

Quivers in SARAH:

building a taylor made spectrum generator!

with Aoife Bharucha & Andreas Goudelis

Moritz McGarrie

Our model vs benchmarks

I 207. I 348 Arbey, Battaglia, Djouadi, Mahmoudi

stops less than 2 TeV dark red less than 2.3 TeV light red

A meta model

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1)_A, \operatorname{SU}(2)_B, \operatorname{SU}(3)_c, U(1)_B, \operatorname{SU}(2)_A)$	R -Parity
\hat{q}	\widetilde{q}	q	3	$(\frac{1}{6}, 1, 3, 0, 2)$	-1
Î	ĩ	l	3	$(-rac{1}{2}, 1, 1, 0, 2)$	-1
\hat{H}_d	H_d	\tilde{H}_d	1	$(-rac{1}{2}, 1, 1, 0, 2)$	+1
\hat{H}_u	H_u	\tilde{H}_u	1	$(\frac{1}{2}, 1, 1, 0, 2)$	+1
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(\frac{1}{3}, 1, \overline{3}, 0, 1)$	-1
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3}, 1, \overline{3}, 0, 1)$	-1
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1, 1, 0, 1)	-1
Ĺ	L	ψ_L	1	$(-rac{1}{2},\overline{2},1,rac{1}{2},2)$	+1
$\hat{\tilde{L}}$	\tilde{L}	$\psi_{ ilde{L}}$	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1}, -rac{1}{2}, oldsymbol{\overline{2}})$	+1
\hat{K}	K	ψ_K	1	(0, 1, 1, 0, 1)	+1
Â	Α	ψ_A	1	(0, 3, 1, 0, 1)	+1

Table 2. Matter fields of the model.

 $W_{\rm SSM} = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u \, - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d \, - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d \, + \mu \,\hat{H}_u \,\hat{H}_d$

$$W_{\text{Quiver}} = \frac{Y_K}{2} \hat{K} (\hat{L} \,\hat{\tilde{L}} - V^2) + Y_A \,\hat{L} \,\hat{A} \,\hat{\tilde{L}}$$

The most sophisticated model so far implemented into a spectrum generator (SARAH/SPHENO) A meta-model i.e. independent of the type of supersymmetry breaking: AMSB, mSUGRA, GMSB, phenomenological, other?

A quiver model: motivation

$$m_h^2 \simeq m_z^2 \cos 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v_{ew}^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} (1 - \frac{X_t^2}{12m_{\tilde{t}}^2}) \right] \qquad \Delta = \left(\frac{g_A^2}{g_B^2}\right) \frac{2m_L^2}{m_v^2 + 2m_L^2}$$

$$m_z^2 \to m_z^2 + \left(\frac{g_1^2 \Delta_1 + g_2^2 \Delta_2}{2}\right) v_{ew}^2 \qquad \qquad \delta \mathcal{L} = -g_1^2 \Delta_1 (H_u^\dagger H_u - H_d^\dagger H_d)^2 \\ -g_2^2 \Delta_2 \sum_a (H_u^\dagger \sigma^a H_u + H_d^\dagger \sigma^a H_d)^2$$
044

Related works:

Csaki, Erlich, Grojean, Kribs 0106044

"GGM and Deconstruction" M.M. 1009.0012 and 1101.5158 Auzzi, Amit Giveon, Gudnason, Shacham 1009.1714 1011.1664

Under explored compared to NMSSM

+ ...

Building a taylor made spectrum generator!

- We used SARAH mathematica package: "a spectrum generator generator" to write our own spectrum generator.
- We implemented 5 gauge groups with full 2-loop RGE's and one loop self energies (soon 6 and 9 gauge groups!).
- Higgsing, and breaking to the diagonal 4 gauge groups, including all mixing matrices and assignment of Goldstones, Ghosts, RGEs of vevs, and Bmu at 2 loop.
- All 3 and 4 vertices of all fields computed, and self energies.
- All anomalous dimensions, tadpoles and running of all additional soft terms and Yukawas, at 2 loop level.
- finite shifts and threshold corrections also accounted for.

Threshold scale: MSSM

Quiver @

M messenger

If we assume GMSB

soft terms: we chose GMSB (but we can change it)

• everything completely calculable

$$\Lambda = \frac{F}{M}$$

$$m_{\lambda,r} = N\Lambda\left(\frac{g_r^2}{16\pi^2}\right)g(x)$$

 $N = n_{5plets} + 3n_{10plets}$

$$\mathcal{L}_{soft} \supset \frac{1}{2} \left(m_{\tilde{G}} \tilde{G} \tilde{G} + m_{B_B} \tilde{B}_B \tilde{B}_B + m_{W_B} \tilde{W}_B \tilde{W}_B \right) + h.c.$$
$$m_{\lambda}^{A=1,2} \equiv 0.$$

$$y = \frac{m_v}{M} \qquad \qquad m_L^2 = m_{\tilde{L}}^2 = N\Lambda^2 \sum_{i=1,2} 2C_L^{B,i} \left(\frac{g_{Bi}^2}{16\pi^2}\right)^2 f(x),$$

$$m_{SM}^2 = N\Lambda^2 \sum_{i=1,2} 2C_{SM}^{B,i} \left(\frac{g_i^2}{16\pi^2}\right)^2 S(x, y_i),$$

A-terms are vanishing at the messenger scale

Benchmarks

Inputs	1	2
М	$2.52 \times 10^5 \text{ GeV}$	$2.32 \times 10^5 \text{ GeV}$
$\Lambda_{1,2}$	$1.46\times 10^5~{\rm GeV}$	$1.22 \times 10^5 \text{ GeV}$
Λ_3	$1.75 \times 10^5 \text{ GeV}$	$2.1 \times 10^5 \text{ GeV}$
m_L^2	$8.0 \times 10^7 \text{ GeV}^2$	$6.0 imes 10^7 \ { m GeV}^2$
$\tan\beta$	25	25
$n_{5 plets}$	1	1
$v = T_{Scale}$	$2.68\times 10^4 \; {\rm GeV}$	$2.68 \times 10^4 \text{ GeV}$
θ_1, θ_2	1.21, 1.16	1.3,1.15
Δ_1, Δ_2	0.324, 0.157	0.276,0.119
Y_K, Y_A	0.8, 0.8	0.8,0.8
Colour sector		
$m_{\tilde{t}_1}$	1803 GeV	2018 GeV
Ĝ	1462 GeV	1881 GeV
$T_{u}(3,3)$	-352 GeV	-442 GeV
Electroweakini		
$\tilde{\chi}_1^0$	209 GeV	174 GeV
$\tilde{\chi}_1^{\pm}$	425 GeV	339 GeV
Higgses		
m_{h_0}	126.3 GeV	125.4 GeV
m_{H_0}	650 GeV	587 GeV
m_{A_0}	652 GeV	588 GeV
$m_{H_{\pm}}$	658 GeV	595 GeV
μ	630 GeV	439 GeV
$B\mu$	$2.50 imes 10^4$	$2.25 imes 10^4$
Quiver states		
$m_{B'}$	52 TeV	37 TeV
$m_{W'_+}$	38 TeV	93 TeV
$m_{\Psi_{K/A_3}}$	24 TeV	24 TeV

Within reach of LHC14

"Deconstructed Holography for Gauge Mediation" M.M. Rode A holographic quiver

M.M. Rodolfo Russo 1004.3305 M.M. Daniel C.Thompson 1009.4696 M.M. 1210.4935

- non decoupled D-terms
- extra adjoints of SU(2),SU(3)
- Interesting RGE's

Table 1: Operators corresponding to the bulk fields of the model.

currently putting this into SARAH (9 gauge groups, full 2 loop RGE's) Aoife Bharucha & Andreas Goudelis Moritz McGarrie

Thanks for listening

What next?

Single regime model

SU(3) quiver

Dirac Gauginos

Kinetic mixing

3 site quiver

GUTS

Back up slides

Can we develop intuition with QCD?

Can QCD tell us something about the "blobs" and therefore something about the soft masses?

Summary

The key idea is to build models around scattering

ALL old GMSB models are of this type

$$\sigma_a(visible \to hidden) = \frac{(4\pi\alpha)^2}{2s} \ Disc \ \tilde{C}_a(s)$$

OR

RED

$$F(s) = \frac{m_{\rho}^2}{s + m_{\rho}^2}$$

possible

form factor or no form factor?

BLACK? $\sigma_a(visible \to hidden) = \frac{(4\pi\alpha)^2}{2s} |F(s)|^2 \ Disc \ \tilde{C}_a(s)$

Similar to the hadronic world: perhaps we should take it more seriously?

Duality in
$$e^+, e^- \rightarrow \text{hidden}?$$

Ideally, determine this form factor from	om experiment	impossible
--	---------------	------------

or from computer simulations hard

or from toy models and effective field theory

String theorists know how to compute scattering amplitudes!

"Holography for General Gauge Mediation"

IR hardwall/ slice of AdS

also AdS/SUSY"Warped General Gauge Mediation" M.M. Daniel C.Thompson 1009.4696

Abel & Gherghetta 1010.5655

"General Gauge Mediation in 5D" M.M. Rodolfo Russo 1004.3305

<u>Check list</u>

- I. Metric: slice of AdS
- 2. Interval
- 3. Flavour symmetries
- 4. Scale matching
- 5. Sources
- 6. Operators
- 7. Bulk field
- 8. Bulk to boundary propagator

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta^{\mu\nu} dx_{\mu} dx_{\nu} + dz^{2}\right)$$
$$L_{0} < z < L_{1}$$

$$SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V \quad \mathsf{N}=$$

$$\frac{R}{g_{5d(YM)}^2} = \frac{N_c}{12\pi^2}$$
$$A^0_\mu(x), \lambda^0_\alpha(x), D^0(x)$$
$$\mathcal{O}_\mu(x), \mathcal{O}_\alpha(x), \mathcal{O}(x)$$

$$A^{\mu}(q,z) = A^{\mu}_0(q)K(q,z)$$

$$K(q,z) = \frac{V(q,z)}{V(q,L_0)}$$

$$V(q,z) = zq \left[Y_0(qL_1)J_1(qz) - J_0(qL_1)Y_1(qz) \right]$$

compute...

"Holography for General Gauge Mediation"

IR hardwall/ slice of AdS

N=1 5d super Yang-Mills action in the bulk

 $SU(N_f)_L \times SUN(N_f)_R$

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta^{\mu\nu} dx_{\mu} dx_{\nu} + dz^{2}\right) \qquad \qquad L_{0} < z < L_{1} \qquad \qquad \frac{R}{g_{5d(YM)}^{2}} = \frac{N_{c}}{12\pi^{2}}$$

$A^{\mu}(q,z) = A^{\mu}_{0}(q) \frac{V(q,z)}{V(q,L_{0})}$ m^2 Field 4D: operator Δ gives a log running piece D(z,x)-4 $\mathbf{2}$ $\mathcal{O}(x)$ \rightarrow UV $\mathcal{O}_{\alpha}(x) \longrightarrow \lambda_{\alpha}(z,x)$ 5/21/2 $\int d^4x e^{ip.x} \left\langle \mathcal{O}_{\mu}(x) \mathcal{O}_{\nu}(0) \right\rangle = \Pi(p^2) P^{\mu\nu}$ $\rightarrow A_{\mu}(z, x)$ $\mathcal{O}_{\mu}(x)$ 3 0 The UV operators that correspond to bulk fields $\Pi(q^2) = \frac{1}{q} \left(\frac{R}{z} \frac{\partial_z V(q, z)}{V(q, L_0)} \right)_{z=L_0}$ $O(N_c)$ IR $\mathcal{O}_{L,R} = \phi^{\dagger} \phi_{L,R}$ $\mathcal{O}^{\alpha}_{L,R} = -i\sqrt{2}\phi^{\dagger}q^{\alpha}_{L,R}$

An AdS/SQCD proposal

 $\mathcal{O}^{\mu}_{L,R} = \bar{q}\sigma^{\mu}q_{L,R} - i\left(\phi^{\dagger}\partial^{\mu}\phi - \partial^{\mu}\phi^{\dagger}\phi\right)_{L,R}$

UV boundary correlators give a supersymmetric effective action

$$\left[3\Pi_1(q^2) - 4\Pi_{1/2}(q^2) + \Pi_0(q^2)\right] \equiv 0 \qquad \langle \mathcal{O}_\alpha(x)\mathcal{O}_\beta(0)\rangle \equiv 0$$

Related to the Gibbons-Hawking boundary terms of SYM

Introduce IR localised correlators that encode supersymmetry breaking

SUSY breaking currents located on an IR brane or live in the bulk

$$A_{\mu}J^{\mu} = \int dz K(p,z) A^{0}_{\mu}J^{\mu} = A^{0}_{\mu}J^{\mu}\Lambda(p) \qquad \begin{array}{l} \text{An effective vertex function} \\ \text{generated by a bulk to boundary propagator} \end{array}$$

$F_n \epsilon_\mu = \langle 0 | \mathcal{O}_\mu | \rho_n \rangle$

meson decay constant

Holographic Scattering

$$g_n = g_5 g_{IR} \int dz \psi_n(z) \varphi(z) \tilde{\varphi}(z) \delta(z - L_1)$$

The form factor encodes a sum of monopole contributions of an infinite tower of vector mesons with decay constants for each meson

Final states can be taken to be messenger fields

$$\sigma_a(vis \to hid) = \frac{(4\pi\alpha_{SM})^2}{2s} (g_{IR}^2 g_5^2) \sum_{n=1}^{\infty} \frac{F_n \psi_n(z)}{s + m_n^2} \sum_{\hat{n}=1}^{\infty} \frac{F_{\hat{n}} \psi_{\hat{n}}(z)}{s + m_{\hat{n}}^2} \text{Disc } \tilde{C}_a(s/\hat{M})$$

Duality in
$$e^+, e^- \rightarrow \text{hidden}?$$

D.Vecchia and Drago (1969) Chua, Hama & Kiang (1970) Frampton (1970) Many others...

Speculative

A Veneziano-like amplitude for GGM?

$$F(s) \sim \frac{\Gamma(1 - \alpha(s)\Gamma(\lambda - \frac{1}{2}))}{\Gamma(\lambda - \alpha(s))\Gamma(\frac{1}{2})}$$

A fit to the pion data $\lambda\sim 2$ $\lim_{s\to\infty}F(s)\simeq 1/s^{\lambda-1}$

$$\alpha(s) = 1/2 + s/2m_{\rho}^2$$

Infinitely rising linear Regge trajectories

 $A(1 \rightarrow 2)$

Forward scattering amplitude Higher spin states contribute too!

The point is that holographic models are toy models with a separation of scales between the spin 0,1/2,3/2,2 and the higher spin states.