INFN

Combination of the Higgs Boson Properties Measurements using the ATLAS detector

Andrea Gabrielli on behalf of the ATLAS Collaboration

SUSY 2013, 26-31 August 2013 (Trieste)

July 2012

4th July 2012, ATLAS [1] and CMS [2] collaborations announced the observation of a new particle. [1] Phys. Lett. B 716 (2012) 1–29, [2] Phys. Lett. B 716 (2012) 30–61.

Started the "era of the measurement of the Higgs boson properties": TWO NEW PAPERS: arXiv:1307.1427 [hep-ph] http://arxiv.org/pdf/1307.1427v1 arXiv:1207 1422 [hep-ph] http://arxiv.org/pdf/1207 1422v1

Outline

The following results are reported:

- ✓ Higgs mass;
- ✓ Signal strength;
- ✓ Couplings fit;
- ✓ J^P analyses.

Higgs @ LHC

SM Higgs Branching Ratio

Main standard Model Higgs decays:

Expected events per fb⁻¹, BEFORE the selection:

	125	300
γγ	53	-
ZZ	2.9	5.6
WW	59	32
ττ	1500	-
bb Only VH	600 Only VH	-

Higgs mass

Taking all systematics into account, the compatibility of the two masses is estimated to be at the 2.4 σ level. The main sources of systematic uncertainty are the photon and lepton energy and momentum scales

A. Gabrielli - INFN - Università di Roma

"Sapienza"

Signal strength

 Measure the ratio μ between the observed rate and the SM expectation for σ x BR (the comb. of γγ+ZZ+WW is reported):

$$\mu = 1.33 \stackrel{+0.21}{_{-0.18}}$$

- Result consistent with μ=1 (SM);
- Fermionic and "rare" channels to be added (Preliminary results).
- Preliminary combination with fermionic channel:

$$\mu = 1.23 \pm 0.18$$

Higgs couplings

The framework makes the following assumptions:

- Only modifications of couplings strengths, i.e. of absolute values of couplings, are taken into account: the observed state is assumed to be a CP-even scalar.
- The signals observed in the different search channels originate from a single narrow resonance;
- The width of the Higgs boson with a mass of 125.5 GeV is assumed to be negligible compare to detector resolution.

Strategy:

Choose a model: More accurate with higher order corrections and external constraints and test small deviations from the SM predictions.

e.g. κ_V - κ_F :

$$(g_F = \kappa_F \sqrt{2}m_F / v, g_V = \kappa_V 2 m_V^2 / v)$$

Following prescriptions of LHC Higgs Cross-section Light Mass Subgroup.

A. Gabrielli - INFN - Università di Roma "Sapienza"

Couplings

26/08/2013

"Sapienza"

Couplings

Ratio of couplings to the W and Z bosons. Custodial symmetry imposes the SM coupling ratio between the W and Z Higgs couplings. Results form the ratio of the couplings are reported.

$$\lambda_{WZ} = \kappa_W / \kappa_Z \in [0.61, 1.04] @ 68\% C.L$$

Кg ATLAS + SM 2.2 × Best fit $\sqrt{s} = 7 \text{ TeV} \int Ldt = 4.6-4.8 \text{ fb}^{-1}$ 2 -68% CL $\sqrt{s} = 8 \text{ TeV} \int Ldt = 20.7 \text{ fb}^{-1}$ --- 95% CL 1.8 Combined $H \rightarrow \gamma \gamma$, ZZ*, WW* 1.6 1.4 1.2 Х 1 0.8 0.6 0.9 1.2 1.3 0.8 1.1 1.4 1.5 1.6 17 κ,

Loop structure.

The potential new particles contributing to the H $\rightarrow \gamma\gamma$ and gg \rightarrow H loops, may or may not contribute to the total width of the observed state from direct invisible decays.

arXiv:1307.1427 [hep-ph]

A. Gabrielli - INFN - Università di Roma "Sapienza"

26/08/2013

9

Couplings

Summary of couplings fit:

- results consistent with a SM Higgs boson;
- κ_v constrained at ±10% level
- Couplings to fermions indirectly observed;
- κ_w/κ_z found to be consistent with one;
- No evidence for significant anomalous contributions to the gg → H and H → γγ loops;
- fermion and "rare (μμ, Zγ)" Higgs channels to be added.

Spin

The production and decay of the $J^P = 0^-$ resonance, as well as of the spin-1 and spin-2 resonances with both even and odd parities are modelled using the JHU generator @ LO

- 0⁻ : ZZ only. Pseudoscalar particle, no CP mixing;
- 1[±]: ZZ and WW. The Landau–Yang theorem forbids the direct decay of an on–shell spin-1 particle into a pair of photons;
- 2⁺: graviton–inspired tensor with minimal couplings to SM particles. The results are quoted as function of the fraction of qq production mode.

H \rightarrow γγ: Spin extracted using $|cos\vartheta^*|$, (of the photons with respect to the *z*-axis) distribution in Collins-Soper frame;

 $H \rightarrow ZZ^* \rightarrow 4I$:Multivariate discriminant based on a Boosted Decision Tree (BDT)is used to distinguish between pairs of spin and parity hypothesis
(five angles and two Z masses);

The analysis is restricted to events containing two leptons of different flavors;

A BDT algorithm is used to distinguish between the spin hypotheses $(m_{\parallel}, \Delta \varphi_{\parallel}, p_T^{\parallel}, m_T)$;

 $H \rightarrow WW^{(*)} \rightarrow |v|v$:

Spin

arXiv:1307.1432 [hep-ph]

A. Gabrielli - INFN - Università di Roma

"Sapienza"

Conclusions

- Excellent performance of LHC and of the ATLAS detector allowed to measure properties of new boson discovered last year;
- ✓ H-> $\gamma\gamma$ and H->4l are able to claim the discovery by themselves;
- All properties, spin and couplings, measured until now are consistent with a SM Higgs:
 - Mass measured to be approximately 125.5 GeV;
 - Spin-1 and spin-2 hypotheses excluded at >95% CL;
 - CP-odd hypotheses excluded at approximately 2 σ;
 - Couplings to fermions, vector bosons, and through loops are compatible with SM expectations.