text{Im} \left(\mathcal{F}_a(X) \bar{X}^a \right) + \xi_a V^a \right]$$

$$+ \int d^2\theta \left[-\frac{i}{4} \mathcal{F}_{ab}(X) W^a W^b - \frac{e_a}{4} X^a - \frac{u}{4\kappa_a} \mathcal{F}_a(X) \right] + \text{ h.c.}$$

• (X^a, \mathcal{F}_a) : symplectic section under electric-magnetic duality

$$\Longrightarrow -\frac{u}{4\kappa_a} \mathcal{F}_a(X)$$
 magnetic F.I. term.

$$M^{Ia} \equiv \left(\operatorname{Im} \frac{u}{\kappa_a}, \operatorname{Re} \frac{u}{\kappa_a}, 0 \right)$$

Minimal $\mathcal{N} = 2$ model: Matter sector

- Matter multiplet with U(1) isometry: off-shell realization in $M^{4|8}$:
 - $\mathcal{N}=1$ superfield content of the single-tensor multiplet: $L=D\chi+\bar{D}\bar{\chi}\mid\Phi$;
 - Gauge invariance of the linear multiplet: $b_{\mu\nu} \stackrel{g}{\longrightarrow} b_{\mu\nu} + 2\partial_{[\mu}\Lambda_{\nu]}$;

$$\begin{cases} \mathcal{Y}(y,\theta,\tilde{\theta}) = Y(y,\theta) + \sqrt{2}\tilde{\theta}\chi(y,\theta) + \tilde{\theta}^2 \left(-\frac{i}{2}\Phi(y,\theta) - \frac{1}{4}\bar{D}^2\bar{Y}(y,\theta) \right) \\ \delta_g \mathcal{Y} = -\hat{\mathcal{W}} \end{cases}$$

- ullet Y can be eliminated, but is necessary for the closure of the algebra [Ambrosetti-Antoniadis-Derendinger-Tziveloglou '09].
- Kinetic terms and self-interactions [Lindström-Rocek '83]:

$$\mathcal{L}_{ST} = \int d^4\theta H \left(L, \Phi, \bar{\Phi} \right) \quad , \quad H_{LL} + 2H_{\Phi\bar{\Phi}} = 0$$

 \bullet Interaction Lagrangian : $\mathcal{N}=2$ version of the Chern-Simons term $b\wedge F$

$$\mathcal{L}_{CS} = -2ig_a \int d^2\theta d^2\tilde{\theta} \, \mathcal{Y} \left(\mathcal{W}^a - \frac{iu}{2\kappa_a} \tilde{\theta}^2 \right) + \text{ h.c.}$$

$\mathbf{Minimal} \ \mathcal{N} = \mathbf{2} \ \mathbf{model} \ \mathbf{:} \ \mathbf{Minimal} \ \mathbf{gauge} \ \mathbf{group}$

•
$$\mathcal{L}_{CS} = 2g_a \int d^4\theta L V^a - g_a \int d^2\theta \left(\Phi X^a + \frac{i}{\kappa_a} Y\right) + \text{ h.c.}$$

- CS interaction related to the canonical gauge interaction by the scalar-tensor duality [Lindström-Rocek '83]
- \bullet K obtained as Legendre transform of H:
 - Canonical K dual to $H\left(L,\Phi,\bar{\Phi}\right)=\sqrt{L^2+2\Phi\bar{\Phi}}-L\ln\left(L+\sqrt{L^2+2\Phi\bar{\Phi}}\right)$
- No kinetic term for Y in both formulations of the model with n_v abelian $\mathcal{N}=2$ vector multiplets and 1 single-tensor/hyper multiplet:
 - \Longrightarrow Constraint on the value of n_v [Itoyama-Maruyoshi-Sakaguchi '07]:

$$\sum_{a=1}^{n_v} \frac{g_a}{\kappa_a} = 0 \longrightarrow n_v \ge 2$$

Minimal gauge group for partial/sequential SUSY breaking with charged matter: $U(1) \times U(1)$.

Goldstini

• Determination of the number of broken SUSY's with the Goldstini:

$$\begin{split} &\eta_1 = \frac{1}{N_1} \left(g_{u\bar{v}} \bar{F}^{\bar{q}^{\bar{v}}} \chi^u + h_{ab} \bar{F}^{\bar{x}^a} \psi^{x^b} - \frac{i}{\sqrt{2}} h_{ab} D^a \lambda^b \right), \\ &\eta_2 = \frac{1}{N_2} \left(g_{u\bar{v}} \bar{\bar{F}}^{\bar{q}^{\bar{v}}} \chi^u - \frac{i}{\sqrt{2}} h_{ab} D^a \psi^{x^b} + h_{ab} \left(F^{x^a} + \frac{1}{2\kappa_a} \right) \lambda^b \right) \end{split}$$

• Normalization (valid for $\mathcal{N} = 0$ vacua):

$$\begin{split} N_1 &= \sqrt{g_{u\bar{v}} F^{q^u} \bar{F}^{\bar{q}^{\bar{v}}} + h_{ab} \left[F^{x^a} \bar{F}^{\bar{x}^b} + \frac{1}{2} D^a D^b \right]} = \sqrt{\langle V_S \rangle} \;, \\ N_2 &= \sqrt{N_1^2 + E} \quad , \quad E = \frac{\mathrm{Re} e_a}{4\kappa_a} \end{split}$$

- $\mathcal{N}=1$ vacuum: η_1, η_2 linearly dependent or η_1 or η_2 ill-defined;
- $\mathcal{N} = 0$ vacuum: η_1, η_2 linearly independent.

SUSY-breaking scales

- $\mathcal{N} = 1$ SUSY-breaking scale: $\Lambda_{SUSY} \sim \langle V_S \rangle^{1/4}$; Goldstino SUSY variation: $\delta \eta_1 = \sqrt{2\langle V_S \rangle}$;
- $\mathcal{N}=2$ SUSY: $\left(\Lambda_{SUSY}^{1,2}\right)^2$ are the eigenvalues of the 2×2 matrix $\delta_i\eta_j$:

$$\left(\Lambda_{SUSY}^{1,2}\right)^2 = \frac{N_1 + \sqrt{N_1^2 + E}}{\sqrt{2}} \pm \frac{1}{2}\sqrt{2\left(N_1 - \sqrt{N_1^2 + E}\right)^2 + \frac{\left(\frac{h_{ab}D^b}{\kappa_a}\right)^2}{N_1\sqrt{N_1^2 + E}}}$$

- Two sources of degeneracy lifting: $E \sim \frac{\text{Re}_a}{\kappa_a}$, $\frac{h_{ab}D^b}{\kappa_a} \sim \frac{\xi_a}{\kappa_a}$:
 - $\bullet \begin{cases}
 E_a^I \equiv \left(-\operatorname{Im} e_a, -\operatorname{Re} e_a, \sqrt{2}\xi_a\right) \\
 M^{Ia} \equiv \left(\frac{1}{a}, 0, 0\right)
 \end{cases} \implies \text{Two scales if } \vec{E}_a \times \vec{M}^a \neq 0;$
 - ullet $C^A_{\ B}\sim ec{\sigma}^A_{\ B}\cdot \left(ec{E}_a imesec{M}^a
 ight)$ [Ferrara-Girardello-Porrati '96].

Conclusion and Outlook

- Minimal model with charged matter of sequential (global) SUSY breaking:
 - Two U(1) Maxwell multiplets;
 - 1 Single-tensor/Hyper multiplet;
- Necessary ingredients for sequential SUSY breaking:
 - \longrightarrow Identical to those for partial SUSY breaking:
 - \vec{E}_a , \vec{M}^a such that $\vec{E}_a \times \vec{M}^a \neq 0$;
 - Non-renormalizable prepotential $\mathcal{F}(X^a)$;
 - Fully depends on F.I. terms;
- Could the spectrum in the effective $\mathcal{N}=1$ theory at a scale Λ_{int} , $\Lambda^1_{SUSY} \ll \Lambda_{int} \ll \Lambda^2_{SUSY}$, be chiral?
- How do F.I. terms arise from a local supersymmetric theory in general?
 - Extension of the sequential breaking to $\mathcal{N}=2$ SUGRA;
 - Rigid limit of this type of theories.

Backup slides

SUSY-breaking scales

- Separate study of the two contributions:
 - D-flatness: $(\Lambda_{SUSY}^1)^2 = \sqrt{2}N_1, (\Lambda_{SUSY}^2)^2 = \sqrt{2(N_1^2 + E)};$
 - $\operatorname{Re} e_a = 0$:

$$\left(\Lambda_{SUSY}^{1,2}\right)^2 = \tfrac{\sqrt{2}}{N_1} \left[g_{u\bar{v}} F^{q^u} \bar{F}^{\bar{q}^{\bar{v}}} + h_{ab} \mathrm{Im} F^{x^a} \mathrm{Im} F^{x^b} + \ h_{ab} \left(\tfrac{1}{4\kappa_a} \pm \tfrac{D^a}{\sqrt{2}} \right) \left(\tfrac{1}{4\kappa_b} \pm \tfrac{D^b}{\sqrt{2}} \right) \right]$$

- ullet Partial SUSY Breaking \Longleftrightarrow one scale vanishes:
 - Conditions for PSB ($Ree_a = 0$):

$$\langle F^{x^a}\rangle = -\frac{1}{4\kappa_a}$$
 , $\langle D^a\rangle = \mp\frac{1}{2\sqrt{2}\kappa_a}$, $\langle F^{q^u}\rangle = \langle \tilde{F}^{q^u}\rangle = 0$

- $\longrightarrow \eta_2 = \mp i\eta_1 \Longrightarrow \mathcal{Q} \pm i\tilde{\mathcal{Q}}$ is preserved;
- \longrightarrow The unbroken SUSY only depends on the orientation of \vec{E}_a , \vec{M}^a .

Sequential SUSY breaking - Simplest example

- Separable prepotential $\mathcal{F}(X^1, X^2) = f_1(X^1) + f_2(X^2)$;
- $\bullet \ \left(\Lambda^1_{SUSY}\right)^2 = \tfrac{g_1\xi_2}{2Ng_2\kappa_1} \quad , \quad \left(\Lambda^2_{SUSY}\right)^2 = \tfrac{g_2\xi_1}{g_1\xi_2} \left(\Lambda^1_{SUSY}\right)^2 \colon$
 - \longrightarrow The ratio $\Lambda^1_{SUSY}/\Lambda^2_{SUSY}$ can be arbitrarily large/small, by tuning the F.I. coefficients;
- $\mathcal{N} = 1$ spectrum at a scale Λ_{int} , $\Lambda^1_{SUSY} \ll \Lambda_{int} \ll \Lambda^2_{SUSY}$:

•
$$\eta_1 = \frac{1}{2\sqrt{2}N} \left[-\xi_1 \left(\psi^{x^1} - i\lambda^1 \right) + \xi_2 \left(\psi^{x^2} + i\lambda^2 \right) \right] ,$$

 $\eta_2 = \frac{1}{2\sqrt{2}N} \left[i\xi_1 \left(\psi^{x^1} - i\lambda^1 \right) + i\xi_2 \left(\psi^{x^2} + i\lambda^2 \right) \right] ;$

• Non-renormalizable prepotential for $\mathcal{N}=1$ (instead of $\mathcal{N}=2$) spectrum at this scale.