DIMENSIONAL REDUCTION of S-CONFINING DUALITIES

work in progress, in collaboration with C. Csaki, Y. Shirman, and F. Tanedo.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

Dimensional reduction of Seiberg dualities

2- S-Confining theories.
3- Dimensional reduction of S-Confining dualities.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

In the 90's many 3D dualities were conjectured

Giveon-Kutusov dualities [hep-th/9802067]

Electric (Theory A)

$$U(N)_k$$
 with $F(\Box + \overline{\Box})$

W = 0

$$\frac{\text{Magnetic (Theory B)}}{U(|k| + F - N)_{-k}}$$
with $F(\Box + \overline{\Box})$
and F^2 mesons
$$W = \tilde{q}Mq$$

Cornell

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

²/21

Some of them really looks like Seiberg dualities!

Although strong coupling gauge dynamics is very different in 4D and in 3D, this similarity calls for dimensional reduction.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

Monday, August 26, 13

Cornell

Why did it take so long?O. Aharony, S. Razamat, N. Seiberg & B. Willet
JHEP 1307 (2013) 149 [arXiv:1305.3924]O. Aharony, S. Razamat, N. Seiberg & B. Willet
JHEP 1307 (2013) 149 [arXiv:1307.0511]Seiberg dualities are IR dualitiesIn the range of parameters where both
theories are asymptotically free, Theory A and
Theory B are equivalent only at low energies
$$E \lesssim \Lambda_A \lesssim \Lambda_B$$
Confinement scale for Theory A
 $\Lambda_A^b = \exp(-8\pi^2/g_A^2)$ Confinement scale for Theory B
 $\Lambda_B^b = \exp(-8\pi^2/g_B^2)$

Such dualities still holds true when we compactify both theories on a circle of radius *r*.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

When we compactify one space dimension to a circle the gauge coupling satisfies:

$$g_4^2 = 2\pi r g_3^2$$

⁶/₂₁

Monday, August 26, 13

Cornell

As in the $r \rightarrow 0$ limit should be kept constant

$$\begin{array}{c} \Lambda_A \to 0 \\ \Lambda_B \to 0 \end{array}$$

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

As in the $r \rightarrow 0$ limit should be kept constant

$$\Lambda_A \to 0$$
$$\Lambda_B \to 0$$

Straightforward dimensional reduction does not work.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

Monday, August 26, 13

Cornell

We can take a different limit keeping r fixed

 $E \lesssim \Lambda_A \lesssim \Lambda_B < 1/r$

- In this limit the effective low-energy behaviour of both theories is three dimensional.
- **2-** Theory A and Theory B are still dual because of the 4D IR duality.

The 3D duality so obtained from the 4D duality, differs from the naive dimensional reduction.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

How do they differ?

In the compactified theory, the scalar fields coming from the holonomy are periodic, with period *1/r*. As VEVs of scalar fields which belong to Vector multiplets parametrized the Coulomb branch,

The Coulomb branch is compact.

2 Because of the periodicity coming from the holonomy along the compact dimension, a non-perturbative contribution to the super-potential is generated by instantons.

Such term is not generated in the naive 3D reduction.

 $W = W_{3D} + \eta Y.$

 $\eta \equiv \bar{\Lambda}^b$

This is the 3D SP ovtained by naive dim. reduction.

Y is a coordinate of the Coulomb branch.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

Monday, August 26, 13

ornell

Summarizing 1/2.

Summarizing 1/2.

Monday, August 26, 13

21

Summarizing 2/2.

Image taken from [arXiv:1305.3924].

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

Through dimensional reduction more 3D dualities were conjectured.

$$SU(N) \text{ with } F (\Box + \overline{\Box})$$

$$W = 0$$

$$U(F - N) \text{ with } F (\Box + \overline{\Box})$$
and $F^2 \text{ mesons}$

$$W = \tilde{q}Mq + Yb\tilde{b} + \tilde{X}_- + \tilde{X}_+$$

$$SO(N) \text{ with } F \Box$$

$$W = 0$$

$$SO(F - N + 2) \text{ with } F \Box \text{ and}$$

$$F(F + 1)/2 \text{ mesons}$$

$$W = \frac{1}{2}Mqq + \frac{i^{F-N}}{4}\tilde{y}Y$$

O. Aharony, S. Razamat, N. Seiberg & B. Willet JHEP 1307 (2013) 149 [arXiv:1305.3924] O. Aharony, S. Razamat, N. Seiberg & B. Willet [arXiv:1307.0511]

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

Monday, August 26, 13

Cornell

Dimensional reduction of Seiberg dualities.

2 S-Confining theories

3- Dimensional reduction of S-Confining dualities.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

¹²/2

S-Confinement.

"smooth confinement without chiral symmetry breaking and a non-vanishing confining superpotential"

C. Csaki, M. Schmaltz & W. Skiba *Phys. Rev. Lett.* **78** (1997) **799** [hep-th/9610139] C. Csaki, M. Schmaltz & W. Skiba *Phys. Rev. D* 55 (1997) 7840 [hep-th/9612207]

Infrared physics is described everywhere on the moduli space in terms of gauge invariant operators.

2 A non-vanishing superpotential is dynamically generated which is holomorphic function of the confined degrees of freedom.

3-

The vacuum of the classical theory, where all the global symmetries are unbroken, is a vacuum of the quantum theory as well.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

SUSY 2013, 26/08/13

SUSY 2013, 26/08/13

SUSY 2013, 26/08/13

SUSY 2013, 26/08/13

SU(N)	$(N+1)(\Box + \overline{\Box})$	s-confining			
SU(N)	$\square + N \square + 4 \square$	s-confining			
SU(N)	+ $+$ $+$ $3(+$ $-$)	s-confining			
SU(N)	$Adj + \Box + \Box$	Coulomb branch			
SU(4)	Adj +	Coulomb branch			
SU(4)	$3 - 2(\Box + \overline{\Box})$	$SU(2)$: 8 \Box	A	complete (classification.
SU(4)	4 + - + -	$SU(2)$: $\Box + 4\Box$			
SU(4)	5	Coulomb branch			
SU(5)	3(日十百)	s-confining			
SU(5)	2 + 2 + 4 =	s-confining			
SU(5)	2(+)	$Sp(4): 3 \square + 2 \square$			
SU(5)	2 + + + 2 = + =	$SU(4): 3 + 2(\Box + \overline{\Box})$	Sp(2N)	$(2N+4)\square$	s-confining
SU(6)	$2 + 5\overline{\Box} + \Box$	s-confining	Sp(2N)	$+6\Box$	s-confining
SU(6)	2 + + + 2 =	$SU(4): 3 + 2(\Box + \overline{\Box})$	Sp(2N)		Coulomb branch
SU(6)	$\overline{A} + 4(\Box + \overline{\Box})$	s-confining	Sp(4) Sp(4)	$2 + 4 \square$ $3 \square + 2 \square$	$SU(2): 8\square$ $SU(2): \square + 4\square$
CII(C)	H. D. Sala		Sp(1) Sp(4)	4	$SU(2): 2\square$
50(0)		50(5): 2 + + + 2 + + + - + - + - + - + - + - +	Sp(6)	$2\overrightarrow{H} + 2\Box$	$Sp(4): 2 + 4 \square$
SU(6)	8+8+8	$Sp(6): \square + \square + \square$	Sp(6)		$Sp(4): 2\Box + 4\Box$
SU(6)	$2 + \Box + \Box$	$SU(5): 2(\overline{++})$	$G_{-}(c)$		
SU(7)	$2\overline{(]}+3\overline{)}$	s-confining	Sp(0)		$SU(2): \Box + 4\Box$
SU(7)	$\boxed{+4\Box+2\Box}$	$SU(6)$: $\Box + \Box + 3\Box + \Box$	Sp(6) Sp(8)	$2 \vdash 2 \vdash$	$SU(3): \Box + \Box$ $Sp(4): 5 \Box$
SU(7)	$\exists + \exists + \Box$	$Sp(6)$: $\square + \square + \square$			

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

15/21

Dimensional reduction of Seiberg dualities.

2- S-Confining theories.

3- Dimensional reduction of S-Confining dualities.

SUSY 2013, 26/08/13

The 3D dualities obtained reducing 4D ones, contain a nonperturbative contribution to the Super-potential we need to get rid off.

Matching Quantum Numbers

1- Complex Masses

$$mQ\bar{Q}$$
 $Y_F = mY_{F-1}$ 3-
2- VEVs
 $\langle Q\bar{Q} \rangle = v^2$ $Y_F = \frac{Y_{F-1}}{v^2}$

Real Masses

Real mass deformations are a "novelties" of 3D theories. As they can be related to weakly gauge global symmetry, they can be easily mapped across the duality.

 $\eta Y \to 0$

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

Monday, August 26, 13

Cornell

While "decoupling" the instanton term Chern-Simons terms might be generated.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

While "decoupling" the instanton term Chern-Simons terms might be generated.

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

While "decoupling" the instanton term Chern-Simons terms might be generated.

While "decoupling" the instanton term Chern-Simons terms might be generated.

While "decoupling" the instanton term Chern-Simons terms might be generated.

While "decoupling" the instanton term Chern-Simons terms might be generated.

While ''decoupling'' the instanton term Chern-Simons terms might be generated.

Not all "flows" of 4D S-Confining dualities lead to 3D S-Confining dualities

Monday, August 26, 13

Cornell te Theorem Not all "flows" of 4D S-Confining dualities lead to 3D S-Confining dualities

Monday, August 26, 13

Cornell te Theorem

Not all "flows" of 4D S-Confining dualities lead to 3D S-Confining dualities

Not all "flows" of 4D S-Confining dualities lead to 3D S-Confining dualities

Not all "flows" of 4D S-Confining dualities lead to 3D S-Confining dualities

We want to come up with a complete classification of allowed deformations and thus 3D S-Confining dualities!

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

CONCLUSIONS

 Naive dimensional reduction of 4D dualities does not work. A more involved procedure is needed to obtain 3D dualities from 4D.

- 2 In the process a non-perturbative contribution to the Super-Potential is generated which we need to deal with.
 - **3** Flowing down to different theories with less flavours or exploring the moduli space allows to decouple the ηY term and flow to S-Confining theories.
 - In 4D, exploring the moduli space of S-Confining theories provide more S-Confining dualities. We expect the same to happen in 3D, is it true?

Mario Martone, mcm293@cornell.edu

SUSY 2013, 26/08/13

SUSY 2013, 26/08/13

21