Generalizing the geometry of space-time: from gravity to supergravity and beyond...?

Mariana Graña

CEA/Saclay

Aldazabal, Berman, Cederwall, M.G., Coimbra, Hohm, Jeon, Kleinschmidt, Lee, Marques,	2011-2013
Park, Perry, Rosabal, Samtleben, Strickland-Constable, Thomson, Waldram, West, Zweibach,	•••

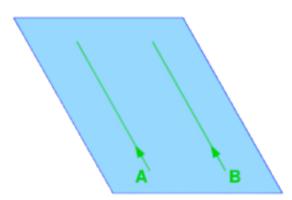
Based on Hitchin's generalized geometry

Hull and coll double field theory

2001

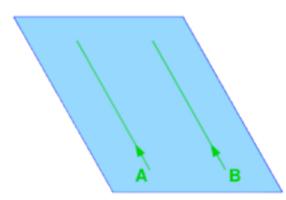
SUSY 2013, Trieste

•Classical mechanics



No force on A and B

•Classical mechanics

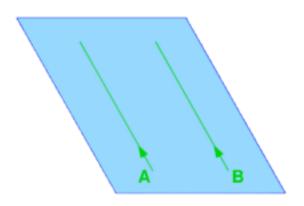


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

•Classical mechanics



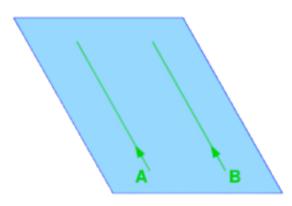
Gravity by Newton

No force on A and B

⇒ move on straight lines

Start out parallel, never meet

•Classical mechanics

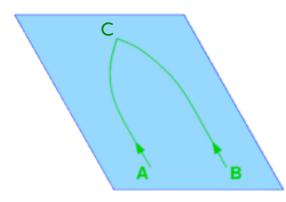


No force on A and B

⇒ move on straight lines

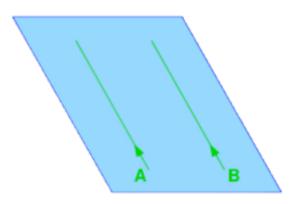
Start out parallel, never meet

Gravity by Newton



A and B attracted gravitationally by C

•Classical mechanics

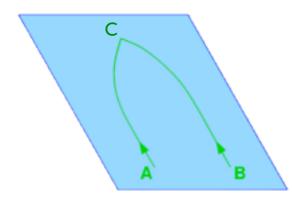


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton

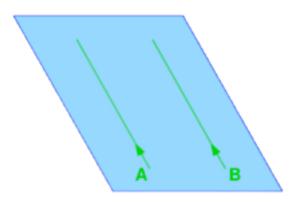


A and B attracted gravitationally by C

⇒ curved trajectory

start parallel, but curve and meet at C

•Classical mechanics

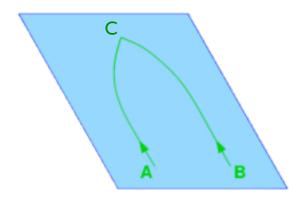


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton



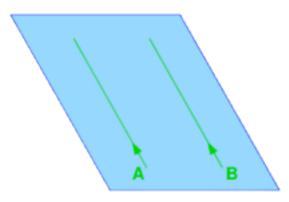
A and B attracted gravitationally by C

⇒ curved trajectory

start parallel, but curve and meet at C

•Gravity by Einstein

•Classical mechanics

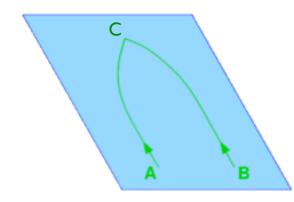


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton

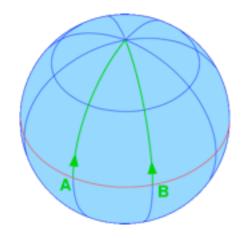


A and B attracted gravitationally by C

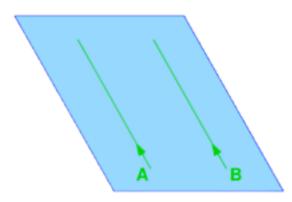
 \Rightarrow curved trajectory

start parallel, but curve and meet at C

Gravity by Einstein



•Classical mechanics

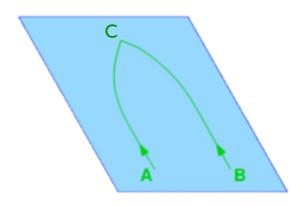


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton

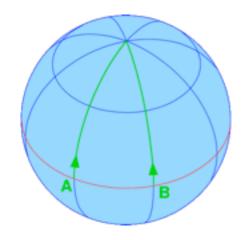


A and B attracted gravitationally by C

⇒ curved trajectory

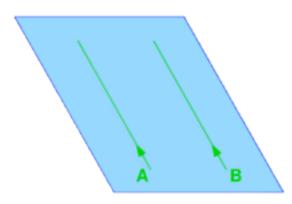
start parallel, but curve and meet at C

•Gravity by Einstein



No force on A and B

•Classical mechanics

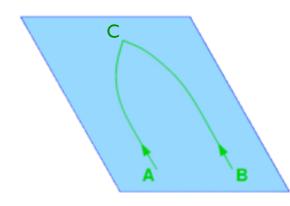


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton

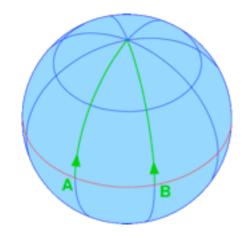


A and B attracted gravitationally by C

⇒ curved trajectory

start parallel, but curve and meet at C

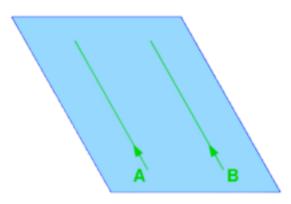
•Gravity by Einstein



No force on A and B

⇒ move on straight lines

•Classical mechanics

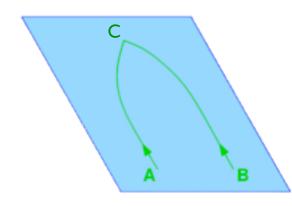


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton

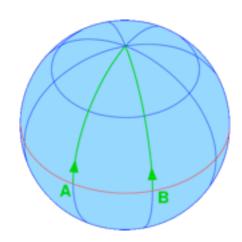


A and B attracted gravitationally by C

⇒ curved trajectory

start parallel, but curve and meet at C

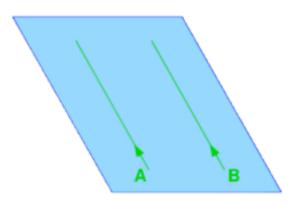
•Gravity by Einstein



No force on A and B

⇒ move on straight lines but in curved space!!

Classical mechanics

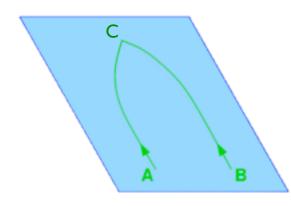


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton

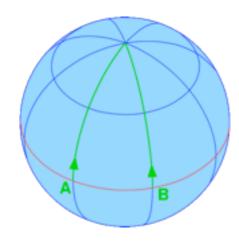


A and B attracted gravitationally by C

⇒ curved trajectory

start parallel, but curve and meet at C

•Gravity by Einstein

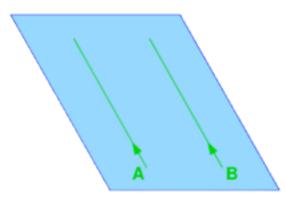


No force on A and B

⇒ move on straight lines but in curved space!!

Curvature caused by C

Classical mechanics

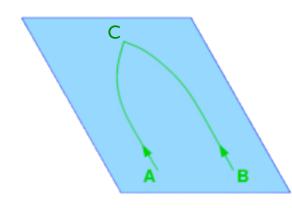


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

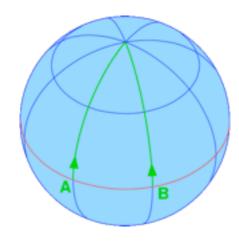
Gravity by Newton



A and B attracted gravitationally by C

⇒ curved trajectory
start parallel, but curve and meet at C

•Gravity by Einstein



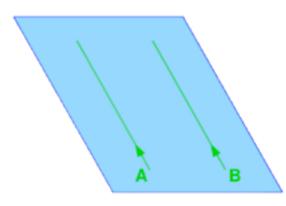
No force on A and B

⇒ move on straight lines but in curved space!!

Curvature caused by C

Enstein's eqs $\,R_{\mu\nu}=\hat{T}_{\mu\nu}$

•Classical mechanics

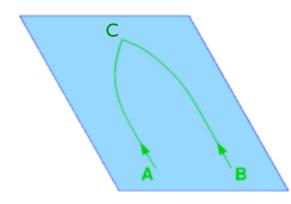


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

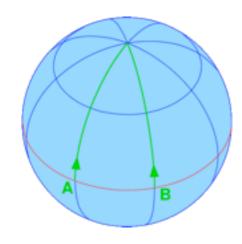
Gravity by Newton



A and B attracted gravitationally by C

⇒ curved trajectory
start parallel, but curve and meet at C

•Gravity by Einstein



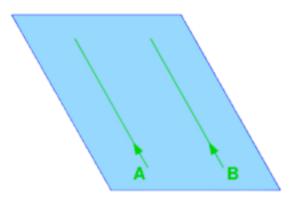
No force on A and B

⇒ move on straight lines but in curved space!!

Curvature caused by C

Enstein's eqs $R_{\mu\nu}=\hat{T}_{\mu\nu}$ \uparrow Ricci-tensor

•Classical mechanics

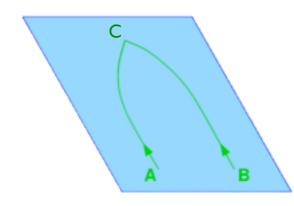


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

Gravity by Newton

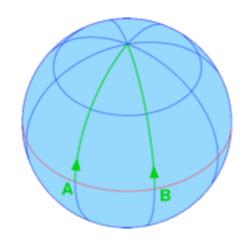


A and B attracted gravitationally by C

⇒ curved trajectory

start parallel, but curve and meet at C

•Gravity by Einstein



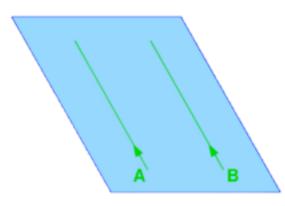
No force on A and B

⇒ move on straight lines but in curved space!!

Curvature caused by C

 $\hat{T}_{\mu\nu} = T_{\mu\nu} - \tfrac{1}{2}Tg_{\mu\nu}$ energy-momentum tensor \downarrow Enstein's eqs $R_{\mu\nu} = \hat{T}_{\mu\nu}$ \uparrow Ricci-tensor

Classical mechanics

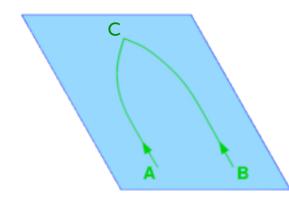


No force on A and B

⇒ move on straight lines

Start out parallel, never meet

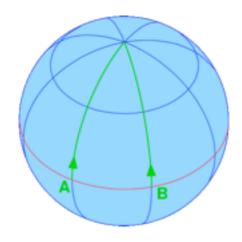
Gravity by Newton



A and B attracted gravitationally by C

⇒ curved trajectory
start parallel, but curve and meet at C

•Gravity by Einstein



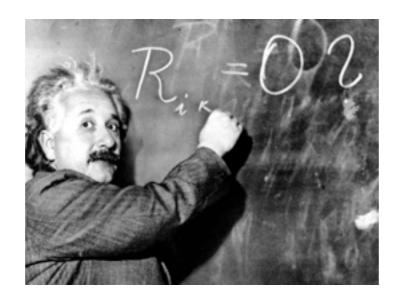
No force on A and B

⇒ move on straight lines but in curved space!!

Curvature caused by C

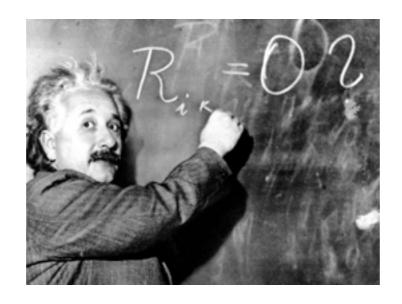
 $\hat{T}_{\mu\nu} = T_{\mu\nu} - \tfrac{1}{2}Tg_{\mu\nu}$ energy-momentum tensor \downarrow Enstein's eqs $R_{\mu\nu} = \hat{T}_{\mu\nu}$ \uparrow Ricci-tensor

Gravity = Geometry



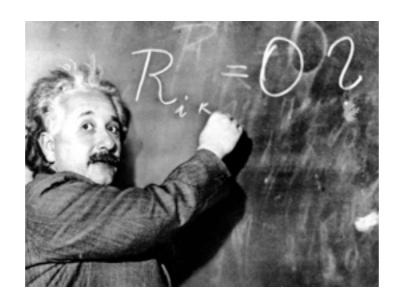
gravity = geometry

gravity geometry



gravity = geometry

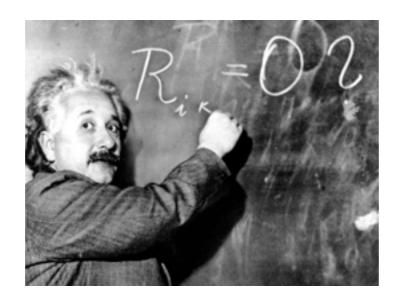
gravity geometry



gravity = geometry

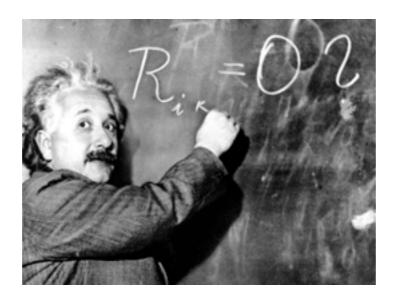
super gravity

geometry



gravity = geometry

super generalized geometry



gravity = geometry

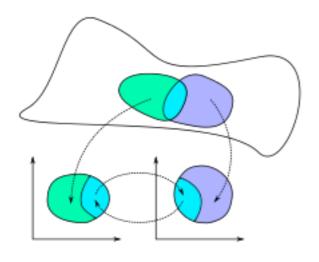
super generalized gravity = generalized

via superstring theory

Outline

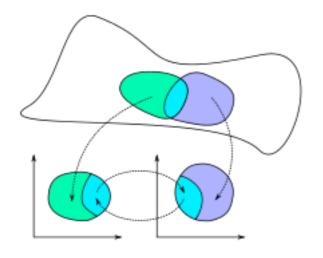
- Gravity as geometry
- Supergravity and superstring theory
- Generalized geometry
- Supergravity as generalized geometry
- Beyond supergravity and generalized geometry?
- Conclusions

•Manifold M

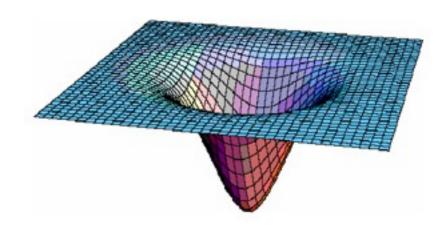


space that looks locally like \mathbb{R}^n

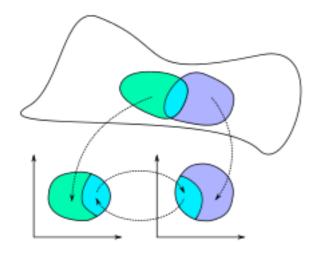
•Manifold M



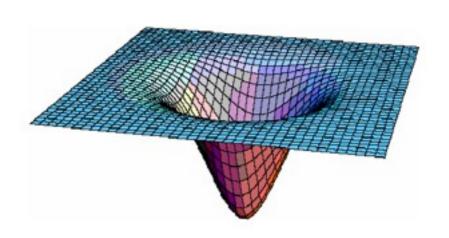
space that looks locally like \mathbb{R}^n



•Manifold M

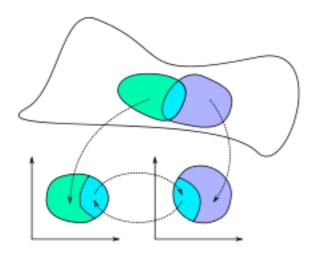


space that looks locally like \mathbb{R}^n

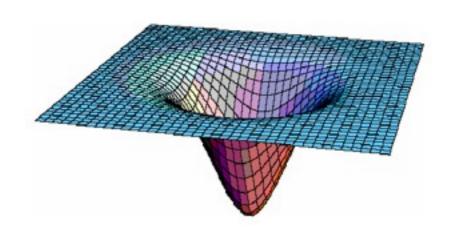


Metric g

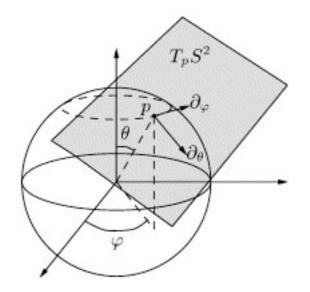
•Manifold M



space that looks locally like \mathbb{R}^n

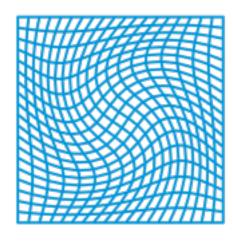


Metric g



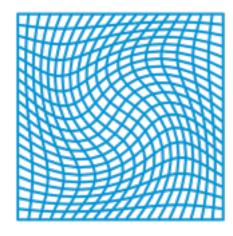


$$x^{\mu} \to x^{\mu} + \epsilon v^{\mu}(x)$$



$$x^{\mu} \to x^{\mu} + \epsilon v^{\mu}(x)$$

infinitesimal generators: vector fields $v^{\mu} \frac{\partial}{\partial x^{\mu}}$

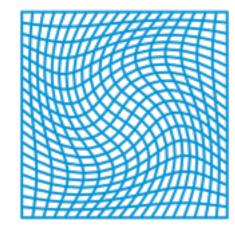


$$x^{\mu} \rightarrow x^{\mu} + \epsilon v^{\mu}(x)$$

infinitesimal generators: vector fields $v^{\mu} \frac{\partial}{\partial x^{\mu}}$

$$\delta g = \mathcal{L}_v g \qquad (\mathcal{L}_v g)_{\mu\nu} = v^{\lambda} \partial_{\lambda} g_{\mu\nu} + 2 \partial_{(\mu} v^{\lambda} g_{\nu)\lambda}$$

Lie derivative



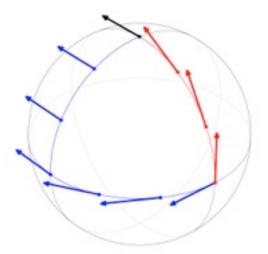
$$x^{\mu} \rightarrow x^{\mu} + \epsilon v^{\mu}(x)$$

infinitesimal generators: vector fields $v^{\mu} \frac{\partial}{\partial x^{\mu}}$

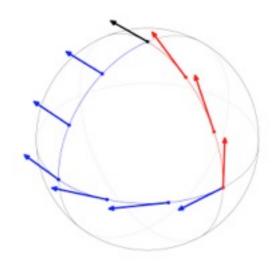
$$\delta g=\mathcal{L}_v g \qquad \qquad (\mathcal{L}_v g)_{\mu\nu}=v^\lambda \partial_\lambda g_{\mu\nu}+2\partial_{(\mu} v^\lambda g_{\nu)\lambda}$$
 Lie derivative

Algebra
$$[\mathcal{L}_v, \mathcal{L}_w] = \mathcal{L}_{[v,w]}$$

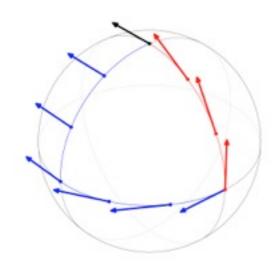
•Connection ∇



•Connection ∇

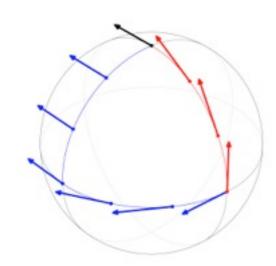


Parallel transport $\nabla_{\mu}v^{\rho}=0$



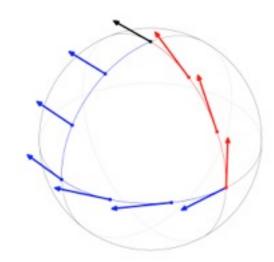
Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$



Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu} v^{\rho} = \partial_{\mu} v^{\rho} + \Gamma^{\rho}_{\mu\nu} v^{\nu} \qquad \qquad \Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

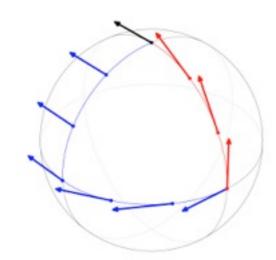


Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

Levi-civita connection: unique connection metric compatible $\, \nabla g = 0 \,$ torsion-free



Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$

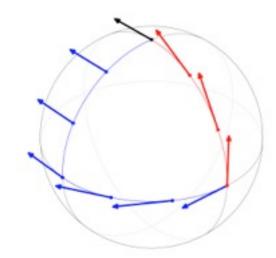
$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

Levi-civita connection: unique connection metric compatible $\, \nabla g = 0 \,$ torsion-free

•Curvature and torsion

$$[\nabla_{\mu}, \nabla_{\nu}] v_{\lambda} = -R_{\mu\nu\lambda}{}^{\rho} v_{\rho} - T_{\mu\nu}{}^{\rho} \nabla_{\rho} v_{\lambda}$$

Riemann Torsion



Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

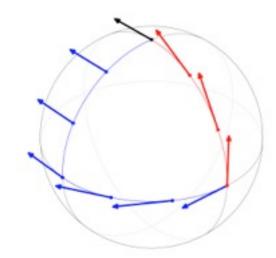
Levi-civita connection: unique connection metric compatible $\, \nabla g = 0 \,$ torsion-free

Curvature and torsion

$$[\nabla_{\mu}, \nabla_{\nu}] v_{\lambda} = -R_{\mu\nu\lambda}{}^{\rho} v_{\rho} - T_{\mu\nu}{}^{\rho} \nabla_{\rho} v_{\lambda}$$

Riemann

$$R_{\mu\nu\lambda}{}^{\rho} = \partial_{\mu}\Gamma^{\rho}_{\nu\lambda} - \partial_{\nu}\Gamma^{\rho}_{\mu\lambda} + \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\lambda} - \Gamma^{\rho}_{\nu\sigma}\Gamma^{\sigma}_{\mu\lambda}$$



Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

Levi-civita connection: unique connection metric compatible $\, \nabla g = 0 \,$ torsion-free

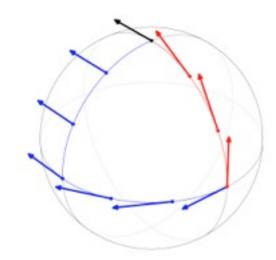
Curvature and torsion

$$[\nabla_{\mu}, \nabla_{\nu}] v_{\lambda} = -R_{\mu\nu\lambda}{}^{\rho} v_{\rho} - T_{\mu\nu}{}^{\rho} \nabla_{\rho} v_{\lambda}$$

Riemann

$$R_{\mu\nu\lambda}{}^{\rho} = \partial_{\mu}\Gamma^{\rho}_{\nu\lambda} - \partial_{\nu}\Gamma^{\rho}_{\mu\lambda} + \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\lambda} - \Gamma^{\rho}_{\nu\sigma}\Gamma^{\sigma}_{\mu\lambda}$$

$$T_{\mu\nu}{}^{\rho} = 2\Gamma^{\rho}_{[\mu\nu]}$$



Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

Levi-civita connection: unique connection metric compatible $\, \nabla g = 0 \,$ torsion-free

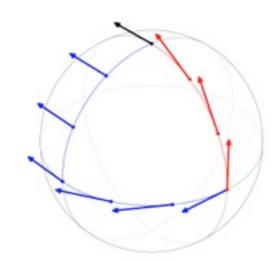
Curvature and torsion

$$[\nabla_{\mu}, \nabla_{\nu}] v_{\lambda} = -R_{\mu\nu\lambda}{}^{\rho} v_{\rho} - T_{\mu\nu}{}^{\rho} \nabla_{\rho} v_{\lambda}$$

Riemann

$$R_{\mu\nu\lambda}{}^{\rho} = \partial_{\mu}\Gamma^{\rho}_{\nu\lambda} - \partial_{\nu}\Gamma^{\rho}_{\mu\lambda} + \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\lambda} - \Gamma^{\rho}_{\nu\sigma}\Gamma^{\sigma}_{\mu\lambda}$$

$$T_{\mu\nu}{}^{\rho} = 2\Gamma^{\rho}_{[\mu\nu]} = 0$$



Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

Levi-civita connection: unique connection metric compatible $\, \nabla g = 0 \,$ torsion-free

Curvature and torsion

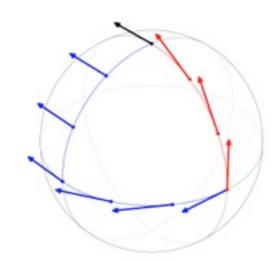
$$[\nabla_{\mu}, \nabla_{\nu}] v_{\lambda} = -R_{\mu\nu\lambda}{}^{\rho} v_{\rho} - T_{\mu\nu}{}^{\rho} \nabla_{\rho} v_{\lambda}$$

Riemann

$$R_{\mu\nu\lambda}{}^{\rho} = \partial_{\mu}\Gamma^{\rho}_{\nu\lambda} - \partial_{\nu}\Gamma^{\rho}_{\mu\lambda} + \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\lambda} - \Gamma^{\rho}_{\nu\sigma}\Gamma^{\sigma}_{\mu\lambda}$$

$$T_{\mu\nu}^{\rho} = 2\Gamma^{\rho}_{[\mu\nu]} = 0$$

$$R_{\mu\lambda} = R_{\mu\nu\lambda}{}^{\nu}$$
 Ricci tensor



Parallel transport $\nabla_{\mu}v^{\rho}=0$

$$\nabla_{\mu}v^{\rho} = \partial_{\mu}v^{\rho} + \Gamma^{\rho}_{\mu\nu}v^{\nu}$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\lambda} \left(\partial_{\mu} g_{\nu\lambda} + \partial_{\nu} g_{\mu\lambda} - \partial_{\lambda} g_{\mu\nu} \right)$$

Levi-civita connection: unique connection metric compatible $\, \nabla g = 0 \,$ torsion-free

Curvature and torsion

$$[\nabla_{\mu}, \nabla_{\nu}] v_{\lambda} = -R_{\mu\nu\lambda}{}^{\rho} v_{\rho} - T_{\mu\nu}{}^{\rho} \nabla_{\rho} v_{\lambda}$$

Riemann

$$R_{\mu\nu\lambda}{}^{\rho} = \partial_{\mu}\Gamma^{\rho}_{\nu\lambda} - \partial_{\nu}\Gamma^{\rho}_{\mu\lambda} + \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\lambda} - \Gamma^{\rho}_{\nu\sigma}\Gamma^{\sigma}_{\mu\lambda}$$

$$T_{\mu\nu}{}^{\rho} = 2\Gamma^{\rho}_{[\mu\nu]} = 0$$

$$R_{\mu\lambda} = R_{\mu\nu\lambda}{}^{\nu}$$
 Ricci tensor

$$R=R_{\mu}{}^{\mu}$$
 Ricci scalar

$$S = \int \sqrt{-g} \, R$$

$$S = \int \sqrt{-g} \, R$$

• Equations of motion : Einstein equations

$$S = \int \sqrt{-g} \, R$$

• Equations of motion : Einstein equations

$$R_{\mu\nu} = 0$$

$$S = \int \sqrt{-g} \, R$$

• Equations of motion : Einstein equations

No matter

$$R_{\mu\nu}=0$$
 Ricci-flat

•Extension of Einstein gravity that incorporates SUSY

- •Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

- •Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10

- •Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10

Bosonic field content:

- •Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10

Bosonic field content:

g ,B , Φ metric dilaton 2-form $B_{\mu\nu}$

- •Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10

Bosonic field content:

g ,B , Φ ,C metric dilaton 2-form $B_{\mu\nu}$

- Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

Type IIA/IIB supergravity: D=10

Bosonic field content:

g ,B ,Φ ,C metric dilaton

2-form $B_{\mu\nu}$ RR fields

- Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

Bosonic field content:

g ,B ,
$$\Phi$$
 ,C metric dilaton 2-form B $_{\mu\nu}$ RR fields $\in \Lambda^{\pm}T^{*}M$

- Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

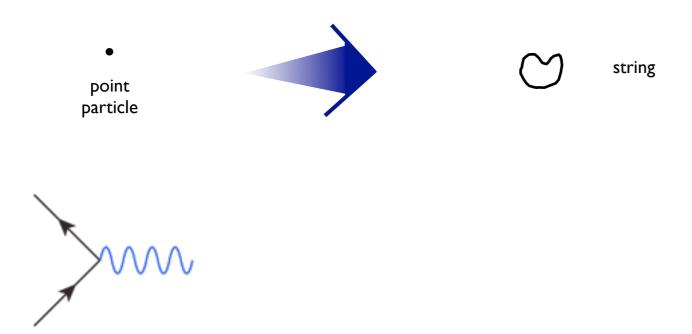
Bosonic field content:

$$g$$
 ,B , Φ ,C metric dilaton 2-form $B_{\mu\nu}$ RR fields $\in \Lambda^{\pm}T^{*}M$

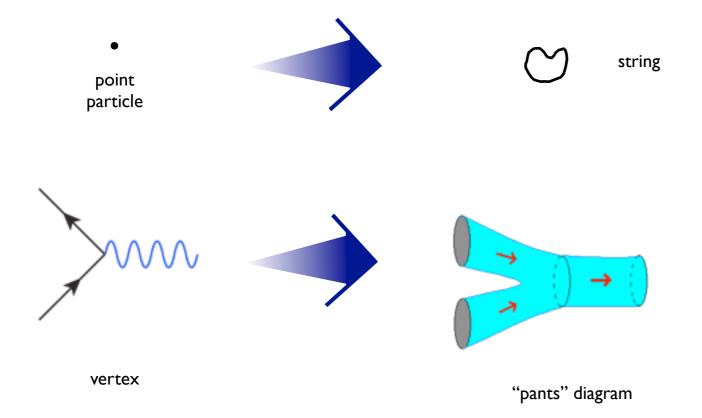
- •Extension of Einstein gravity that incorporates SUSY
- •Strongly constrained and intricate theory: unique in D=11 (max. dimension)

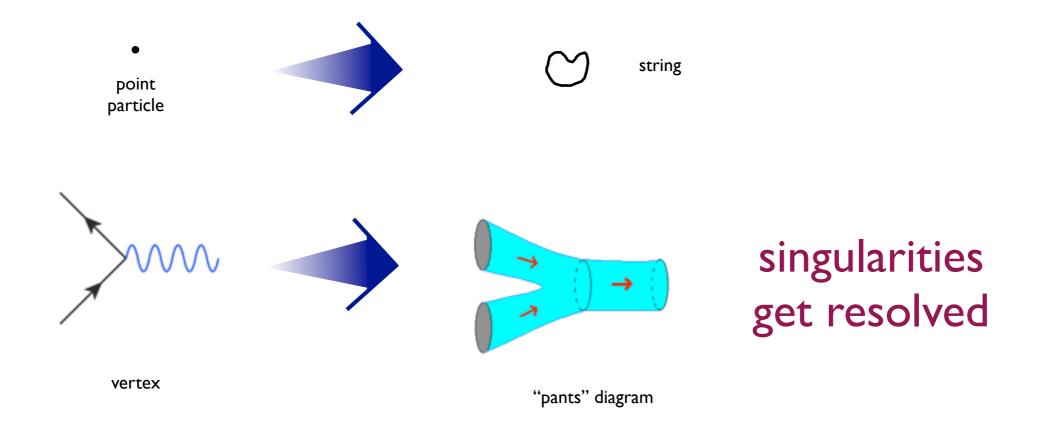
Bosonic field content:

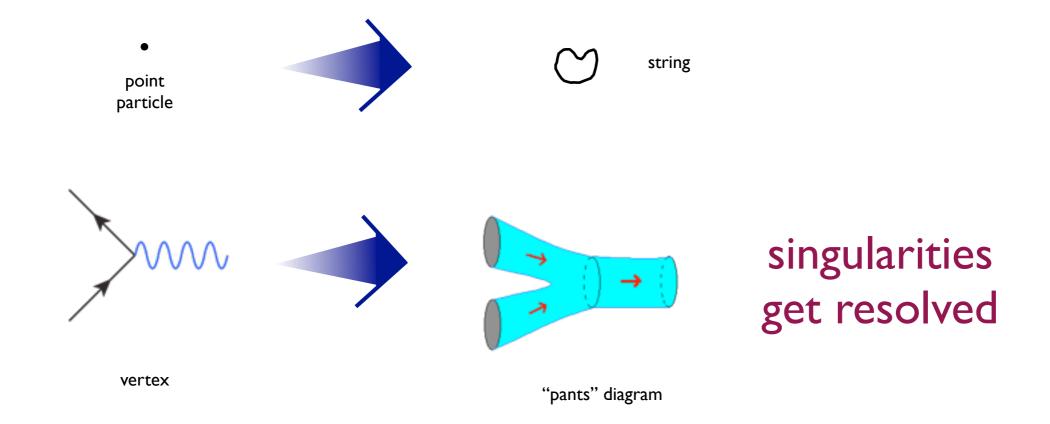
Low energy limit of superstring theory

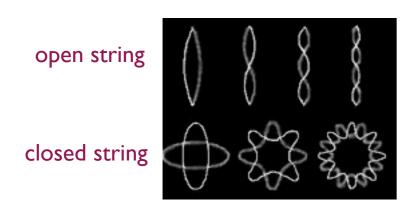


vertex

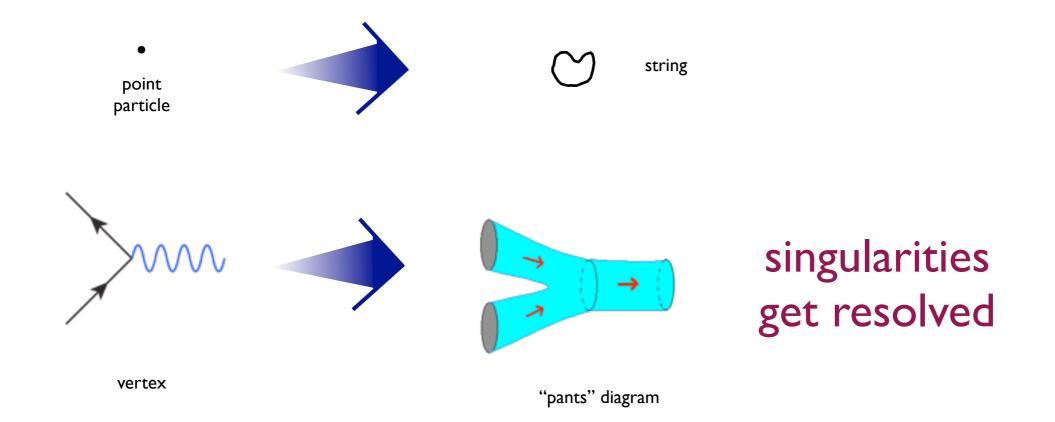


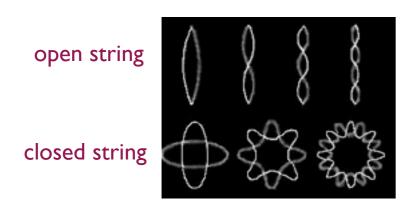






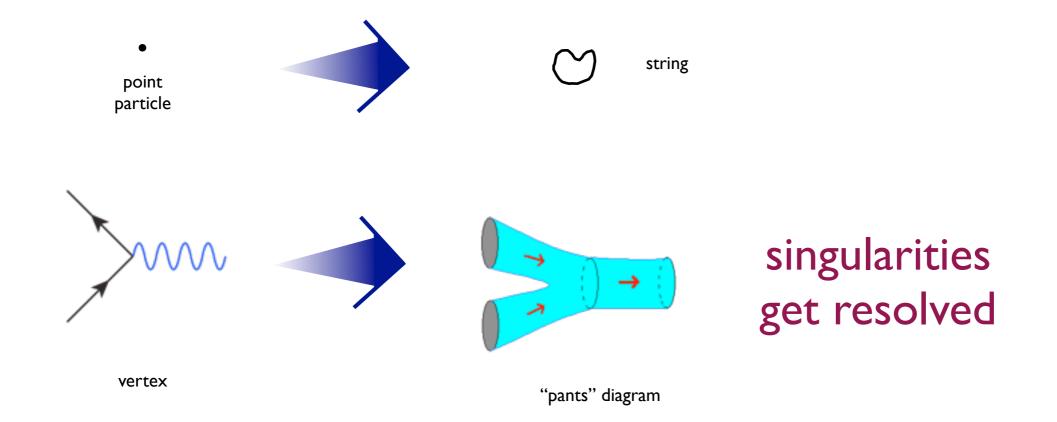
Oscillation modes: different particles

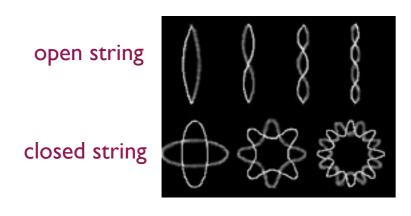




Oscillation modes: different particles

$$|\xi_{\mu\nu}\rangle = \xi_{\mu}\tilde{\xi}_{\nu}\alpha_{1}^{\mu}\tilde{\alpha}_{1}^{\nu}|0\rangle$$

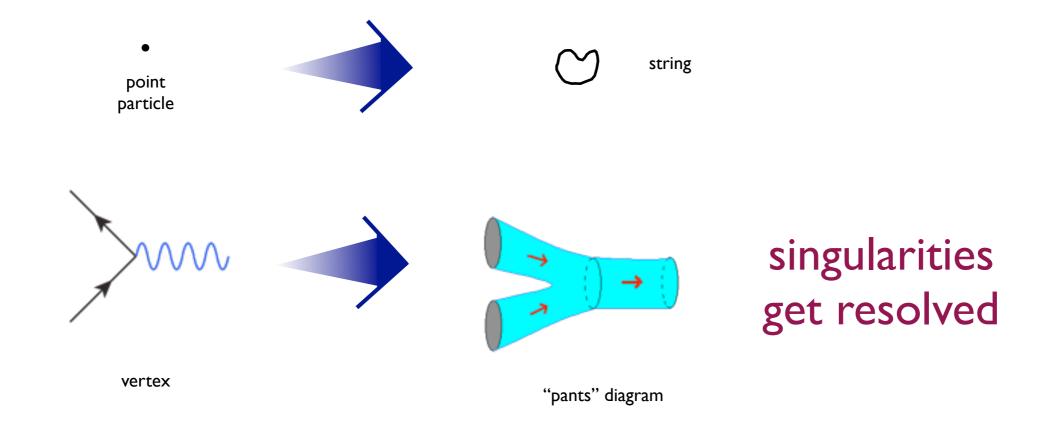


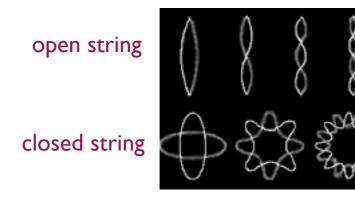


Oscillation modes: different particles

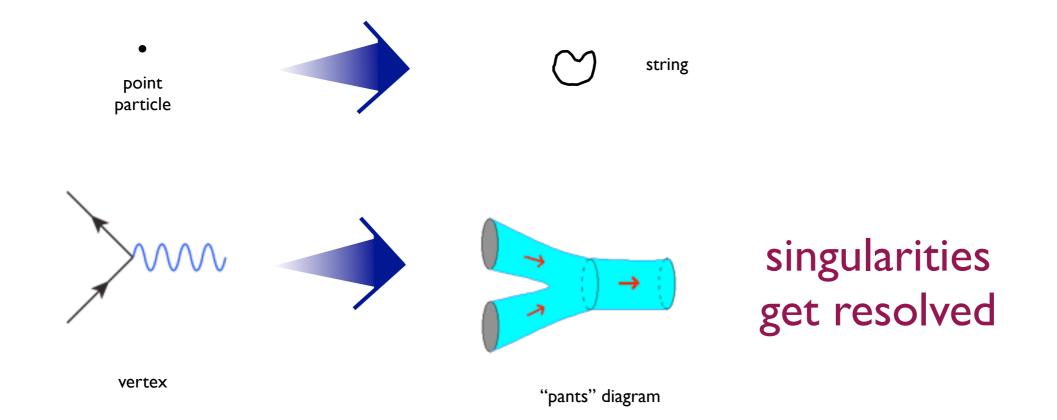
$$|\xi_{\mu\nu}> = \xi_{\mu}\tilde{\xi}_{\nu}\alpha_{1}^{\mu}\tilde{\alpha}_{1}^{\nu}|0>$$

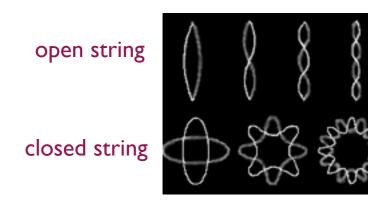
$$\uparrow \\ \text{left-moving} \\ \text{osc. mode}$$





Oscillation modes: different particles





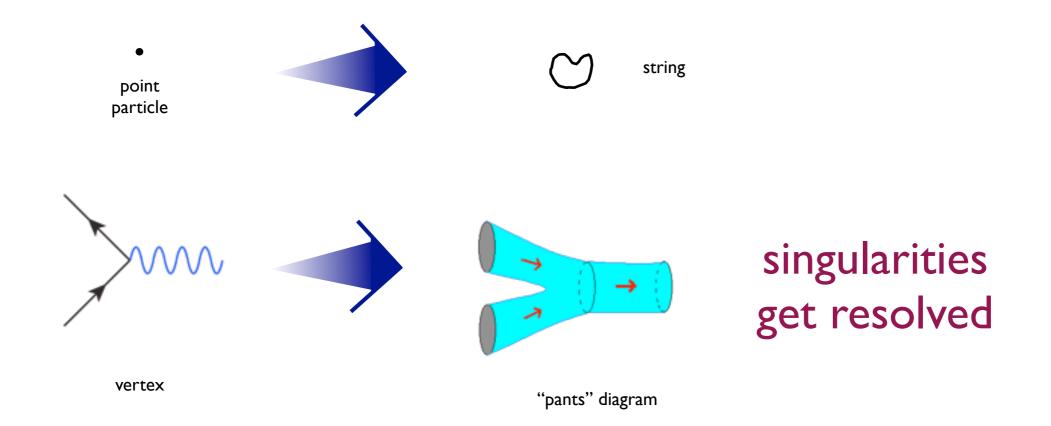
Oscillation modes: different particles

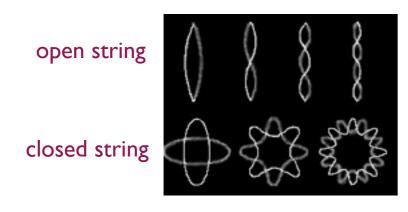
$$|\xi_{\mu\nu}> = \xi_{\mu}\tilde{\xi}_{\nu}\alpha_{1}^{\mu}\tilde{\alpha}_{1}^{\nu}|0>$$

$$\uparrow \qquad \uparrow$$

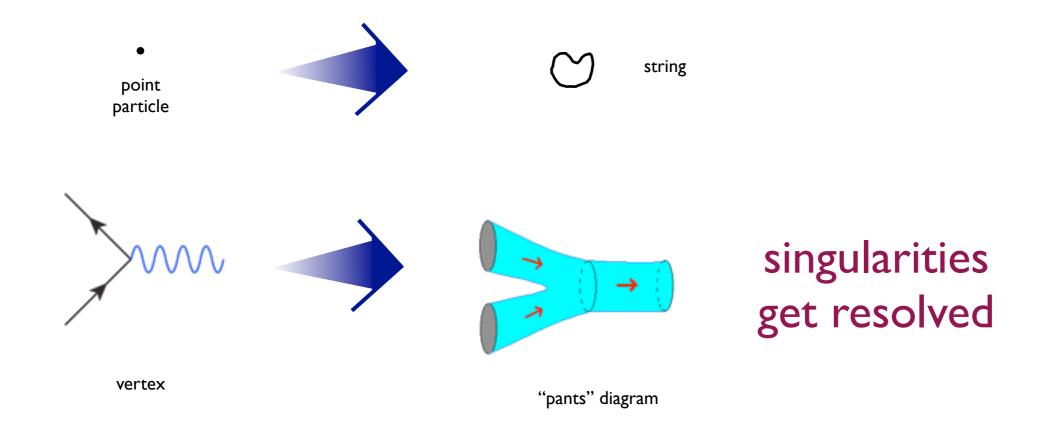
$$\text{left-moving right-moving osc. mode}$$
 osc. mode

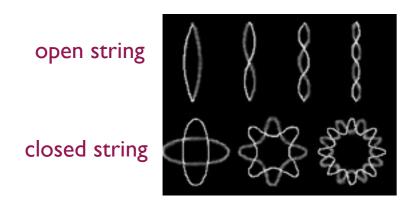
$$\xi_{(\mu\nu)}$$



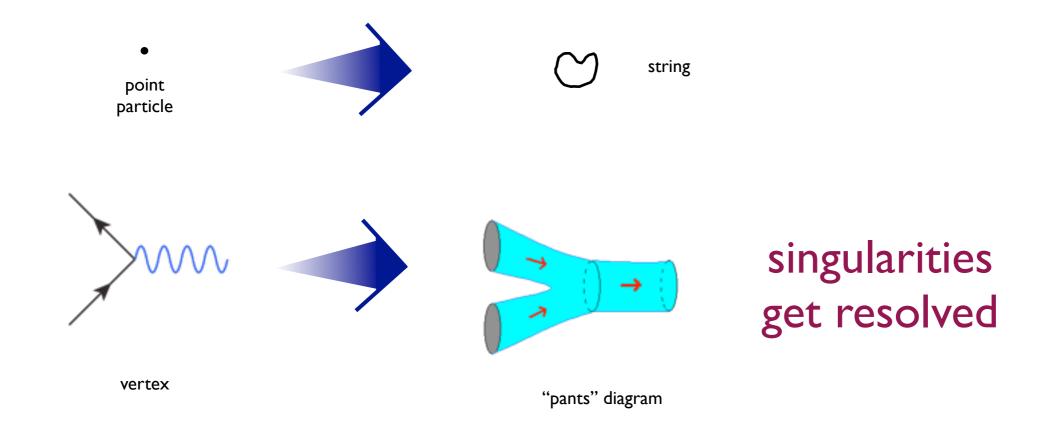


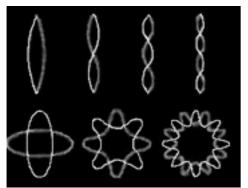
Oscillation modes: different particles





Oscillation modes: different particles

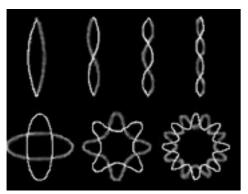




Oscillation modes: different particles

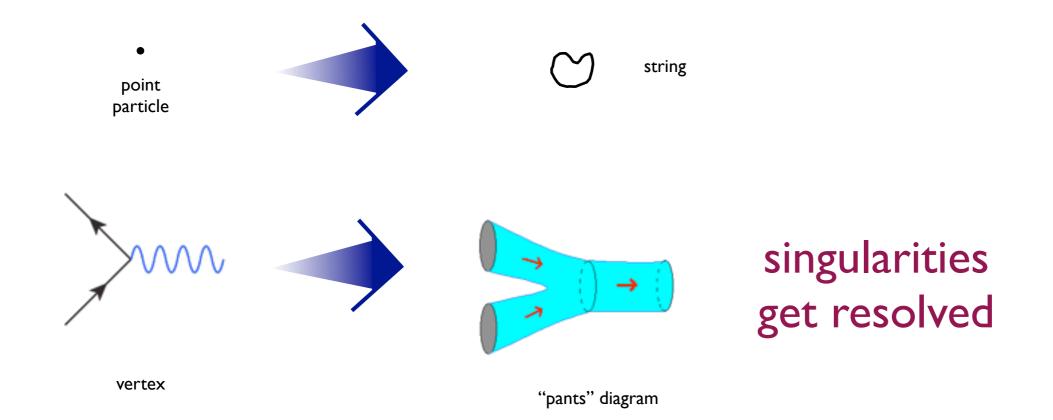
$$\begin{split} |\xi_{\mu\nu}> &= \xi_{\mu}\tilde{\xi}_{\nu}\alpha_{1}^{\mu}\tilde{\alpha}_{1}^{\nu}|0> \\ &\uparrow \uparrow \\ \text{left-moving right-moving osc. mode} \\ \xi_{(\mu\nu)} &\xi_{[\mu\nu]} &\delta^{\mu\nu}\xi_{\mu\nu} \\ \downarrow & g_{\mu\nu} \\ \text{metric} \end{split}$$

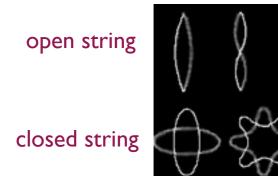




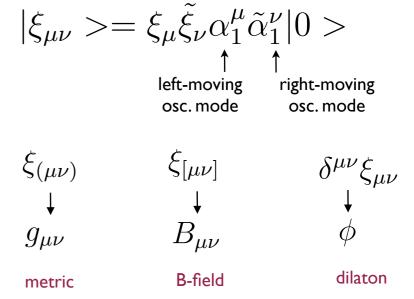
Oscillation modes: different particles

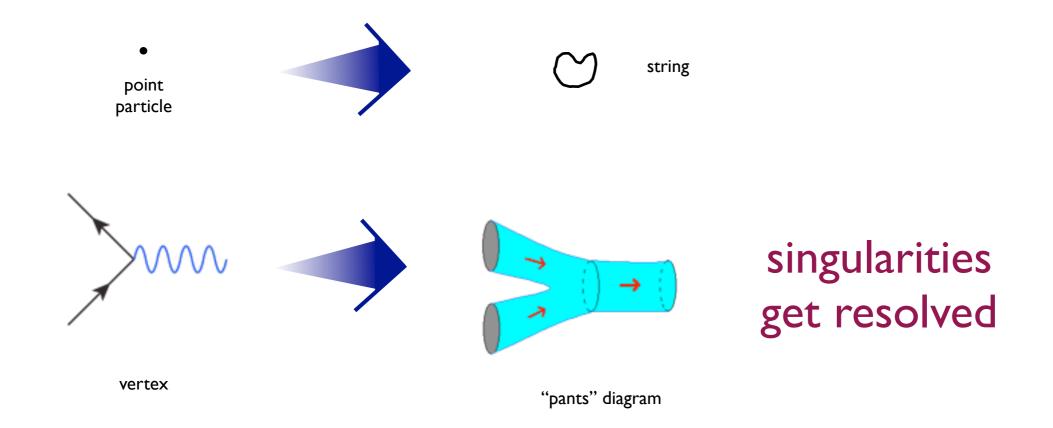
$$\begin{split} |\xi_{\mu\nu}> &= \xi_{\mu}\tilde{\xi}_{\nu}\alpha_{1}^{\mu}\tilde{\alpha}_{1}^{\nu}|0> \\ & \uparrow \qquad \uparrow \\ \text{left-moving right-moving osc. mode} \\ \xi_{(\mu\nu)} \qquad \xi_{[\mu\nu]} \qquad \delta^{\mu\nu}\xi_{\mu\nu} \\ \downarrow \qquad \downarrow \qquad \qquad \downarrow \\ g_{\mu\nu} \qquad \qquad B_{\mu\nu} \\ \text{metric} \qquad \text{B-field} \end{split}$$

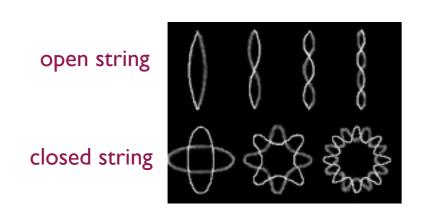




Oscillation modes: different particles







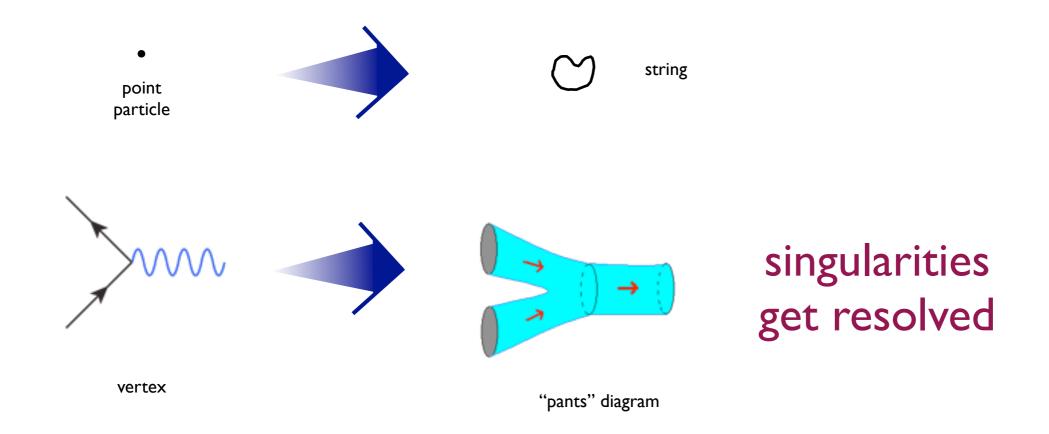
Oscillation modes: different particles

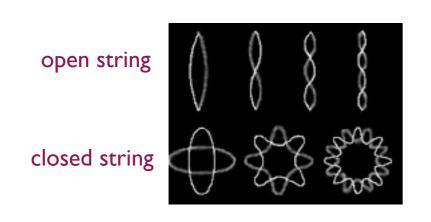
Supergravity: keep only massless modes

$$|\xi_{\mu\nu}> = \xi_{\mu}\tilde{\xi}_{\nu}\alpha_{1}^{\mu}\tilde{\alpha}_{1}^{\nu}|0>$$

$$|\xi_{\mu\nu}> = \xi_{\mu}\tilde{\xi}_{\nu}\alpha_{1}^{\nu}\tilde{\alpha}_{1}^{\nu}|0>$$

$$|\xi_{$$



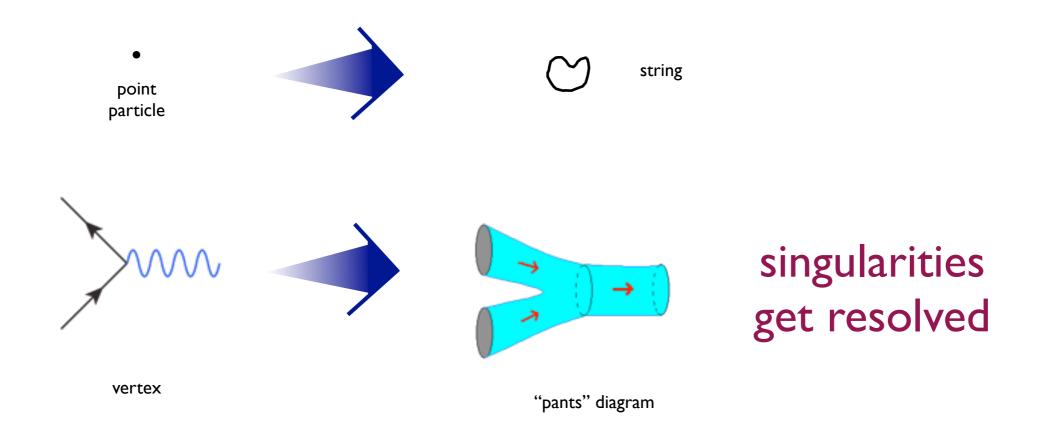


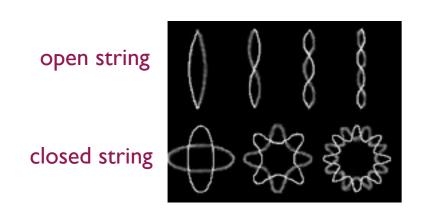
Oscillation modes: different particles

Supergravity: keep only massless modes

Closed string massless excitation modes:

Consistently defined in I0D





Oscillation modes: different particles

Supergravity: keep only massless modes

Closed string massless excitation modes:

Consistently defined in IOD $\mu, \nu = 0, ..., 9$

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \right]$$

$$H_{\mu\nu\rho} = 3\,\partial_{[\mu}B_{\nu\rho]}$$

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \right]$$

$$H_{\mu\nu\rho} = 3\,\partial_{[\mu}B_{\nu\rho]}$$

Equations of motion

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \right]$$

$H_{\mu\nu\rho} = 3\,\partial_{[\mu}B_{\nu\rho]}$

Equations of motion

$$R_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}R - \frac{1}{48}H^{2} = 0$$

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \right]$$

$H_{\mu\nu\rho} = 3\,\partial_{[\mu}B_{\nu\rho]}$

Equations of motion

$$R_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}R - \frac{1}{48}H^{2} = 0$$

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \dots \right]$$

$H_{\mu\nu\rho} = 3\,\partial_{[\mu}B_{\nu\rho]}$

Equations of motion

$$R_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}R - \frac{1}{48}H^{2} = 0$$

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \dots \right]$$

$H_{\mu\nu\rho} = 3\,\partial_{[\mu}B_{\nu\rho]}$

Equations of motion

$$R_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi + \dots = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) + \dots = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}R - \frac{1}{48}H^{2} = 0$$

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \dots \right]$$

$H_{\mu\nu\rho} = 3\,\partial_{[\mu}B_{\nu\rho]}$

Equations of motion

$$R_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi + \dots = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) + \dots = 0$$

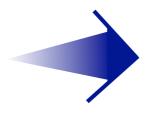
$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}R - \frac{1}{48}H^{2} = 0$$

$$\dots$$

supergravity generalized geometry

point

particle



Superstring theory

string

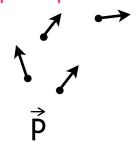
supergravity generalized geometry

point particle

Superstring theory

string

point particles



momentum

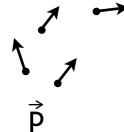
supergravity generalized geometry

point particle

string

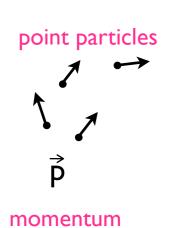
Superstring theory

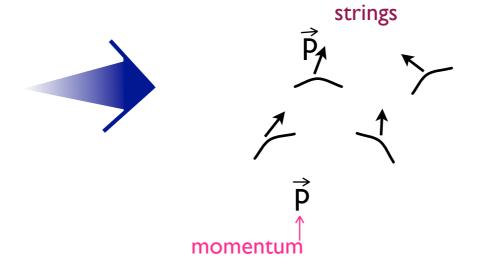
point particles



supergravity generalized geometry

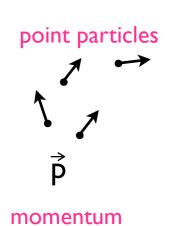
string

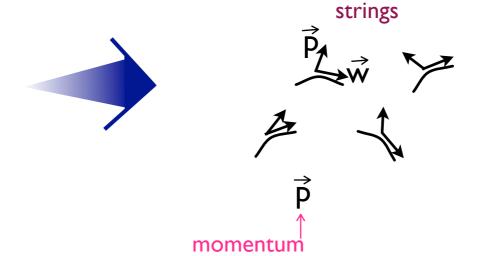




supergravity generalized geometry

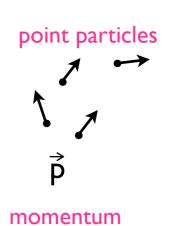
string

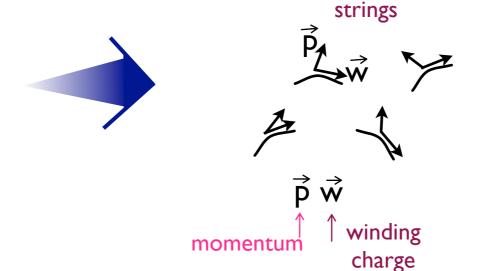




supergravity generalized geometry

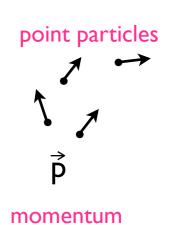
string

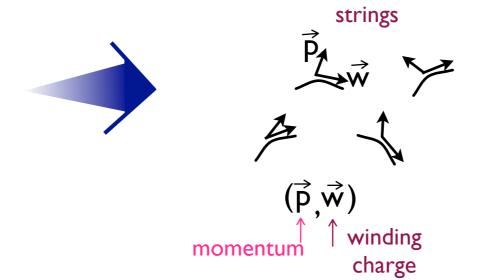




supergravity generalized geometry

string

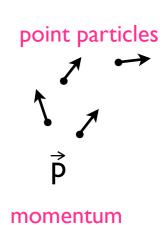


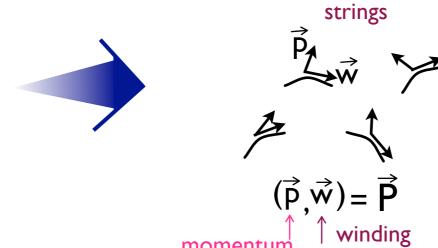


supergravity generalized geometry

string

charge

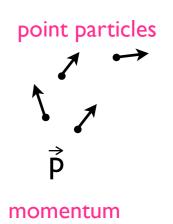


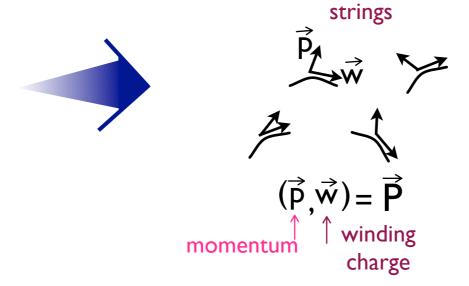


supergravity generalized geometry

string

Superstring theory



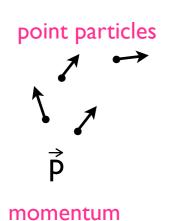


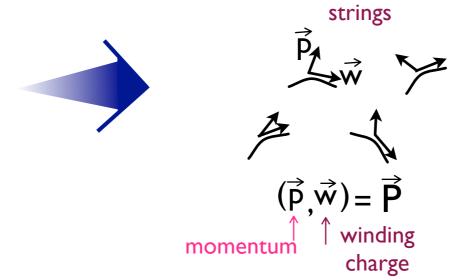
Do pure geometry on a double tangent space (20D)

supergravity generalized geometry

string

Superstring theory





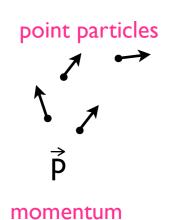
Do pure geometry on a double tangent space (20D)

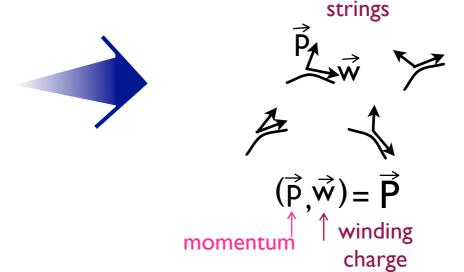
> Tseytlin 1991 Siegel 1993

supergravity generalized geometry

string

Superstring theory





Do pure geometry on a double tangent space (20D)

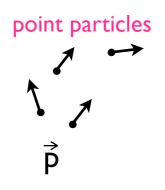
> Tseytlin 1991 Siegel 1993

Left-moving

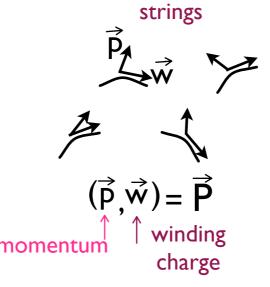
supergravity generalized geometry

string

Superstring theory



momentum



Do pure geometry on a double tangent space (20D)

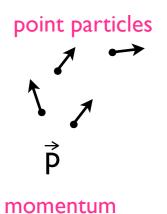
> Tseytlin 1991 Siegel 1993

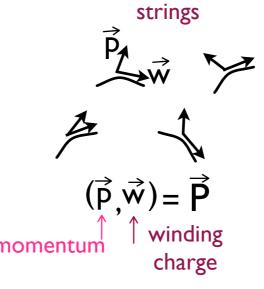
Left-moving + Right-moving

supergravity generalized geometry

string

Superstring theory





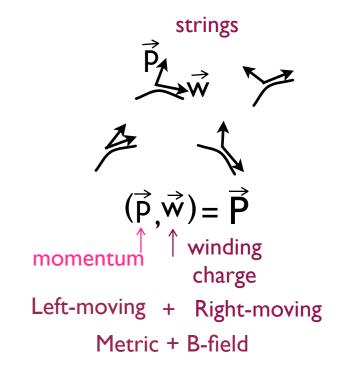
Do pure geometry on a double tangent space (20D)

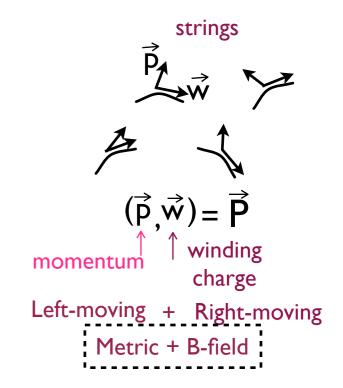
> Tseytlin 1991 Siegel 1993

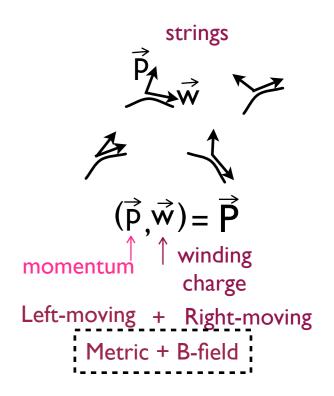
Metric + B-field+dilaton

Left-moving + Right-moving

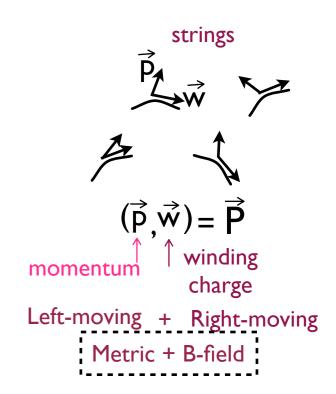
Hitchin 2001





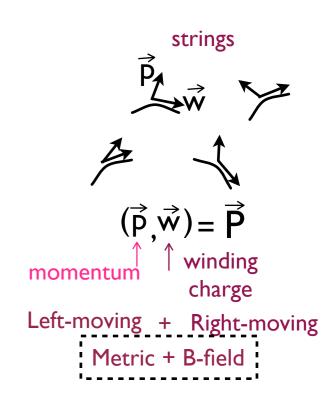


$$\delta g = \mathcal{L}_v g$$



$$\delta g = \mathcal{L}_v g$$

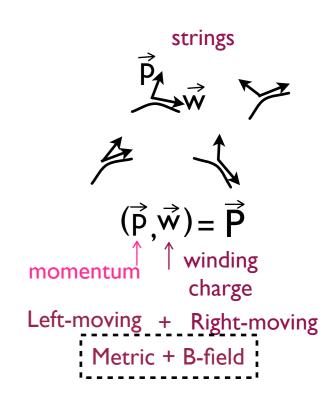
$$\delta B = \mathcal{L}_v B$$



$$\delta g = \mathcal{L}_v g$$

$$v \in TM$$

$$\delta B = \mathcal{L}_v B$$

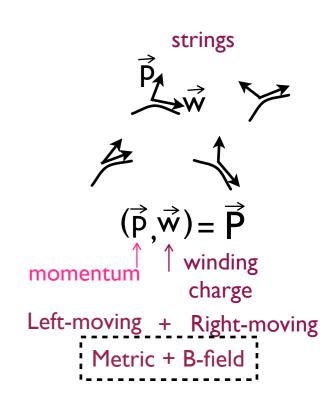


•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

$$v \in TM$$

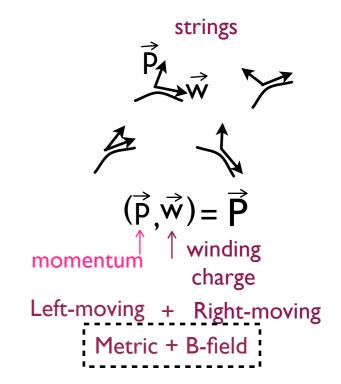
$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$



•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g \qquad v \in TM$$

$$\delta B = \mathcal{L}_v B + d\lambda \qquad \lambda \in T^*M$$



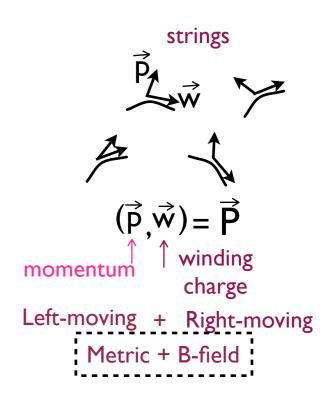
•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

$$\delta B = \mathcal{L}_v B + d\lambda$$

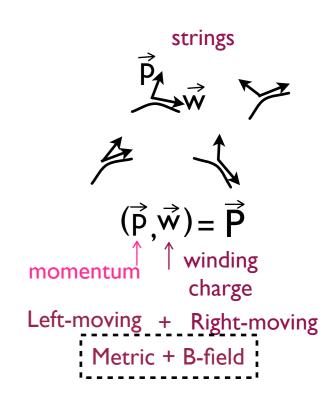
$$v \in TM$$

$$\lambda \in T^*M$$



•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$
 $v \in TM$ $+$ $\lambda \in T^*M$ $V \in TM \oplus T^*M$ generalized Vectors

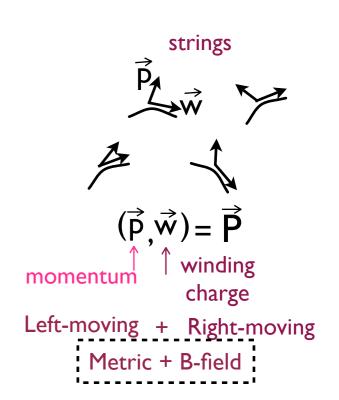


•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$
$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

$$\begin{array}{ccc} v \in TM & & p \in TM \\ + & & \sim & \\ \lambda \in T^*M & & \omega \in T^*M \end{array}$$

$$V\in TM\oplus T^*M$$

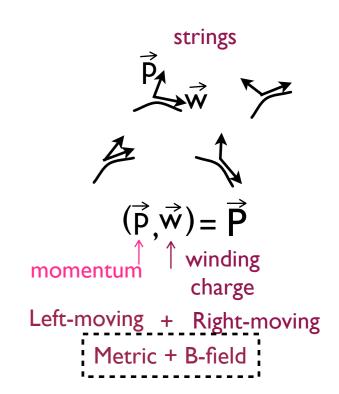


•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$
$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

$$v \in TM \qquad \qquad p \in TM \\ + \lambda \in T^*M \qquad \sim \qquad \overrightarrow{\mathbf{P}} \in T^*M$$

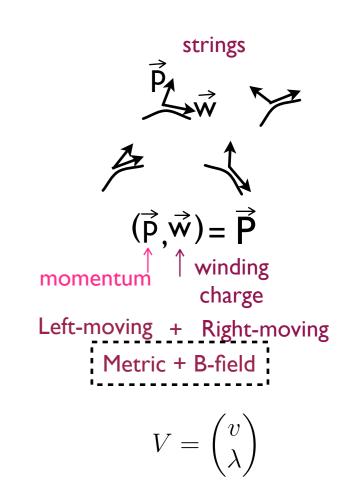
$$V \in TM \oplus T^*M \qquad \sim \qquad \overrightarrow{\mathbf{P}} \in TM \oplus T^*M$$
 generalized Vectors



•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

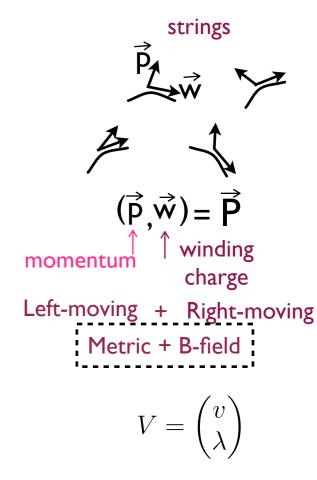


•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

generalized Vectors



Fund of O(10,10)

•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

$$v \in TM \qquad p \in TM \\ + \lambda \in T^*M \qquad \omega \in T^*M$$

$$V \in TM \oplus T^*M \qquad \overrightarrow{\mathbf{P}} \in TM \oplus T^*M$$
 generalized Vectors

strings $\overrightarrow{P}, \overrightarrow{w}) = \overrightarrow{P}$ $(\overrightarrow{P}, \overrightarrow{w})$

Natural inner product

Fund of O(10,10)

•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

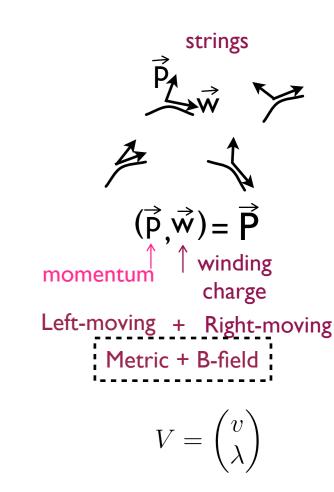
$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

$$V \in TM \oplus T^*M \sim$$

$$V \in TM \oplus T^*M \sim \overrightarrow{\mathbf{P}} \in TM \oplus T^*M$$

Natural inner product
$$V^M \eta_{MN} U^N = v^\mu \xi_\mu + u^\mu \lambda_\mu$$
 $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\begin{array}{ll} \mathbf{V=v+\lambda} \\ \mathbf{U=u+\xi} & M=1,...,20 \end{array}$$



•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

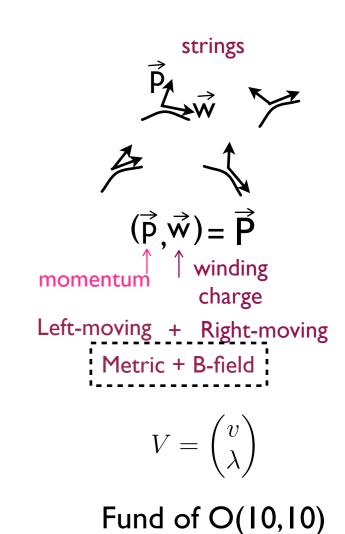
Natural inner product
$$V^M\eta_{MN}\,U^N=v^\mu\xi_\mu+u^\mu\lambda_\mu$$

$$\eta=\left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

$$V=\mathbf{v}+\mathbf{\lambda}$$

$$\mathsf{U}=\mathbf{u}+\mathbf{\xi}$$

$$M=1,...,20$$



$$L_V U = \mathcal{L}_v u + \mathcal{L}_v \xi - \iota_u d\lambda$$
 generalized diffeomorphism generated by V on U

•Symmetries: diffeomorphisms + gauge transformations

$$\delta g = \mathcal{L}_v g$$

$$\delta B = \mathcal{L}_v B + \mathrm{d}\lambda$$

$$V \in TM \oplus T^*M \sim$$

$$V \in TM \oplus T^*M \sim \overrightarrow{\mathbf{P}} \in TM \oplus T^*M$$

Natural inner product
$$V^M\eta_{MN}\,U^N=v^\mu\xi_\mu+u^\mu\lambda_\mu$$

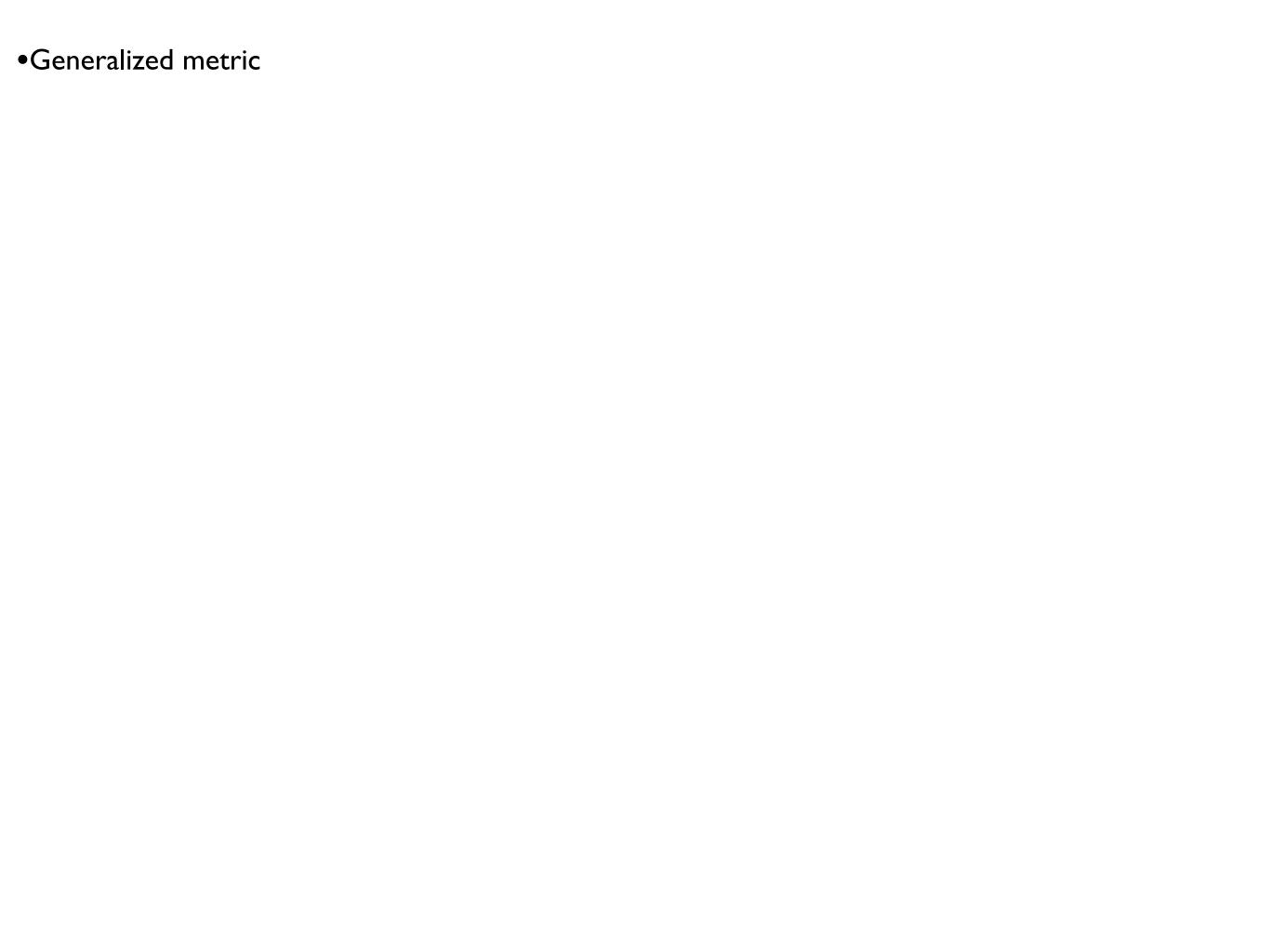
$$\eta=\left(\begin{array}{cc}0&1\\1&0\end{array}\right)$$
 V=v+ λ U=u+ ξ $M=1,...,20$

strings
$$\overrightarrow{P}, \overrightarrow{w}) = \overrightarrow{P}$$

$$(\overrightarrow{P}, \overrightarrow{w})$$

$$L_V U = \mathcal{L}_v u + \mathcal{L}_v \xi - \iota_u d\lambda$$
 generalized diffeomorphism generated by V on U

Algebra : Courant bracket
$$[[U,V]] = \frac{1}{2}(L_UV - L_VU)$$



 $V^M \mathcal{G}_{MN} U^N$

$$\forall = \forall + \lambda$$

$$\mathcal{G} =$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix}$$

$$\bigvee=_{\bigvee}+\lambda$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix}$$

$$V=V+\lambda$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix}$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$V=V+y$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

Projects onto left-moving and right moving

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \mathcal{G}) \qquad P_{\pm} V = \frac{1}{2} \left[(v + \eta \mathcal{G}) \right]$$

$$P_{\pm}V = \frac{1}{2} [(i$$

$$+(\pm gv)$$

Projects onto left-moving and right moving

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} [(v \pm g^{-1}(\lambda)) + (\lambda \pm gv)]$$

$$)) + (\lambda \pm gv)$$

$$\vee = \vee + \lambda$$

Projects onto left-moving and right moving

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G}) \qquad P_{\pm} V = \frac{1}{2} \left[(v \pm g^{-1} (\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1} (\lambda + Bv)) \right] \qquad \forall = \forall + \lambda$$

Projects onto left-moving and right moving

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, If } \mathbf{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} & \mathbb{1} \end{pmatrix}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + N$

 $V=v+\lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, E}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, If } \mathbf{G} = \begin{pmatrix} \mathbf{G} - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

demand torsion-free & metric compatible

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, If } \mathbf{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} & \mathbb{1} \end{pmatrix}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

demand torsion-free & metric compatible

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

demand torsion-free & metric compatible

$$\Gamma_{[MNP]} = 0$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

demand torsion-free & metric compatible

$$\Gamma_{[MNP]} = 0 \qquad \begin{array}{c} \uparrow \\ \text{determines (2,I) + (1,2)} \\ \text{pieces of } \Gamma \text{ in terms of} \\ \partial \mathcal{G} \end{array}$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

demand torsion-free & metric compatible

$$\Gamma_{[MNP]} = 0$$

$$\Gamma_{[MNP]} = 0$$

$$\frac{\uparrow}{\text{determines (2,1) + (1,2)}} \leftarrow (2,1) : 2 \text{ right-moving,}$$

$$\uparrow \text{pieces of } \Gamma \text{ in terms of} \qquad \Gamma \text{ left-moving index}$$

$$\frac{\partial G}{\partial G}$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

demand torsion-free & metric compatible

$$\uparrow \\
\Gamma_{[MNP]} = 0$$

$$\Gamma_{[MNP]} = 0$$

$$\frac{\uparrow}{\text{determines (2,1) + (1,2)}} \leftarrow (2,1) : 2 \text{ right-moving,}$$

$$\downarrow \text{pieces of } \Gamma \text{ in terms of}$$

$$\frac{\partial \mathcal{G}}{\partial \mathcal{G}}$$

$$\frac{\partial \mathcal{G}}{\partial \mathcal{G}}$$

$$\frac{1 \text{ left-moving in }}{\mathcal{C}_{[MNP]}}$$

(2,1) : 2 right-moving, I left-moving index
$$P_{\pm M}{}^Q\,P_{\pm N}{}^R\,P_{\pm P}{}^S\,\Gamma_{OBS}$$

$$V^M \mathcal{G}_{MN} U^N$$

$$\mathcal{G} = \begin{pmatrix} \mathbb{1} & -B \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} = \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix} \qquad \text{Contains g, B}$$

$$P_{\pm} = \frac{1}{2} (\delta \pm \eta \, \mathcal{G})$$

$$P_{\pm}V = \frac{1}{2} \left[(v \pm g^{-1}(\lambda + Bv)) + (\lambda \pm gv \mp Bg^{-1}(\lambda + Bv)) \right]$$
 $\forall = v + \lambda$

Projects onto left-moving and right moving

Can add dilaton

$$\mathcal{G} = (e^{-2\phi}\sqrt{-g})^2 \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}$$

•Connection ∇

$$\nabla_M V^P = \partial_M V^P + \Gamma^P_{MN} V^N$$

demand torsion-free & metric compatible

$$\uparrow
\Gamma_{[MNP]} = 0$$

$$\Gamma_{[MNP]} = 0$$

$$\frac{\uparrow}{\text{determines (2,1) + (1,2)}} \leftarrow (2,1) : 2 \text{ right-moving,}$$

$$\uparrow \text{pieces of } \Gamma \text{ in terms of}$$

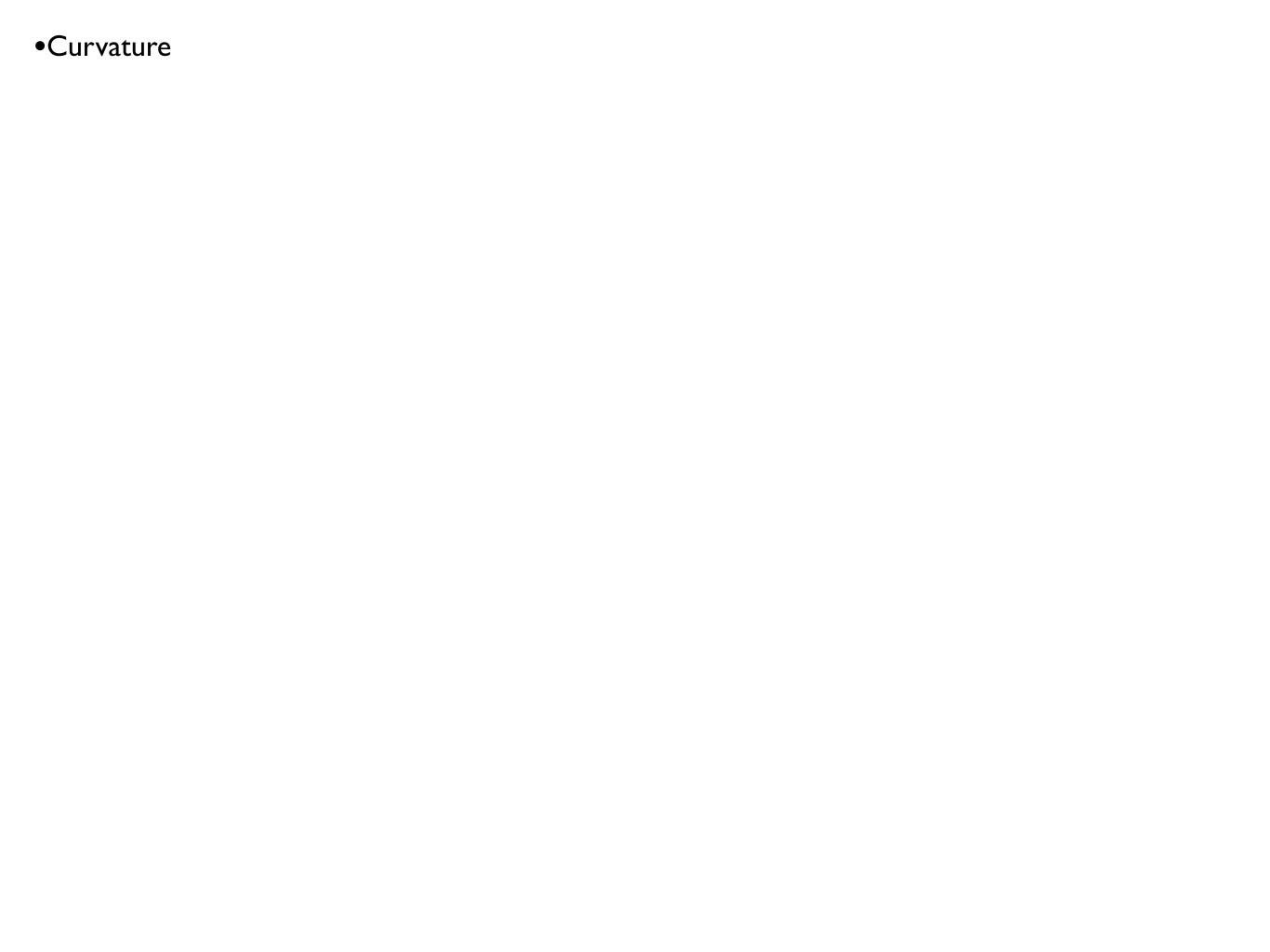
$$\partial \mathcal{G}$$

$$1 \text{ left-moving in}$$

$$P_{\perp M}^{Q} P_{\perp N}^{R} P_{\perp R}^{Q}$$

(2,1) : 2 right-moving, I left-moving index
$$P_{+M}{}^Q\,P_{+N}{}^R\,P_{-P}{}^S\,\Gamma_{QRS}$$

$$\equiv \Gamma_{\underline{MN}\overline{S}}$$



Curvature

$$R_{MNP}^{R} = \partial_{M} \Gamma_{NP}^{R} - \partial_{N} \Gamma_{MP}^{R} + \Gamma_{MQ}^{R} \Gamma_{NP}^{Q} - \Gamma_{NQ}^{R} \Gamma_{MP}^{Q}$$

Curvature

$$R_{MNP}^{R} = \partial_{M} \Gamma_{NP}^{R} - \partial_{N} \Gamma_{MP}^{R} + \Gamma_{MQ}^{R} \Gamma_{NP}^{Q} - \Gamma_{NQ}^{R} \Gamma_{MP}^{Q}$$

not tensorial (under gen. diffeos)

$$R_{MNP}{}^R = \partial_M \Gamma_{NP}^R - \partial_N \Gamma_{MP}^R + \Gamma_{MQ}^R \Gamma_{NP}^Q - \Gamma_{NQ}^R \Gamma_{MP}^Q$$

not tensorial (under gen. diffeos)

Riemann tensor
$$\mathcal{R}_{MNPQ} = R_{MNPQ} + R_{PQMN} + \Gamma_{RMN}\Gamma_{PQ}^{R}$$

$$R_{MNP}^{R} = \partial_{M} \Gamma_{NP}^{R} - \partial_{N} \Gamma_{MP}^{R} + \Gamma_{MQ}^{R} \Gamma_{NP}^{Q} - \Gamma_{NQ}^{R} \Gamma_{MP}^{Q}$$

not tensorial (under gen. diffeos)

Riemann tensor

$$\mathcal{R}_{MNPQ} = R_{MNPQ} + R_{PQMN} + \Gamma_{RMN} \Gamma_{PQ}^{R}$$

tensorial, not uniquely defined

$$R_{MNP}^{R} = \partial_{M} \Gamma_{NP}^{R} - \partial_{N} \Gamma_{MP}^{R} + \Gamma_{MQ}^{R} \Gamma_{NP}^{Q} - \Gamma_{NQ}^{R} \Gamma_{MP}^{Q}$$

not tensorial (under gen. diffeos)

Riemann tensor

$$\mathcal{R}_{MNPQ} = R_{MNPQ} + R_{PQMN} + \Gamma_{RMN} \Gamma_{PQ}^{R}$$

tensorial, not uniquely defined

Ricci tensor

$$\mathcal{R}_{\underline{M}\overline{N}} = \mathcal{R}_{\underline{MK}\overline{N}}^{\underline{K}}$$

$$R_{MNP}^{R} = \partial_{M} \Gamma_{NP}^{R} - \partial_{N} \Gamma_{MP}^{R} + \Gamma_{MQ}^{R} \Gamma_{NP}^{Q} - \Gamma_{NQ}^{R} \Gamma_{MP}^{Q}$$

not tensorial (under gen. diffeos)

Riemann tensor

$$\mathcal{R}_{MNPQ} = R_{MNPQ} + R_{PQMN} + \Gamma_{RMN} \Gamma_{PQ}^{R}$$

tensorial, not uniquely defined

Ricci tensor

$$\mathcal{R}_{\underline{M}\overline{N}}=\mathcal{R}_{\underline{MK}\overline{N}}{}^{\underline{K}}$$

tensorial, uniquely defined

$$R_{MNP}^{R} = \partial_{M} \Gamma_{NP}^{R} - \partial_{N} \Gamma_{MP}^{R} + \Gamma_{MQ}^{R} \Gamma_{NP}^{Q} - \Gamma_{NQ}^{R} \Gamma_{MP}^{Q}$$

not tensorial (under gen. diffeos)

Riemann tensor

$$\mathcal{R}_{MNPQ} = R_{MNPQ} + R_{PQMN} + \Gamma_{RMN}\Gamma_{PQ}^{R}$$

tensorial, not uniquely defined

Ricci tensor

$$\mathcal{R}_{M\overline{N}} = \mathcal{R}_{MK\overline{N}} K$$

tensorial, uniquely defined

Ricci scalar

$$\mathcal{R} = \mathcal{R}^{\underline{MN}}_{\underline{MN}}$$

$$R_{MNP}{}^R = \partial_M \Gamma_{NP}^R - \partial_N \Gamma_{MP}^R + \Gamma_{MQ}^R \Gamma_{NP}^Q - \Gamma_{NQ}^R \Gamma_{MP}^Q$$

not tensorial (under gen. diffeos)

Riemann tensor

$$\mathcal{R}_{MNPQ} = R_{MNPQ} + R_{PQMN} + \Gamma_{RMN} \Gamma_{PQ}^{R}$$

tensorial, not uniquely defined

Ricci tensor

$$\mathcal{R}_{M\overline{N}} = \mathcal{R}_{MK\overline{N}} K$$

tensorial, uniquely defined

Ricci scalar

$$\mathcal{R}=\mathcal{R}^{\underline{MN}}_{\underline{MN}}$$

scalar, uniquely defined

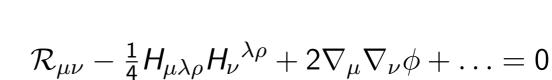
Supergravity

Action
$$S = \int \sqrt{-g} R$$

EOM

$$R_{\mu\nu}=0$$

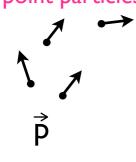
$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \dots \right]$$

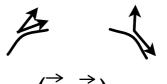


$$abla^{\mu} \left(\mathrm{e}^{-2\phi} H_{\mu\nu\lambda} \right) + \ldots = 0$$

$$\nabla^2 \phi - (\nabla \phi)^2 + \frac{1}{4} \mathcal{R} - \frac{1}{48} H^2 = 0$$

Supergravity





$$(\vec{p}, \vec{w})$$

momentum

Action
$$S = \int \sqrt{-g} R$$

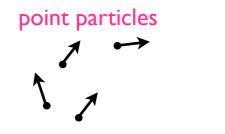
EOM

$$R_{\mu\nu}=0$$

$$\mathcal{R}_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi + \dots = 0$$

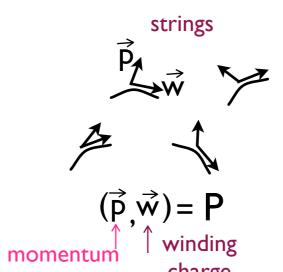
$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) + \dots = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}\mathcal{R} - \frac{1}{48}H^{2} = 0$$



momentum

Supergravity



Left-moving + Right-moving Metric + B-field+dilaton

$$S = \int \sqrt{-g} R$$

 $S = \int \sqrt{-g} T$

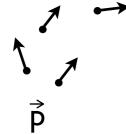
EOM $R_{\mu\nu}=0$

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \dots \right]$$

$$\mathcal{R}_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi + \dots = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) + \dots = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}\mathcal{R} - \frac{1}{48}H^{2} = 0$$



Supergravity

Do pure geometry on a double space

Left-moving + Right-moving Metric + B-field+dilaton

Action

$$S = \int \sqrt{-g} R$$

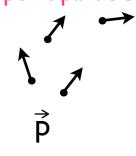
$R_{\mu\nu}=0$ **EOM**

$$S = \int e^{-2\phi} \sqrt{-g} \left[R + 4\nabla_{\mu}\phi \nabla^{\mu}\phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \dots \right]$$

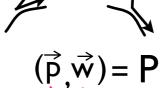
$$\mathcal{R}_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi + \dots = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) + \dots = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}\mathcal{R} - \frac{1}{48}H^{2} = 0$$



Supergravity



Do pure geometry on a double space

Action

$$S = \int \sqrt{-g} R$$

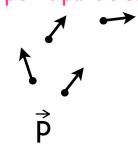
EOM $R_{\mu\nu}=0$

$$S = \int \sqrt{\mathcal{G}}^{1/20} \, \mathcal{R}$$

$$\mathcal{R}_{\mu\nu} - \frac{1}{4}H_{\mu\lambda\rho}H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\phi + \dots = 0$$

$$\nabla^{\mu}\left(e^{-2\phi}H_{\mu\nu\lambda}\right) + \dots = 0$$

$$\nabla^{2}\phi - (\nabla\phi)^{2} + \frac{1}{4}\mathcal{R} - \frac{1}{48}H^{2} = 0$$



Action

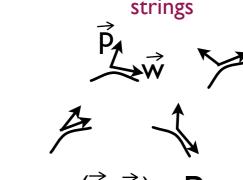
$$S = \int \sqrt{-g} R$$

EOM

$$R_{\mu\nu} = 0$$

Ricci-flat

Supergravity



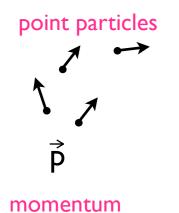
 $(\overrightarrow{p}, \overrightarrow{w}) = P$ momentum \bigsim \text{winding charge}

Do pure geometry on a double space

Left-moving + Right-moving Metric + B-field+dilaton

$$S = \int \sqrt{\mathcal{G}}^{1/20} \mathcal{R}$$

$$\mathcal{R}_{M\overline{N}} = 0$$



Action

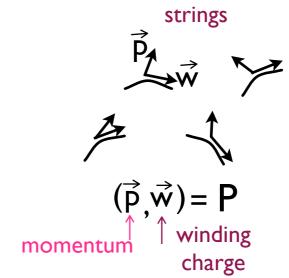
$$S = \int \sqrt{-g} R$$

EOM

$$R_{\mu\nu} = 0$$

Ricci-flat

Supergravity



Do pure geometry on a double space

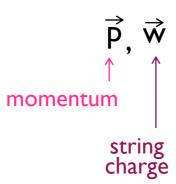
Left-moving + Right-moving Metric + B-field+dilaton

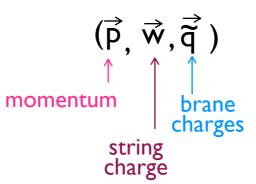
$$S = \int \sqrt{\mathcal{G}}^{1/20} \, \mathcal{R}$$

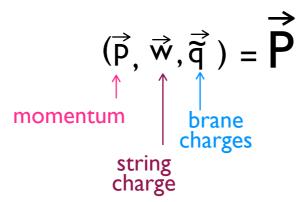
$$\mathcal{R}_{\underline{M}\overline{N}} = 0$$

Generalized Ricci-flat

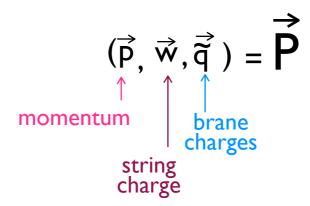
To account for the + ...





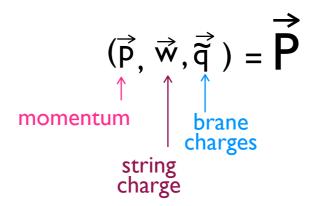


More charges in string theory



Do pure geometry on a larger tangent space

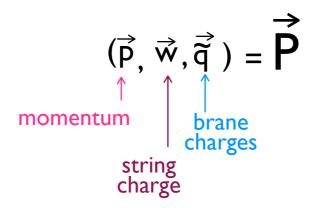
More charges in string theory



Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory

More charges in string theory



Do pure geometry on a larger tangent space

More charges in string theory

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}) = \overrightarrow{P}$$

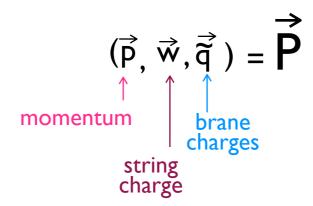
$$\uparrow \qquad \uparrow \qquad \downarrow \\ \text{brane} \\ \text{charges}$$

$$\text{string} \\ \text{charge}$$

Can do it for d≤6

Do pure geometry on a larger tangent space

More charges in string theory

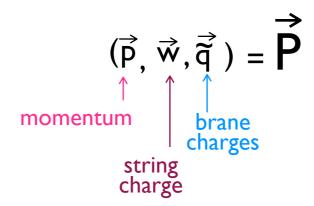


Can do it for d≤6

For d=6:

Do pure geometry on a larger tangent space

More charges in string theory



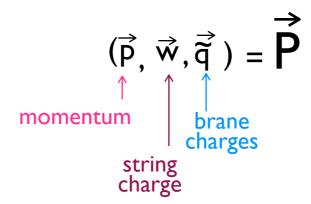
Can do it for d≤6

For d=6:

 \vec{P} , \vec{W}

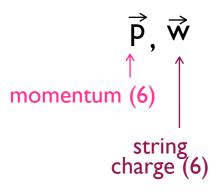
Do pure geometry on a larger tangent space

More charges in string theory



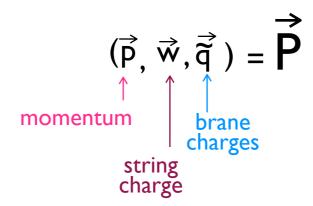
Can do it for d≤6

For d=6:



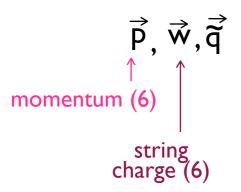
Do pure geometry on a larger tangent space

More charges in string theory



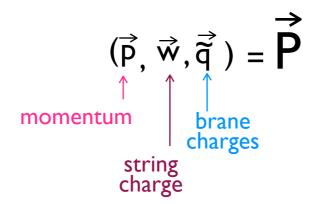
Can do it for d≤6

For d=6:



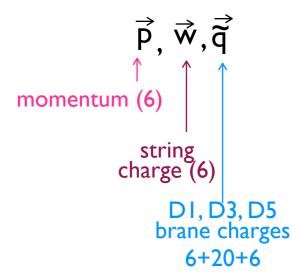
Do pure geometry on a larger tangent space

More charges in string theory



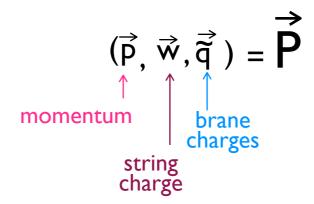
Can do it for d≤6

For d=6:



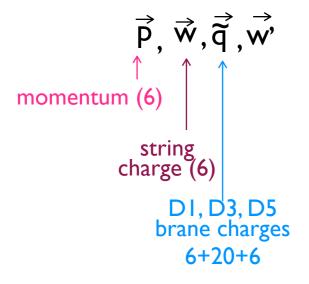
Do pure geometry on a larger tangent space

More charges in string theory



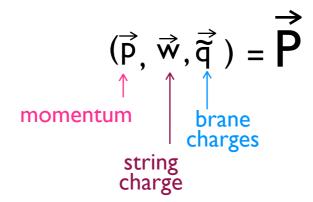
Can do it for d≤6

For d=6:



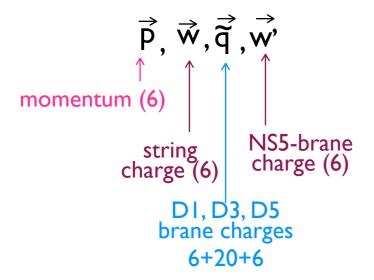
Do pure geometry on a larger tangent space

More charges in string theory



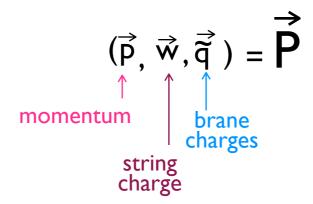
Can do it for d≤6

For d=6:



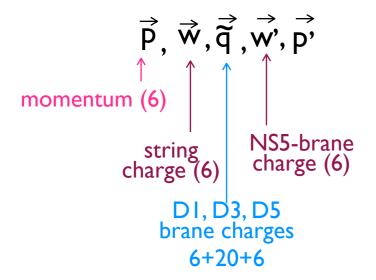
Do pure geometry on a larger tangent space

More charges in string theory



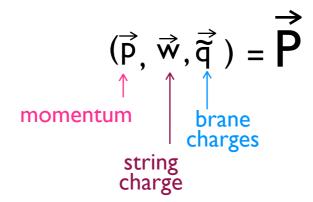
Can do it for d≤6

For d=6:



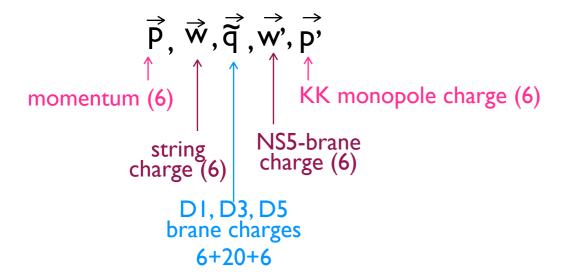
Do pure geometry on a larger tangent space

More charges in string theory



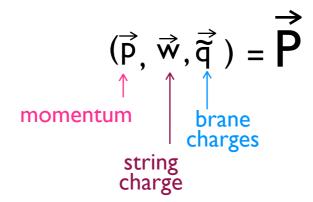
Can do it for d≤6

For d=6:



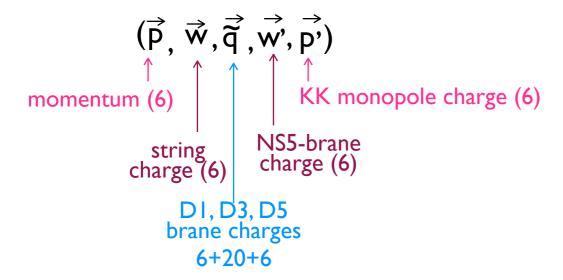
Do pure geometry on a larger tangent space

More charges in string theory



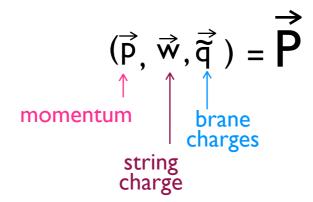
Can do it for d≤6

For d=6:



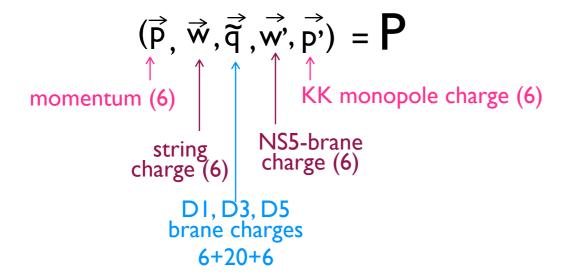
Do pure geometry on a larger tangent space

More charges in string theory



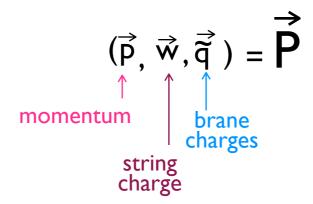
Can do it for d≤6

For d=6:



Do pure geometry on a larger tangent space

More charges in string theory



Can do it for d≤6

For d=6:

$$(\overrightarrow{p}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}, \overrightarrow{w'}, \overrightarrow{p'}) = \overrightarrow{P}$$

momentum (6)

 $(\overrightarrow{p}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}, \overrightarrow{w'}, \overrightarrow{p'}) = \overrightarrow{P}$

KK monopole charge (6)

NS5-brane charge (6)

D1, D3, D5

brane charges

6+20+6

56D space: fund of E7

Do pure geometry on a larger tangent space

More charges in string theory

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}) = \overrightarrow{P}$$

$$\uparrow \qquad \uparrow \qquad \downarrow \\ \text{brane} \\ \text{charges}$$

$$\text{string} \\ \text{charge}$$

Can do it for d≤6

For d=6:

$$(\overrightarrow{p}, \overrightarrow{w}, \overrightarrow{\overline{q}}, \overrightarrow{w'}, \overrightarrow{p'}) = P$$

momentum (6)

String charge (6)

NS5-brane charge (6)

D1, D3, D5

brane charges

6+20+6

56D space: fund of E₇

Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory

Apparently, need ∞-dim. space

Everything works analogously to O(d,d)

More charges in string theory

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}) = \overrightarrow{P}$$

$$\uparrow \qquad \uparrow \qquad \downarrow \\ \text{brane} \\ \text{charges} \\ \text{string} \\ \text{charge}$$

Can do it for d≤6

For d=6:

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\overline{q}}, \overrightarrow{w'}, \overrightarrow{P'}) = P$$

momentum (6)

 $(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\overline{q}}, \overrightarrow{w'}, \overrightarrow{P'}) = P$

KK monopole charge (6)

NS5-brane charge (6)

D1, D3, D5

brane charges

 $(6+20+6)$

56D space: fund of E₇

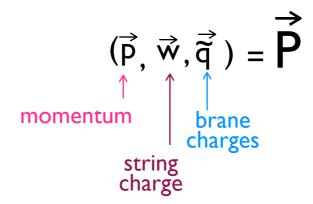
Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory

Apparently, need ∞-dim. space

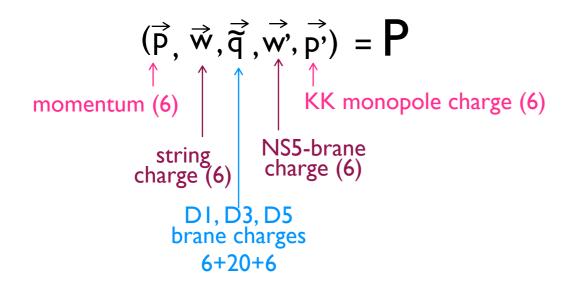
•Metric $\mathcal{G}(g, B, \Phi, C)$

More charges in string theory



Can do it for d≤6

For d=6:



56D space: fund of E₇

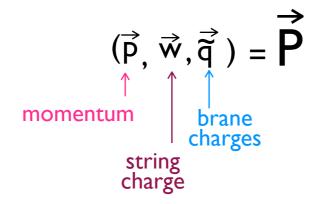
Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory

Apparently, need ∞-dim. space

- •Metric $\mathcal{G}(g, B, \Phi, C)$
- Connection

More charges in string theory



Can do it for d≤6

For d=6:

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}, \overrightarrow{w'}, \overrightarrow{P'}) = P$$

momentum (6)

 $(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}, \overrightarrow{w'}, \overrightarrow{P'}) = P$

KK monopole charge (6)

NS5-brane charge (6)

D1, D3, D5

brane charges

 $(6+20+6)$

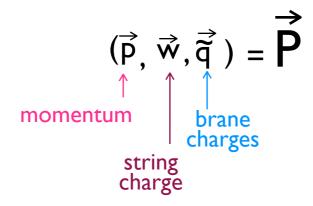
56D space: fund of E₇

Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory
Apparently, need ∞-dim. space

- •Metric $\mathcal{G}(g, B, \Phi, C)$
- Connection
- Curvature

More charges in string theory

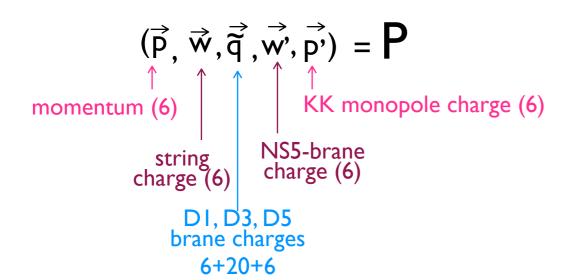


Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory
Apparently, need ∞-dim. space

Can do it for d≤6

For d=6:



56D space: fund of E7

- •Metric $\mathcal{G}(g, B, \Phi, C)$
- Connection
- Curvature
- Action

More charges in string theory

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}) = \overrightarrow{P}$$

$$\uparrow \qquad \uparrow \qquad \downarrow \\ \text{brane} \\ \text{charges}$$

$$\text{string} \\ \text{charge}$$

Can do it for d≤6

For d=6:

$$(\overrightarrow{p}, \overrightarrow{w}, \overrightarrow{q}, \overrightarrow{w'}, \overrightarrow{p'}) = P$$

momentum (6)

 $(\overrightarrow{p}, \overrightarrow{w}, \overrightarrow{q}, \overrightarrow{w'}, \overrightarrow{p'}) = P$

KK monopole charge (6)

NS5-brane charge (6)

D1, D3, D5

brane charges

 $(\overrightarrow{p}, \overrightarrow{w'}, \overrightarrow{p'}) = P$

56D space: fund of E₇

Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory

Apparently, need ∞-dim. space

- •Metric $\mathcal{G}(g, B, \Phi, C)$
- Connection
- Curvature
- Action
- Equations of motion : generalized Ricci-flat

More charges in string theory

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\widetilde{q}}) = \overrightarrow{P}$$

$$\uparrow \qquad \uparrow \qquad \downarrow \text{brane charges}$$

$$string \qquad charge$$

Can do it for d≤6

For d=6:

$$(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\overline{q}}, \overrightarrow{w'}, \overrightarrow{P'}) = P$$

momentum (6)

 $(\overrightarrow{P}, \overrightarrow{w}, \overrightarrow{\overline{q}}, \overrightarrow{w'}, \overrightarrow{P'}) = P$

KK monopole charge (6)

NS5-brane charge (6)

D1, D3, D5

brane charges

 $(6+20+6)$

56D space: fund of E7

Do pure geometry on a larger tangent space

Cannot do it (yet) for the full 10D theory
Apparently, need ∞-dim. space

- •Metric $\mathcal{G}(g, B, \Phi, C)$
- Connection
- Curvature
- Action
- Equations of motion : generalized Ricci-flat (include RR fields)

Generalized geometry - doubled tangent space

Hitchin 2001

Generalized geometry → doubled tangent space
single (10D) space (coordinates)

Generalized geometry → doubled tangent space
single (10D) space (coordinates)

Doubled geometry

Hull et al 2006

Generalized geometry → doubled tangent space
single (10D) space (coordinates)

Doubled geometry — doubled space Hull et al 2006

Generalized geometry \rightarrow doubled tangent space single (10D) space (coordinates)

Doubled geometry \rightarrow doubled space coordinates dual to momentum (x) & winding (\tilde{x})

Generalized geometry \longrightarrow doubled tangent space single (10D) space (coordinates)

Doubled geometry \longrightarrow doubled space coordinates dual to momentum (x) & winding (\tilde{x}) ∂_{μ}

Generalized geometry \rightarrow doubled tangent space single (10D) space (coordinates)

Doubled geometry \rightarrow doubled space coordinates dual to momentum (x) & winding (\tilde{x}) $\partial_{\mu} \rightarrow \partial_{M}$

Generalized geometry \longrightarrow doubled tangent space single (10D) space (coordinates)

Doubled geometry \longrightarrow doubled space coordinates dual to momentum (x) & winding (\tilde{x}) $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint

Generalized geometry → doubled tangent space
single (10D) space (coordinates)

Doubled geometry \rightarrow doubled space coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

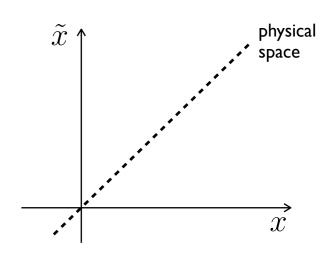
Generalized geometry - doubled tangent space single (IOD) space (coordinates)

Hitchin 2001

Hull et al 2006

Doubled geometry — doubled space coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$



Generalized geometry - doubled tangent space single (10D) space (coordinates)

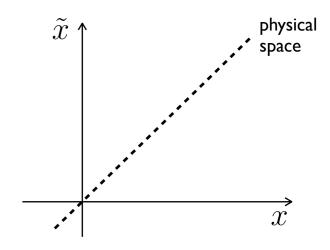
Hitchin 2001

Hull et al 2006

Doubled geometry

 \rightarrow doubled space coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Hull et al 2006

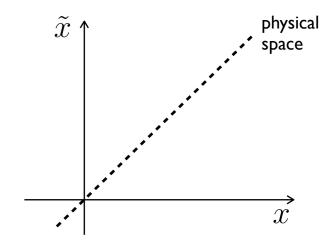
Doubled geometry

 \rightarrow doubled space coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

Physical space can vary as we move around

 \tilde{x}



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Doubled geometry

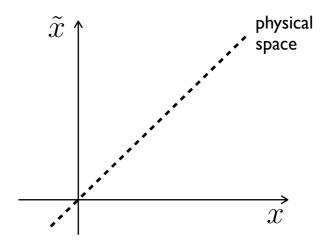
doubled space

Hull et al 2006

coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \partial^M = 0$$



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Hull et al 2006

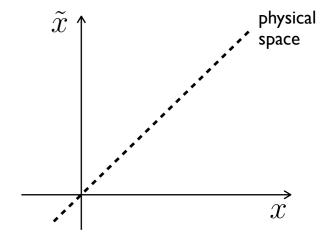
Doubled geometry — doubled space

coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \, \partial^M = 0$$

$$\overrightarrow{P} \longleftrightarrow \overrightarrow{w}$$



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

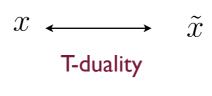
Hull et al 2006

Doubled geometry — doubled space

coordinates dual to momentum (x) & winding (\tilde{x})

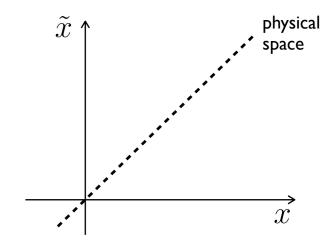
 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \partial^M = 0$$



$$\vec{P} \longleftrightarrow \vec{v}$$

$$E = \frac{n}{R}$$



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Hull et al 2006

Doubled geometry — doubled space

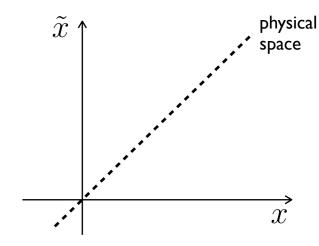
coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \partial^M = 0$$

$$\vec{P} \longleftrightarrow \vec{v}$$

$$E = \frac{n}{R} \qquad E = m\tilde{R}$$



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Hull et al 2006

Doubled geometry — doubled space

coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

Physical space can vary as we move around

$$\overrightarrow{P} \longleftrightarrow \overrightarrow{v}$$

$$E = \frac{n}{R} \qquad E = m\tilde{R}$$

n

Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Hull et al 2006

Doubled geometry — doubled space

coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \partial^M = 0$$

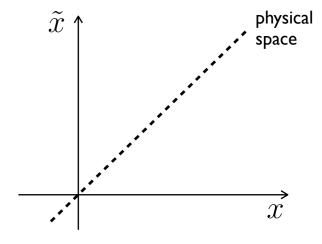
Physical space can vary as we move around

$$\overrightarrow{P} \longleftrightarrow \overrightarrow{v}$$

$$E = \frac{n}{R} \qquad E = m\tilde{R}$$

n

m.



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Hull et al 2006

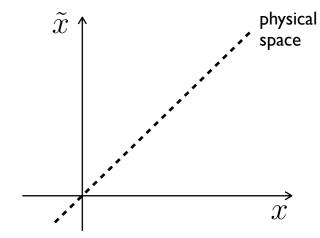
Doubled geometry — doubled space

coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\overrightarrow{P} \longleftrightarrow \overrightarrow{v}$$

$$E = \frac{n}{R}$$
 $E = m\tilde{R}$ m .



Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

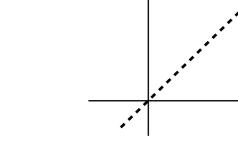
Hull et al 2006

Doubled geometry — doubled space

coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \partial^M = 0$$



$$\begin{array}{ccc} x & & & \tilde{x} \\ & & & \tilde{x} \end{array}$$

$$\overrightarrow{P} \longleftrightarrow \overrightarrow{v}$$

$$E = \frac{n}{R}$$
 $E = m\tilde{R}$ $m., \frac{1}{R}$

Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Doubled geometry — doubled space

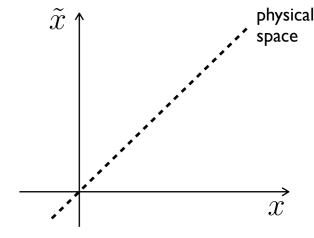
Hull et al 2006

coordinates dual to momentum (x) & winding (\tilde{x})

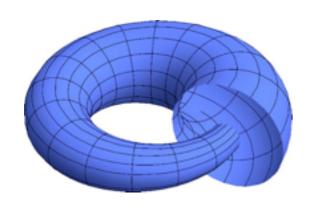
$$\partial_{\mu} \rightarrow \partial_{M}$$
 subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \, \partial^M = 0$$

Physical space can vary as we move around



physical space



$$x \longleftrightarrow \tilde{x}$$
 T-duality

$$\overrightarrow{P} \longleftrightarrow \overrightarrow{w}$$

$$E = \frac{n}{R}$$
 $E = m\tilde{R}$ $m, \frac{1}{R}$

Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

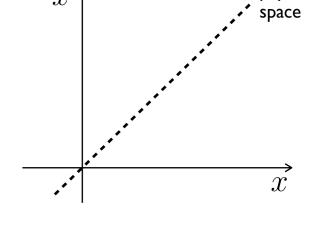
Hull et al 2006

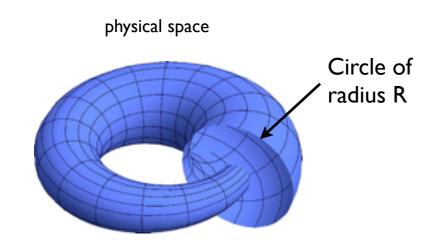
Doubled geometry — doubled space

coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \partial^M = 0$$





$$x \longleftrightarrow \tilde{x}$$
 T-duality

$$\overrightarrow{P} \longleftrightarrow \overrightarrow{w}$$

$$E = \frac{n}{R}$$
 $E = m\tilde{R}$ $m, \frac{1}{R}$

Generalized geometry - doubled tangent space single (10D) space (coordinates)

Circle of

radius I/R

Hitchin 2001

Doubled geometry — doubled space

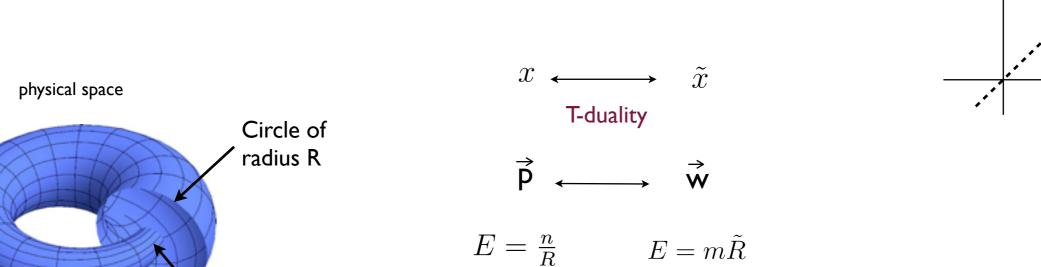
Hull et al 2006

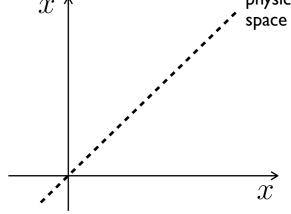
coordinates dual to momentum (x) & winding (\tilde{x})

n,R $m,\frac{1}{R}$

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \, \partial^M = 0$$





Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Doubled geometry — doubled space

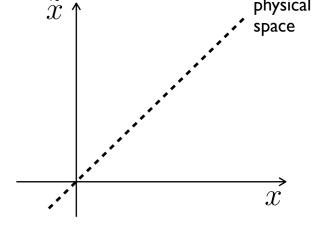
Hull et al 2006

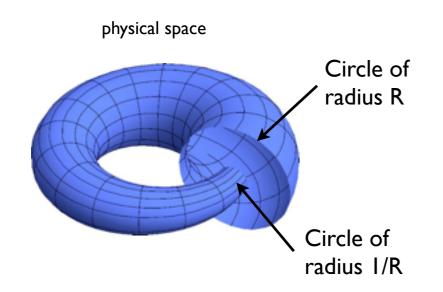
coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \, \partial^M = 0$$

Physical space can vary as we move around





$$\overrightarrow{P} \longleftrightarrow \overrightarrow{w}$$
 $E = \frac{n}{R}$
 $E = m\tilde{R}$
 m, R
 $m, \frac{1}{R}$

 $x \longleftrightarrow \tilde{x}$

T-duality

Non-geometric background

Generalized geometry - doubled tangent space single (10D) space (coordinates)

Hitchin 2001

Hull et al 2006

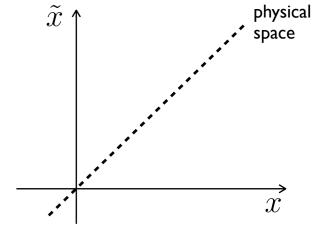
Doubled geometry — doubled space

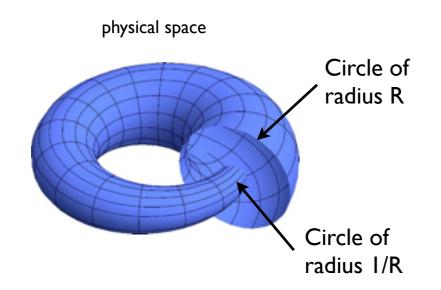
coordinates dual to momentum (x) & winding (\tilde{x})

 $\partial_{\mu} \rightarrow \partial_{M}$ subject to constraint $\partial_{M} \partial^{M} = 0$

$$\partial_M \partial^M = 0$$

Physical space can vary as we move around





$$\overrightarrow{P} \longleftrightarrow \overrightarrow{w}$$
 $E = \frac{n}{R}$
 $E = m\tilde{R}$
 m, R
 $m, \frac{1}{R}$

 $x \longleftrightarrow \tilde{x}$

T-duality

Non-geometric background **T-fold**

```
gravity
=
geometry
```

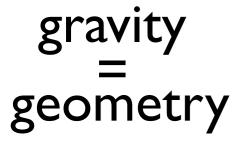
gravity = geometry

$$R_{\mu\nu} = 0$$

gravity = geometry

$$R_{\mu\nu} = 0$$

2-torus Ricci-flat 2d

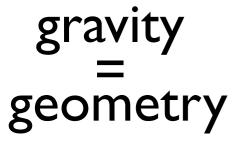


supergravity

$$R_{\mu\nu} = 0$$

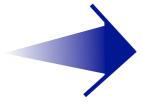
2-torus

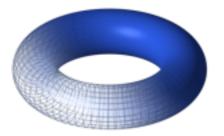
Ricci-flat 2d



supergravity

$$R_{\mu\nu} = 0$$





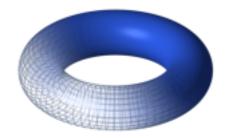
2-torus

Ricci-flat 2d

2-torus + B-field

supergravity =

$$R_{\mu\nu} = 0$$

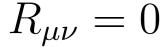


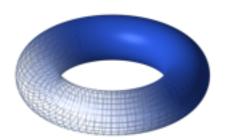
2-torus Ricci-flat 2d

2-torus + B-field

supergravity =

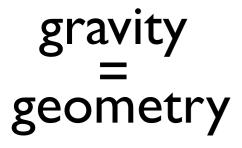
$$\mathcal{R}_{MN} = 0$$

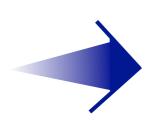




2-torus Ricci-flat 2d

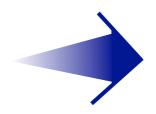
2-torus + B-field

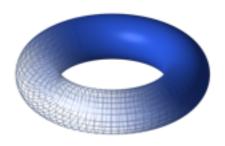




supergravity =

$$R_{\mu\nu} = 0$$



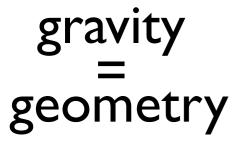




2-torus Ricci-flat 2d

2-torus + B-field

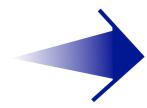
Ricci-flat 4d



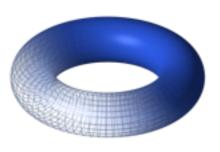
supergravity =

generalized geometry

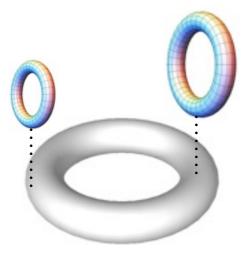
$$R_{\mu\nu} = 0$$



2-torus Ricci-flat 2d

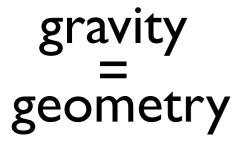


2-torus + B-field



 $\mathcal{R}_{MN} = 0$

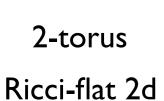
Ricci-flat 4d

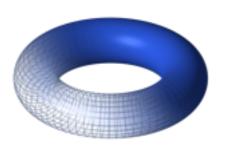


supergravity =

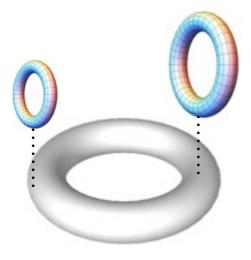
generalized geometry

$$R_{\mu\nu} = 0$$



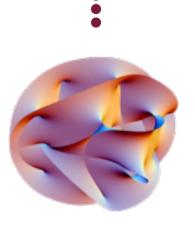


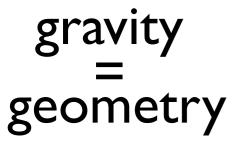
2-torus + B-field



 $\mathcal{R}_{MN} = 0$

Ricci-flat 4d



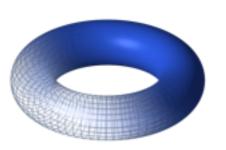


supergravity :

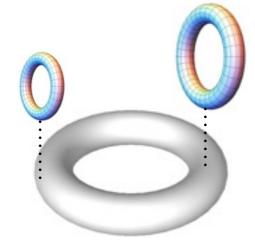
generalized geometry

$$R_{\mu\nu} = 0$$

2-torus Ricci-flat 2d



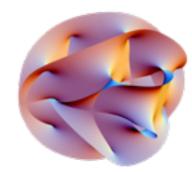
2-torus + B-field

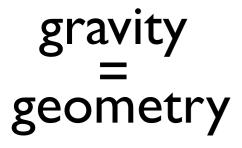


 $\mathcal{R}_{MN}=0$

Ricci-flat 4d

beyond supergravity or geometry...



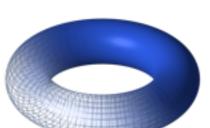




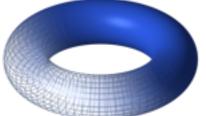
supergravity

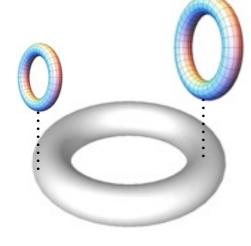
generalized geometry

$$R_{\mu\nu} = 0$$



 $\mathcal{R}_{MN}=0$





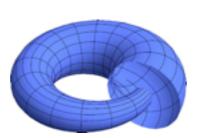
2-torus

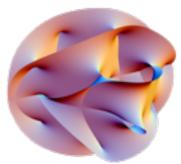
Ricci-flat 2d

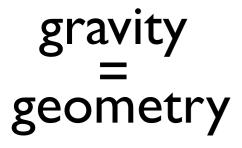
2-torus + B-field

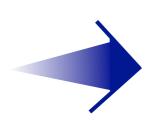
Ricci-flat 4d

beyond supergravity or geometry...



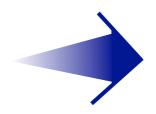


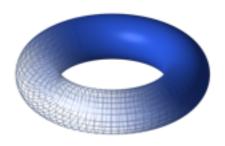




supergravity =

$$R_{\mu\nu} = 0$$



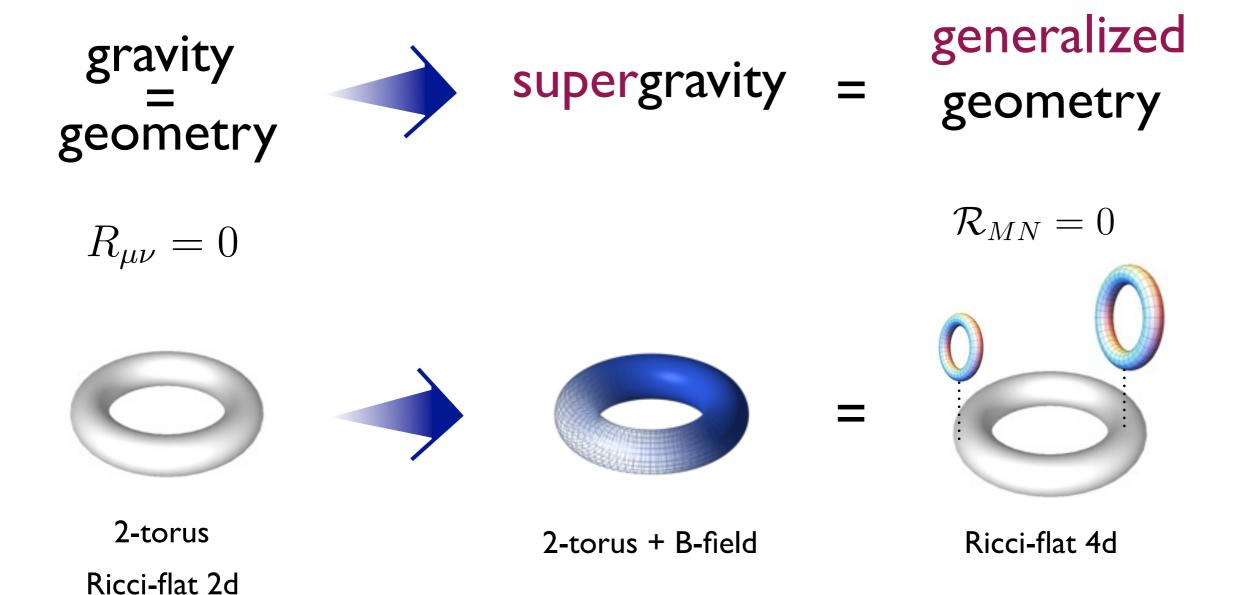




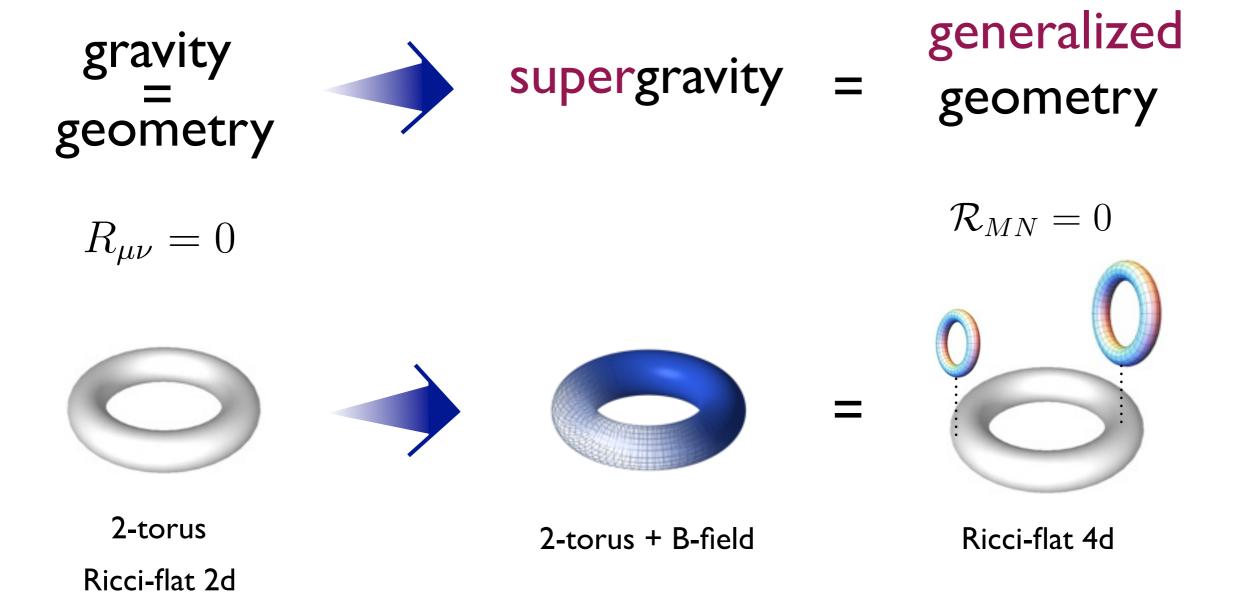
2-torus Ricci-flat 2d

2-torus + B-field

Ricci-flat 4d



Purely geometrical description of supergravity



- Purely geometrical description of supergravity
- Purely geometrical description of string theory?