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•Manifold M 

space that looks 
locally like 

Note that a complex rescaling of the pure spinors �± is unphysical in that it corresponds
to a Kähler transformation in K±. This degree of freedom in �± will be part of a
superconformal compensator in the E7(7) formulation.

Given that the groups SO(6, 6) and SU (3, 3) are non-compact, the spaces M±
SK and

fM±
SK are both non-compact and have pseudo-Riemannian metrics on them. In particular

the signature of the metric on M±
SK is (18, 12). We return to this below.

As we have mentioned above, the two Re�± together satisfying (2.10) define an
SU (3) ⇥ SU (3) structure inside O(6, 6). Therefore the compatible pair (Re�+,Re��)
parameterises the 52-dimensional coset

(Re�+,Re��) : fM =
O(6, 6)

SU (3)⇥ SU (3)
⇥ R+ ⇥ R+ . (2.14)

(Note that the dimensionality of fM counts correctly the 2 ⇥ 32 degrees of freedom in

Re�+,Re�� minus the 12 compatibility constraints of (2.10).) fM is a particular slice
in the product space M+

SK ⇥ M�
SK. Again for the physical moduli space one needs to

mod out by the C⇤ actions on �±, giving the 48-dimensional coset O(6, 6)/U(3)⇥ U(3).

Note, however, that this counting still does not match the physical NS supergravity de-
grees of freedom which is the 36-dimensional space of g and B, parameterising the Narain
coset O(6, 6)/O(6)⇥O(6). Furthermore, we note that the metric on O(6, 6)/U(3)⇥U(3)
has signature (36, 12). Thus there are twelve degrees of freedom in the latter coset which
are not really physical (and have the wrong sign kinetic term). Under SU(3) ⇥ SU(3)
these transform as triplets (3,1), (1,3) and their complex conjugates. In terms of N = 2
supergravity, these representations are associated with the massive spin-3

2
multiplets and

one expects that these directions are gauge degrees of freedom of the massive spin-3
2
mul-

tiplets. This leaves a 36-dimensional space as the physical parameter space. It would be
interesting to give a geometrical interpretation of this reduction, perhaps as a symplectic
reduction of M+

SK ⇥M�
SK with a moment map corresponding to the constraint (2.10).

Rn

We can make this physical content explicit by using the decomposition under SU (3)⇥
SU (3) to assign the deformations along the orbits of �+ and �� as well as the RR degrees
of freedom to N = 2 multiplets. In type IIA, the RR potential contains forms of odd
degree, which from the four-dimensional point of view contribute to vectors and scalars.
The vectors, having one space-time index, are even forms on the internal space and
we denote them C+

µ , while the scalars are internal odd forms denoted C�. In order
to recover the standard N = 2 supergravity structure we imposed in refs. [10, 11] the
constraint that no massive spin-3

2
multiplets appear. As we mentioned, this corresponds

to projecting out any triplet of the form (3,1), (1,3) or their complex conjugates. With
this projection only the gravitational multiplet together with hyper-, tensor-, and vector
multiplets survive. These are shown for type IIA in Table 2.1. (In what follows, we
restrict to type IIA theory, the type IIB case follows easily by changing chiralities.) gµ⌫
and C+

µ (1) denote the graviton and the graviphoton, respectively, which together form the

bosonic components of the gravitational multiplet.7 �+ represents the scalar degrees of
freedom in the vector multiplets (with the (3, 3̄) part of C+

µ being the vectors) while ��

7The subscript (1) indicates that it is the SU (3)⇥ SU (3) singlet of the RR forms C+
µ or C�.
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We can make this physical content explicit by using the decomposition under SU (3)⇥
SU (3) to assign the deformations along the orbits of �+ and �� as well as the RR degrees
of freedom to N = 2 multiplets. In type IIA, the RR potential contains forms of odd
degree, which from the four-dimensional point of view contribute to vectors and scalars.
The vectors, having one space-time index, are even forms on the internal space and
we denote them C+

µ , while the scalars are internal odd forms denoted C�. In order
to recover the standard N = 2 supergravity structure we imposed in refs. [10, 11] the
constraint that no massive spin-3

2
multiplets appear. As we mentioned, this corresponds

to projecting out any triplet of the form (3,1), (1,3) or their complex conjugates. With
this projection only the gravitational multiplet together with hyper-, tensor-, and vector
multiplets survive. These are shown for type IIA in Table 2.1. (In what follows, we
restrict to type IIA theory, the type IIB case follows easily by changing chiralities.) gµ⌫
and C+

µ (1) denote the graviton and the graviphoton, respectively, which together form the

bosonic components of the gravitational multiplet.7 �+ represents the scalar degrees of
freedom in the vector multiplets (with the (3, 3̄) part of C+

µ being the vectors) while ��

7The subscript (1) indicates that it is the SU (3)⇥ SU (3) singlet of the RR forms C+
µ or C�.
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•Symmetries: diffeomorphisms

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.
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Parallel transport

see that for a given pair (⌘1+, ⌘
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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•Connection

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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•Curvature and torsion

Levi-civita connection:  unique connection
metric compatible
torsion-free

Riemann

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Torsion

Parallel transport

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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•Connection

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
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= vµ @
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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Torsion

see that for a given pair (⌘1+, ⌘
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+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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Parallel transport
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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•Connection

see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
mu

va + !
µ

a

b

vb)

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
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0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A
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= i
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satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by
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=
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Torsion

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Parallel transport

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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•Connection

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
mu

va + !
µ

a

b

vb)

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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•Curvature and torsion

Levi-civita connection:  unique connection
metric compatible
torsion-free

Riemann

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Torsion

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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Parallel transport

see that for a given pair (⌘1+, ⌘
2
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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•Connection

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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•Curvature and torsion

Levi-civita connection:  unique connection
metric compatible
torsion-free

Riemann

see that for a given pair (⌘1+, ⌘
2
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Torsion

see that for a given pair (⌘1+, ⌘
2
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

T
µ⌫

⇢ = 2�⇢

[µ⌫] = 0

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Ricci tensor

Parallel transport
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•Connection
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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•Curvature and torsion

Levi-civita connection:  unique connection
metric compatible
torsion-free

Riemann
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Torsion
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Ricci tensor
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Ricci scalar

Parallel transport

see that for a given pair (⌘1+, ⌘
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see that for a given pair (⌘1+, ⌘
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•Equations of motion : Einstein equations

•Action

see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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•Equations of motion : Einstein equations

No matter

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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2
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0 , �� = e�B⌘1+⌘̄
2
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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•Equations of motion : Einstein equations

No matter
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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2
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2
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0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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Supergravity

•Extension of Einstein gravity that incorporates SUSY

•Strongly constrained and intricate theory : unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10 

Bosonic field content:

g ,B ,C,Φ
metric

2-form Bμν

dilaton

RR fields

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)
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2 ⇤±T ⇤M

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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•Extension of Einstein gravity that incorporates SUSY

•Strongly constrained and intricate theory : unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10 

Bosonic field content:

g ,B ,C,Φ
metric

2-form Bμν

dilaton

RR fields

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
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0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B
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↵ , (2.6)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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Supergravity

•Extension of Einstein gravity that incorporates SUSY

•Low energy limit of superstring theory

•Strongly constrained and intricate theory : unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10 

Bosonic field content:

g ,B ,C,Φ
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2-form Bμν

dilaton

RR fields

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
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0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B
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↵ , (2.6)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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Superstring theory
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singularities
get resolved

open string

closed string

Oscillation modes:
different particles

Closed string massless excitation modes:
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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2
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2
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0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by
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(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy
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with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
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with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.
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individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.8)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.9)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

6

metric B-field dilaton

Supergravity : keep only 
massless modes

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7



Superstring theory

string
point

particle

.

vertex
“pants” diagram

singularities
get resolved

open string

closed string

Oscillation modes:
different particles

Closed string massless excitation modes:

left-moving
osc. mode

right-moving
osc. mode

|⇠
MN

>= ⇠
M

⇠̃
N

↵M

1 ↵̃
N

1 |0 >

N = 0, ..., 9

⇠(MN) ⇠[MN ] ⌘MN⇠
MN

g
MN

B
MN

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.8)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.9)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

6

metric B-field dilaton

Supergravity : keep only 
massless modes

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

Consistently defined in 10D



Superstring theory

string
point

particle

.

vertex
“pants” diagram

singularities
get resolved

open string

closed string

Oscillation modes:
different particles

Closed string massless excitation modes:

left-moving
osc. mode

right-moving
osc. mode

|⇠
MN

>= ⇠
M

⇠̃
N

↵M

1 ↵̃
N

1 |0 >

N = 0, ..., 9

⇠(MN) ⇠[MN ] ⌘MN⇠
MN

g
MN

B
MN

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.8)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.9)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

6

metric B-field dilaton

Supergravity : keep only 
massless modes

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

|⇠
µ⌫

>= ⇠
µ

⇠̃
⌫

↵µ

1 ↵̃
⌫

1 |0 >

⌫ = 1, ..., 8

⇠(µ⌫) ⇠[µ⌫] �µ⌫⇠
µ⌫

g
µ⌫

B
µ⌫

�

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
generalised spinor bundles S± into modules with definite eigenvalue under the action of
1
4
J ±

AB

�AB. In particular, one finds

1
4
J ±

AB

�AB �± = 3i�±, 1
4
J ±

AB

�AB �̄± = �3i�̄± . (2.12)

One can also use this action to define a coarser grading of S±, namely an almost complex
structure on S±, first introduced in this context by Hitchin [7], and given by

J±
Hit = exp

�
1
8
⇡J ±

AB

�AB

�
, (2.13)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

7

Consistently defined in 10D

R
µ⌫

a

b

R
µ⌫

a

b

ê
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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2
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i
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⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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should be clear from the context.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i
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⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i
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⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
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5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

⇠
p 2 TM

! 2 T ⇤M

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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•Symmetries: diffeomorphisms

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i
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⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i
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⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by
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(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy
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=
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

5

+ gauge transformations

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

⇠
p 2 TM

! 2 T ⇤M

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.8)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.9)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.10)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.11)

(The subscripts denote the degree of the component forms, and the operation s assigns the
appropriate signs to the component forms. This pairing is simply the natural real bilinear
on O(6, 6) spinors. Note that the pure spinors �± also satisfy

⌦
�+, �̄+

↵
=

⌦
��, �̄�↵.)

The generalised almost complex structures J ± also induce a decomposition of the
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1
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

⇠
p 2 TM

! 2 T ⇤M

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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2
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1
4
J ±
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

⇠

5

V=v+λ
Projects onto left-moving

and right moving

Can add dilaton

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘ G)

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MG
MN

UN

P± = 1
2
(� ± ⌘ G)

5

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

⌘ �
MNS

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

R
µ�

= R
µ⌫�

⌫

R = R
µ

µ

R
MN

= 0

T
µ⌫

6= 0

R
MNP

R = @
M

�R

NP

� @
N

�R

MP

+ �R

MQ

�Q

NP

� �R

NQ

�Q

MP

R
MNPQ

= R
MNPQ

+R
PQMN

+ �
RMN

�R

PQ

R
MN

= R
MKN

K

R
MN

= 0

S =
R p�g R

R = RMN

MN

G = (e�2�
p�g)2

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.4)

H = (e�2d)2
✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.5)

e�2d = e�2�
p�g

S =

Z
e�2�

p�g


R + 4r

µ

�rµ�� 1

12
H

µ⌫⇢

Hµ⌫⇢ + ...

�
. (2.6)

S =

Z
e�2�

p�gR . (2.7)

S =

Z pG
1
20 R . (2.8)

S =

Z pG1/20 R . (2.9)

R
µ⌫

= T̂
µ⌫

6

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

⌘ �
MNS

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

R
µ�

= R
µ⌫�

⌫

R = R
µ

µ

R
MN

= 0

T
µ⌫

6= 0

R
MNP

R = @
M

�R

NP

� @
N

�R

MP

+ �R

MQ

�Q

NP

� �R

NQ

�Q

MP

R
MNPQ

= R
MNPQ

+R
PQMN

+ �
RMN

�R

PQ

R
MN

= R
MKN

K

R
MN

= 0

S =
R p�g R

R = RMN

MN

G = (e�2�
p�g)2

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.4)

H = (e�2d)2
✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.5)

e�2d = e�2�
p�g

S =

Z
e�2�

p�g


R + 4r

µ

�rµ�� 1

12
H

µ⌫⇢

Hµ⌫⇢ + ...

�
. (2.6)

S =

Z
e�2�

p�gR . (2.7)

S =

Z pG
1
20 R . (2.8)

S =

Z pG1/20 R . (2.9)

R
µ⌫

= T̂
µ⌫

6



•Generalized metric

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contains g, B

see that for a given pair (⌘1+, ⌘
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+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
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cation, and one has
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where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
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where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
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where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB
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and the bracket denotes the Mukai pairing defined by
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

5

demand torsion-free & metric compatible ∃ but is not unique

Can add dilaton

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘ G)

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MG
MN

UN

P± = 1
2
(� ± ⌘ G)

5

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

⌘ �
MNS

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

R
µ�

= R
µ⌫�

⌫

R = R
µ

µ

R
MN

= 0

T
µ⌫

6= 0

R
MNP

R = @
M

�R

NP

� @
N

�R

MP

+ �R

MQ

�Q

NP

� �R

NQ

�Q

MP

R
MNPQ

= R
MNPQ

+R
PQMN

+ �
RMN

�R

PQ

R
MN

= R
MKN

K

R
MN

= 0

S =
R p�g R

R = RMN

MN

G = (e�2�
p�g)2

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.4)

H = (e�2d)2
✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.5)

e�2d = e�2�
p�g

S =

Z
e�2�

p�g


R + 4r

µ

�rµ�� 1

12
H

µ⌫⇢

Hµ⌫⇢ + ...

�
. (2.6)

S =

Z
e�2�

p�gR . (2.7)

S =

Z pG
1
20 R . (2.8)

S =

Z pG1/20 R . (2.9)

R
µ⌫

= T̂
µ⌫

6

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

⌘ �
MNS

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

R
µ�

= R
µ⌫�

⌫

R = R
µ

µ

R
MN

= 0

T
µ⌫

6= 0

R
MNP

R = @
M

�R

NP

� @
N

�R

MP

+ �R

MQ

�Q

NP

� �R

NQ

�Q

MP

R
MNPQ

= R
MNPQ

+R
PQMN

+ �
RMN

�R

PQ

R
MN

= R
MKN

K

R
MN

= 0

S =
R p�g R

R = RMN

MN

G = (e�2�
p�g)2

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.4)

H = (e�2d)2
✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.5)

e�2d = e�2�
p�g

S =

Z
e�2�

p�g


R + 4r

µ

�rµ�� 1

12
H

µ⌫⇢

Hµ⌫⇢ + ...

�
. (2.6)

S =

Z
e�2�

p�gR . (2.7)

S =

Z pG
1
20 R . (2.8)

S =

Z pG1/20 R . (2.9)

R
µ⌫

= T̂
µ⌫

6



•Generalized metric

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contains g, B

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V MH
MN

UN

P± = 1
2
(� � ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

T
µ⌫

⇢ = 2�⇢

[µ⌫] = 0

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
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there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has
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where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

⇠

5

V=v+λ
Projects onto left-moving

and right moving

•Connection

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
mu

va + !
µ

a

b

vb)

built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
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and the bracket denotes the Mukai pairing defined by
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

5

Can add dilaton

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘ G)

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MG
MN

UN

P± = 1
2
(� ± ⌘ G)

5

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

⌘ �
MNS

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

R
µ�

= R
µ⌫�

⌫

R = R
µ

µ

R
MN

= 0

T
µ⌫

6= 0

R
MNP

R = @
M

�R

NP

� @
N

�R

MP

+ �R

MQ

�Q

NP

� �R

NQ

�Q

MP

R
MNPQ

= R
MNPQ

+R
PQMN

+ �
RMN

�R

PQ

R
MN

= R
MKN

K

R
MN

= 0

S =
R p�g R

R = RMN

MN

G = (e�2�
p�g)2

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.4)

H = (e�2d)2
✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.5)

e�2d = e�2�
p�g

S =

Z
e�2�

p�g


R + 4r

µ

�rµ�� 1

12
H

µ⌫⇢

Hµ⌫⇢ + ...

�
. (2.6)

S =

Z
e�2�

p�gR . (2.7)

S =

Z pG
1
20 R . (2.8)

S =

Z pG1/20 R . (2.9)

R
µ⌫

= T̂
µ⌫

6

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

⌘ �
MNS

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

R
µ�

= R
µ⌫�

⌫

R = R
µ

µ

R
MN

= 0

T
µ⌫

6= 0

R
MNP

R = @
M

�R

NP

� @
N

�R

MP

+ �R

MQ

�Q

NP

� �R

NQ

�Q

MP

R
MNPQ

= R
MNPQ

+R
PQMN

+ �
RMN

�R

PQ

R
MN

= R
MKN

K

R
MN

= 0

S =
R p�g R

R = RMN

MN

G = (e�2�
p�g)2

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.4)

H = (e�2d)2
✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.5)

e�2d = e�2�
p�g

S =

Z
e�2�

p�g


R + 4r

µ

�rµ�� 1

12
H

µ⌫⇢

Hµ⌫⇢ + ...

�
. (2.6)

S =

Z
e�2�

p�gR . (2.7)

S =

Z pG
1
20 R . (2.8)

S =

Z pG1/20 R . (2.9)

R
µ⌫

= T̂
µ⌫

6



•Generalized metric

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B Bg�1

�g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contents

1 Introduction 1

2 Exceptional Generalized Geometry (EGG) in M-theory and type IIA 3

2.1 M-theory and GL(7) decompostitions . . . . . . . . . . . . . . . . . . . . 4

2.2 Type IIA and GL(6) decompostitions . . . . . . . . . . . . . . . . . . . . 5

3 N=1 reductions of M-theory in EGG: SU(7) structures, Kahler poten-
tial and superpotential 5

4 N=2 reductions of M-theory and type IIA in EGG: SU(6) structures
and Kahler potentials 7

5 From N=2 to N=1: orientifolding in EGG 10

5.1 Orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Kähler subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 O6-orientifolds and their lift to M-theory . . . . . . . . . . . . . . . . . . 12

6 Conclusions 14

A E
7(7)

group theory 15

1 Introduction

V =

✓
v
�

◆
7! OX =

✓
a b
c d

◆✓
x
⇠

◆
. (1.1)

B↵ = B� + d�↵�

X↵ =

✓
x↵

⇠↵

◆
=

✓
1 0

B↵� 1

◆✓
x�

⇠�

◆
= p↵�X� . (1.2)

U↵ \ U�

H =

✓
1 �B
0 1

◆✓
g 0
0 g�1

◆✓
1 0
B 1

◆
. (1.3)

H =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (1.4)

v = ✏IJ(✓I)T�m✓Jdxm

� = (⇤
8

(J
8

^ J
8

^ J
8

), iJ
8

)

1

Contains g, B

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V MH
MN

UN

P± = 1
2
(� � ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

T
µ⌫

⇢ = 2�⇢

[µ⌫] = 0

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A

B

= i

⌦
�±,�A

B

�̄±↵
⌦
�±, �̄±

↵ , (2.6)

satisfying (J ±)2 = �1. Here, �A with A = 1, . . . , 12 are gamma-matrices of O(6, 6), �AB

are antisymmetrised products of gamma-matrices, indices are raised and lowered using ⌘
and the bracket denotes the Mukai pairing defined by

⌦
 ,�

↵
=

X

p

(�)[(p+1)/2] 
p

^ �6�p

⌘ (s( ) ^ �)6 . (2.7)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.5)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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see that for a given pair (⌘1+, ⌘
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+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
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2
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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see that for a given pair (⌘1+, ⌘
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i
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⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,
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In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor
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should be clear from the context.
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EOM

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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built from the sum of the tangent and cotangent spaces. If M is d-dimensional, there
is a natural O(d, d)-invariant metric6 on E, given by ⌘(Y, Y ) = i

y

⇠ where Y = y+ ⇠ 2 E,
with y 2 TM and ⇠ 2 T ⇤M . One can then combine (⌘1, ⌘2) into two 32-dimensional
complex “pure” spinors �± 2 S± of O(6, 6). They are defined as the spinor bilinears, or
equivalently sums of odd or even forms,

�+ = e�B⌘1+⌘̄
2
+ ⌘ e�B�+

0 , �� = e�B⌘1+⌘̄
2
� ⌘ e�B��

0 , (2.4)

In the special case where the two spinors are aligned we have ⌘1 = ⌘2 ⌘ ⌘. In this case
there is only a single SU (3) structure, familiar from the case of Calabi–Yau compactifi-
cation, and one has

�+ = e�(B+iJ) , �� = �ie�B⌦ , (2.5)

where ⌦ is the complex (3, 0)-form and J is the real (1, 1)-form.

Each pure spinor is invariant under an SU (3, 3) subgroup of O(6, 6) and so each
individually is said to define an SU (3, 3) structure on E. In particular this defines a
generalised (almost) complex structure. Explicitly one can construct the invariant tensor

J ±A
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= i

⌦
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B
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⌦
�±, �̄±

↵ , (2.6)

6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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6We use ⌘ to denote both the O(d, d) metric and the O(d) spinors ⌘I . The distinction between them
should be clear from the context.
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?
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Physical space can vary as we move around



Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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Physical space can vary as we move around
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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subject to constraint
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coordinates dual to momentum (  ) & winding (  )
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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subject to constraint

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

5

coordinates dual to momentum (  ) & winding (  )
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Physical space can vary as we move around
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?
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Doubled geometry

Hitchin 2001
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see that for a given pair (⌘1+, ⌘
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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subject to constraint

see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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coordinates dual to momentum (  ) & winding (  )

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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subject to constraint

see that for a given pair (⌘1+, ⌘
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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coordinates dual to momentum (  ) & winding (  )

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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subject to constraint
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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coordinates dual to momentum (  ) & winding (  )

see that for a given pair (⌘1+, ⌘
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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physical 
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
2
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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subject to constraint

see that for a given pair (⌘1+, ⌘
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

5

coordinates dual to momentum (  ) & winding (  )
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001
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subject to constraint
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coordinates dual to momentum (  ) & winding (  )
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?
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coordinates dual to momentum (  ) & winding (  )
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
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Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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subject to constraint
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coordinates dual to momentum (  ) & winding (  )
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Physical space can vary as we move around
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subject to constraint

see that for a given pair (⌘1+, ⌘
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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coordinates dual to momentum (  ) & winding (  )

see that for a given pair (⌘1+, ⌘
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
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the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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coordinates dual to momentum (  ) & winding (  )

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

5

physical 
space

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

5

Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

5

wp

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃
n

R

mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃
n

R

n ,R

mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃
n

R

n ,R

, 1
R

mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

5

Circle of 
radius R

Circle of 
radius 1/R

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

E = n

R

n ,R

, 1
R

E = mR̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

5

Non-geometric background

physical space



Generalizing the geometry of space-time: from gravity to 
supergravity and beyond...?

Generalized geometry doubled tangent space 

single (10D) space (coordinates) 

Doubled geometry

Hitchin 2001

Hull et al 2006doubled space 
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subject to constraint

see that for a given pair (⌘1+, ⌘
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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coordinates dual to momentum (  ) & winding (  )
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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see that for a given pair (⌘1+, ⌘
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the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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Physical space can vary as we move around

T-duality

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
µ

v⇢ = 0

rg = 0

2 S±

@
µ

@
M

@M = 0

x

x̃

Spin(8,8)

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V M⌘
MN

UN = vµ⇠
µ

+ uµ�
µ

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

5

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
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see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
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ê
a

µeb
�

= R
⌫�

R
µ⌫

= 0

2 ⇤±T ⇤M

+d�

v 2 TM

� 2 T ⇤M

⇠
p 2 TM

! 2 T ⇤M

V 2 TM � T ⇤M

R

W = w + ⇠

L
V

W = L
v

w + L
v

⇠ � ◆
w

d�

L
V

U = L
v

u+ L
v

⇠ � ◆
u

d�

[[U, V ]] = 1
2
(L

U

V � L
V

U)

6

see that for a given pair (⌘1+, ⌘
2
+) there are eight spinors parameterised by "I±. These are

the eight supersymmetries which remain manifest in the reformulated theory. Each of
the ⌘I is invariant under a (di↵erent) SU (3) inside Spin(6). The two SU (3) intersect in
an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.

Such backgrounds have a very natural interpretation in terms of generalised geometry.
Recall that this is defined in terms of the generalised tangent space

E = TM � T ⇤M (2.3)

xµ ! xµ + ✏ vµ(x)

L
v

= vµ @

@x

µ

�g = L
v

g

�B = L
v

B

(L
v

g)
µ⌫

= v�@
�

g
µ⌫

+ 2@(µv�g⌫)�

[L
v

,L
w

] = L[v,w]

rv

rva = dva + !a

b

vb = dxµ(@
µ

va + !
µ

a

b

vb)

r
µ

v⇢ = @
µ

v⇢ + �⇢

µ⌫

v⌫

r
M

V P = @
M

V P + �P

MN

V N

�⇢

µ⌫

= 1
2
g⇢� (@

µ

g
⌫�

+ @
⌫

g
µ�

� @
�

g
µ⌫

)

[r
µ

,r
⌫

]v
�

= �R
µ⌫�

⇢v
⇢

� T
µ⌫

⇢r
⇢

v
�

V M⌘
MN

UN = ◆
v

⇠ + ◆
u

�

V MH
MN

UN

P± = 1
2
(� ± ⌘H)

P±V = 1
2
[(v ± g�1(�+Bv)) + (�± gv ⌥ Bg�1(�+Bv))]

⌘ =

✓
0 1
1 0

◆

�[MNP ] = 0

H
µ⌫⇢

= 3 @[µB⌫⇢]

P+M

NV
N

⌘ V
M

P+M

Q P+N

R P�P

S �
QRS

⌘ �
MNS

R
µ⌫�

⇢ = @
µ

�⇢

⌫�

� @
⌫

�⇢

µ�

+ �⇢

µ�

��

⌫�

� �⇢

⌫�

��

µ�

R
µ�

= R
µ⌫�

⌫

R = R
µ

µ

R
MN

= 0

R
MNP

R = @
M

�R

NP

� @
N

�R

MP

+ �R

MQ

�Q

NP

� �R

NQ

�Q

MP

R
MNPQ

= R
MNPQ

+R
PQMN

+ �
RMN

�R

PQ

5

2-torus + B-field

 
 generalized 
geometry=



gravity 
=   geometry

Conclusions

Ricci-flat 2d

2-torus

supergravity 

R
MN

= 0

S =
R p�g R

R = RMN

MN

H = (e�2�
p�g)2

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.4)

H = (e�2d)2
✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.5)

e�2d = e�2�
p�g

S =

Z
e�2�

p�g


R + 4r

µ

�rµ�� 1

12
H

µ⌫⇢

Hµ⌫⇢ + ...

�
. (2.6)

S =

Z
e�2�

p�gR . (2.7)

R
µ⌫

= T̂
µ⌫

T̂
µ⌫

= T
µ⌫

� 1
2
Tg

µ⌫

T
µ⌫

⇢ = 2�⇢

[µ⌫] = 0

dea + !a

b

^ eb = T a = 0

Ra

b

= d!a

b

+ !a

c

^ !c

b

R
µ⌫

a

b

R
µ⌫

a

b

ê
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an SU (2) and the established nomenclature calls this situation a local SU (2)-structure.
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