

SUMMARY OF HIGGS-BOSON PROPERTY MEASUREMENTS AT CMS

ROBERTO COVARELLI (UNIV. OF ROCHESTER) ON BEHALF OF THE CMS COLLABORATION

- Higgs analyses and their combination
- Mass and width
- σ/σ_{SM} and p_T distribution
- Couplings to SM particles
- Spin hypotheses

XXI INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND UNIFICATION OF FUNDAMENTAL INTERACTIONS TRIESTE, 25-31 AUGUST 2013

HIGGS ANALYSES IN CMS

Lot of progress since discovery in July 2012

Searches target different production modes, either by means of separate studies or event categorization

- Selection of best-purity events (becomes necessary for high-background modes like bb, ττ, invisible)
- Measurement of couplings to fermions/vector bosons

INPUTS FOR COMBINATION

Input channels and their analysis categories (red = not yet included in combination ^[1], purple = updated afterwards)

- Z*Z^(*) → 2|2|' ^[2]
 - N_{jets} ≥ 2 (targeting VBF) or < 2 (using p_T(H) to discriminate ggF from other production modes)
- $W^*W^{(*)} \rightarrow 2|2v|^{[3]}$

(obs. significance = 3.9σ)

(obs. significance = 6.7σ)

- Same-flavor or different-flavor leptons, N_{jets} = 0, 1 or 2 (targeting VBF)
- -3I3v for WH tagging
- bb ^[4]

(obs. significance = 2.1σ)

- Boosted VH tag: additional ev, $\mu\nu$, ee, $\mu\mu$, $\nu\nu$ with 2 b-jets, split in low/high $p_T(V)$
- ttH tag: lepton + n jets (n > 3), of which m b-tagged jets (m > 2) or dilepton with q b-tagged jets (q > 1)
- $\gamma\gamma$ ^[5] (obs. significance = 3.2σ)
 - $N_{jets} = 2$ for VBF category, VH tag with an extra e or μ or $E_{T,miss}$, or ttH tag
 - Untagged events in 4 di-photon resolution/purity categories
- ττ ^[6]

(obs. significance = 2.8σ)

- N_{jets} = 2 for VBF category or ttH tag
- Untagged only if at least one τ decays leptonically, at least 1-jet tag if fully hadronic
- Split in low/high $p_T(\tau\tau)$

HIGGS MASS

Uses only ZZ* and $\gamma\gamma$ (mass resolution = 1-2%) Cross sections of H \rightarrow ZZ*, gg \rightarrow H $\rightarrow \gamma\gamma$, and VBF/ VH H $\rightarrow \gamma\gamma$ free in the fit

• Good agreement with result where all cross sections fixed

Good compatibility between the two channels

SM expectations of all quantities which follow are computed at the fitted mass

m_x = 125.7 ± 0.3 (stat.) ± 0.3 (syst.) GeV

Limit on boson width using H $\rightarrow \gamma\gamma^{[7]}$: $\Gamma < 6.9 \text{ GeV @95% C.L.}$

HIGGS CROSS SECTION

HIGGS P_T DISTRIBUTION

Using the ZZ* channel ^[2] Compared with theoretical expectations

- VBF: NLO prediction (POWHEG)
- VH: LO predictions (Pythia6) reweighted to NLO
- ggF: NLO prediction (POWHEG) tuned to NNLO+NNLL spectrum and including top- and bottom quark mass effects

Good agreement, more data will allow measurement of differential cross-section

Events in 121.5 < m₄I < 130.5 GeV

TESTS OF HIGGS COUPLINGS

Compute all ($\sigma \cdot BR$)'s, scaling the SM Higgs couplings with free factors $\kappa = c/c_{SM}$

- Most σ 's and Γ 's depend on corresponding κ^2 (i.e. insensitive to relative signs) but not all, e.g. interference between loops of t and W in H $\rightarrow \gamma\gamma$ Two scenarios considered
 - Sum of BR's constrained to SM ($\Gamma_{tot} = \Sigma_i \Gamma_{SM,i}$)
- Allowing for BSM decays ($\Gamma_{tot} = \Sigma_i \Gamma_{SM,i} + \Gamma_{BSM}$)

If ĸ for every fermion and boson left independently free, **limited constraining power** with current Higgs data → consider "**reasonable**" BSM

hypotheses

- e.g. test of "custodial symmetry"
 - Use ZZ* and WW* data
 - fermions couplings fixed to SM

FERMIONS AND BOSONS

Consider common scale factors for all fermions and all bosons (κ_V , κ_f)

Most important inputs: relative abundance of Higgs production in VBF/VH tagged modes vs. ttH and untagged SM within the 68% confidence level

 $\kappa_{\rm V}$ in [0.74, 1.06] @ 95% C.L.

 κ_{f} in [0.61, 1.33] @ 95% C.L.

"Fermiophobic Higgs" hypothesis excluded

OTHER SCENARIOS

Ratio between couplings to up and down-type quarks, $\lambda_{du} = \kappa_d / \kappa_u$, left free (common to all generations, e.g. in MSSM)

Ratio between couplings to leptons and quarks, $\lambda_{lq} = \kappa_l / \kappa_q$, left free (common to all generations, e.g. in general 2HDMs)

 κ_g and κ_γ left free (without resolving the loops, sensitive to presence of NP particles in them)

6 free coefficients (κ_V , common to W and Z, κ_{γ} , κ_g and $\kappa_I \kappa_u$, κ_d common to the 3 generations)

BSM DECAYS

Constrained indirectly using all observed modes (profiling κ_{v} and κ_{g})

Directly, searching for "invisible" decay modes ^[8]

• ZH, $H \rightarrow invisible$,

VBF, H → invisible
See S. Dasu's talk tomorrow

SPIN: 0⁺ VS. 0⁻

Using the ZZ* channel ^[2] Likelihood discriminant based on the LO decay matrix elements expected for scalar and pseudoscalar boson

• Variables: 2 di-lepton invariant masses + 5 decay angles in different rest frames

$$D_{J^P} = \left[1 + \frac{P(\boldsymbol{\Omega}, m_{ll}, m_{l'l'} | J^P)}{P(\boldsymbol{\Omega}, m_{ll}, m_{l'l'} | 0^+)}\right]^{-1}$$

Confidence level estimated via pseudo-experiments with templates from simulation

- Fully compatible with SM hypothesis
- 0- hypothesis excluded at 3.3σ level
- Other "exotic" hypotheses tested (0⁺_h, 1⁻, 1⁺), most ruled out at $\geq 3\sigma$

SPIN: 0⁺ VS. 2⁺

Performed in the ZZ* analysis with an analogous technique but also in WW* and yy ^[7] (using the cos0* angle only) Not a single matrix element, depends on (unknown) spin-2 particle couplings. A few hypotheses chosen:

- Production 100% from gg or 100% from qq, or mixed
- "Minimal" couplings to SM fields (e.g. RS graviton)

que		
y)	-0.5 -10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.9 1 Ιcos(θ*)Ι
	Source	$\chi^2 p$ -value
NT,	Data vs. 0 ⁺	0.68
in_2	Data vs. 2_m^+ (100% gg)	0.91
	Data vs. 2_m^+ (100% $q\bar{q}$)	0.51
	Data vs. 2_m^+ (50% gg, 50% qq)	0.81
	-	

3.5[,] %

1.5

CMS Preliminary

 $\begin{array}{l} X \! \to \! \gamma \gamma \ 0^* \\ X \! \to \! \gamma \gamma \ 2_m^*(100\% gg) \\ X \! \to \! \gamma \gamma \ 2_m^*(100\% qq) \\ X \! \to \! \gamma \gamma \ 2_m^*(50\% gg, 50\% qq) \\ Observed \end{array}$

\s = 8 TeV, L = 19.6 fb⁻¹

	$ZZ\to 4\ell$	$WW \to \ell \nu \ell \nu$	Combined	
$P(q \le q^{\text{obs.}} \mid 0^+)$	-0.90σ	0.44σ	-0.34σ	•
$P(q \ge q^{\text{obs.}} \mid 2_{\text{m}}^{+}(\text{gg}))$	2.81σ	1.32σ	2.84σ	
$1 - CL_s^{obs.}$	98.6%	86.0%	99.4%	

CONCLUSIONS

Combining the 5 main Higgs search modes ($Z^*Z^{(*)} \rightarrow 2|2|'$, W*W^(*) $\rightarrow 2|2v, \gamma\gamma, \tau\tau, bb$) with full statistics (~5 fb⁻¹ at 7 TeV and ~19 fb⁻¹ at 8 TeV) CMS performed a wide range of property measurements of the newly discovered boson

- Mass measurement with 0.3% total uncertainty
- Excluded broad resonance with $\Gamma > 6.9$ GeV
- Found total cross-sections compatible with SM Higgs boson within uncertainties ($\sigma/\sigma_{SM} = 0.80 \pm 0.14$)
- Separation using tagging of production modes allowed quite precise measurement of couplings
 - No significant deviations from SM observed, uncertainties vary from ~30% to 50-400% depending on the BSM scenario considered
- SM spin-parity has been tested against several alternative hypotheses
 - 0^{-} disfavored at 3.3σ
 - 2^+ disfavored at 2.8σ assuming 100% gg production

REFERENCES

All to be found in: https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsHIG

 [1] The CMS Collaboration, CMS-PAS-HIG-13-005 (2013)
[2] The CMS Collaboration, CMS-PAS-HIG-13-003 (2013)
[3] The CMS Collaboration, CMS-PAS-HIG-13-002 (2013)
[4] The CMS Collaboration, CMS-PAS-HIG-12-044 (2012) updated, *ibid*. CMS-PAS-HIG-12-044 (2012)
[5] The CMS Collaboration, CMS-PAS-HIG-13-012 (2013)
[6] The CMS Collaboration, CMS-PAS-HIG-13-004 (2013)
[7] The CMS Collaboration, CMS-PAS-HIG-13-016 (2013)
[8] The CMS Collaboration, CMS-PAS-HIG-13-018 (2013)

μ**V**, μ**F**

EXCLUSION LIMITS FOR 2ND RESONANCE

Somewhere else in the $\gamma\gamma$ mass spectrum

Degenerate with 1^{st} resonance (fraction x of 2^{nd} resonance, mass difference Δm)

SPIN-0-TO-2 SEPARATION AS A FUNCTION

