

Higgs characterisation - beyond leading order

Kentarou Mawatari

(Vrije Universiteit Brussel and International Solvay Institutes)

[arXiv: 1306.6464]

The FeynRules and MadGraph5 framework

<u>FeynRules model</u> P. de Aquino, K. Mawatari (Vrije U. Brussel)

<u>aMC@NLO</u>

F. Demartin, F. Maltoni, M. Zaro (UC Louvain) R. Frederix, S. Frixione (CERN) P.Torrielli (Zurich) <u>MadWeight</u> P.Artoisenet (Nikhef)

spin2 in aMC@NLO

M.K. Mandal (Harish-Chandra) P. Mathews, S. Seth (Saha Inst.) V. Ravindran (CIT)

about 50 years ago...

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout

Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P.W. HIGGS Tait Institute of Mathematical Physics, University of Edinburgh, Scotland

Received 27 July 1964

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

[arXiv: 1207.7214]

The ATLAS Collaboration

[arXiv: 1207.7235]

The CMS Collaboration

July 4th, 2013

Evidence for the spin-0 nature of the Higgs boson using ATLAS data

The ATLAS Collaboration

Abstract

Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on proton-proton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin-parity $J^P = 0^+$ hypothesis is compared with alternative hypotheses using the Higgs boson decays $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb⁻¹ collected at a centre-of-mass energy of $\sqrt{s} = 8$ TeV. For the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay mode the dataset corresponding to an integrated luminosity of 4.6 fb⁻¹ collected at $\sqrt{s} = 7$ TeV is added. The data are compatible with the Standard Model $J^P = 0^+$ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this letter, namely some specific $J^P = 0^-$, 1⁺, 1⁻, 2⁺ models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the $J^P = 2^+$ model, of the relative fractions of gluon-fusion and quark-antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferred.

determination of the Higgs Lagrangian

- determination of the Higgs Lagrangian
 - the structure of the operators, linked to the spin/ parity of the 'Higgs' boson

- determination of the Higgs Lagrangian
 - the structure of the operators, linked to the spin/ parity of the 'Higgs' boson
 - the coupling strength

determination of the Higgs Lagrangian

- the structure of the operators, linked to the spin/ parity of the 'Higgs' boson
- the coupling strength

A framework for Higgs characterisation

[arXiv: 1306.6464]

P. Artoisenet,^a P. de Aquino,^b F. Demartin,^c R. Frederix,^d S. Frixione,^{d,e} F. Maltoni,^c M. K. Mandal,^f P. Mathews,^g K. Mawatari,^b V. Ravindran,^h S. Seth,^g P. Torrielli,ⁱ M. Zaro^c

determination of the Higgs Lagrangian

- the structure of the operators, linked to the spin/ parity of the 'Higgs' boson
- the coupling strength

A framework for Higgs characterisation

[arXiv: 1306.6464]

P. Artoisenet,^a P. de Aquino,^b F. Demartin,^c R. Frederix,^d S. Frixione,^{d,e} F. Maltoni,^c M. K. Mandal,^f P. Mathews,^g K. Mawatari,^b V. Ravindran,^h S. Seth,^g P. Torrielli,ⁱ M. Zaro^c

determination of the Higgs Lagrangian

- the structure of the operators, linked to the spin/ parity of the 'Higgs' boson
- the coupling strength

A framework for Higgs characterisation

[arXiv: 1306.6464]

P. Artoisenet,^a P. de Aquino,^b F. Demartin,^c R. Frederix,^d S. Frixione,^{d,e} F. Maltoni,^c M. K. Mandal,^f P. Mathews,^g K. Mawatari,^b V. Ravindran,^h S. Seth,^g P. Torrielli,ⁱ M. Zaro^c

determination of the Higgs Lagrangian

- the structure of the operators, linked to the spin/ parity of the 'Higgs' boson
- the coupling strength

A framework for Higgs characterisation

[arXiv: 1306.6464]

P. Artoisenet,^a P. de Aquino,^b F. Demartin,^c R. Frederix,^d S. Frixione,^{d,e} F. Maltoni,^c M. K. Mandal,^f P. Mathews,^g K. Mawatari,^b V. Ravindran,^h S. Seth,^g P. Torrielli,ⁱ M. Zaro^c

determination of the Higgs Lagrangian

- the structure of the operators, linked to the spin/ parity of the 'Higgs' boson
- the coupling strength

A framework for Higgs characterisation

[arXiv: 1306.6464]

P. Artoisenet,^a P. de Aquino,^b F. Demartin,^c R. Frederix,^d S. Frixione,^{d,e} F. Maltoni,^c M. K. Mandal,^f P. Mathews,^g K. Mawatari,^b V. Ravindran,^h S. Seth,^g P. Torrielli,ⁱ M. Zaro^c

Contents

- Introduction
- Higgs characterisation framework
 - Effective Lagrangians -- X(J=0, 1, 2)
- beyond-leading-order effects in QCD
 - inclusive production $pp \rightarrow X(J^P)$
 - unitarity-violating behavior for X(J=2)
 - higher order QCD effects on spin observables
- Summary

FeynRules in a nutshell

Christensen, Duhr, Fuks, <u>http://feynrules.irmp.ucl.ac.be</u>

- a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- allows to export the Feynman rules to various matrix element generators, e.g. MadGraph.
- The only requirements on the Lagrangian are:
 - \checkmark All indices need to be contracted.
 - \checkmark Locality.
 - ✓ Supported filed types: spin-0, 1/2, 1, 3/2, and 2.

FeynRules in a nutshell

Christensen, Duhr, Fuks, <u>http://feynrules.irmp.ucl.ac.be</u>

- a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- allows to export the Feynman rules to various matrix element generators, e.g. MadGraph.
- The only requirements on the Lagrangian are:
 - \checkmark All indices need to be contracted.
 - ✓ Locality. new!
 - ✓ Supported filed types: spin-0, 1/2, 1/3/2, and 2.

[arxiv:1308.1668] see B.Oexl talk.

Higgs Characterisation model

- We implemented an effective Lagrangian featuring bosons $X(J^P=0^+,0^-,1^+,1^-,2^+)$
 - in FeynRules.
 - Effective field theory approach, valid up to a cutoff scale Λ
 - Only one new bosonic state $X(J^P)$ at the EW scale (No other state below the cutoff Λ)
 - Any new physics is described by the lowest dimensional operators.

The parametrization is based on the recent work [Englert, Goncalves-Netto, KM, Plehn (2013)].

- allows one to recover the SM case easily.
- includes all possible interactions that are generated by gaugeinvariant D6 operators above the EW scale
- includes 0⁻ state couplings typical of SUSY or of generic 2HDM
- allows CP-mixing between 0⁺ and 0⁻ states

	parameter		reference	value des	description		
	$\Lambda [\text{GeV}]$		10^{3}	cut	cutoff scale		
	$c_{\alpha} (\equiv \cos \alpha)$		1	mixing between 0^+ and 0^-			
	κ_i		0, 1	dimensionless coupling parameter			
g_{Xy}	$_{y'} imes v$	ff	ZZ/WW	$\gamma\gamma$	$Z\gamma$	gg	
	H	m_f	$2m_{Z/W}^2$	$47 \alpha_{\rm EM} / 18 \pi$	$C(94\cos^2\theta_W-13)/9\pi$	$-\alpha_s/3\pi$	
	A	m_f	0	$-4\alpha_{\rm EM}/3\pi$	$-2C(8\cos^2\theta_W-5)/3\pi$	$-\alpha_s/2\pi$	

$$\begin{split} \mathcal{L}_{0}^{f} &= -\sum_{f=t,b,\tau} \bar{\psi}_{f} \Big(c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \Big) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \Big\{ c_{\alpha} \kappa_{SM} \Big[\frac{1}{2} g_{HZZ} \, Z_{\mu} Z^{\mu} + g_{HWW} \, W_{\mu}^{+} W^{-\mu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{SM} g_{H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} \, A_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} \, A_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{2} \Big[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} \, Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} \, Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} \, Z_{\mu\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} \, Z_{\mu\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} \, Z_{\mu\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} \, Z_{\mu\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{\mu\nu} \nabla^{\mu\nu} + \kappa_{\mu\nu} \nabla^{\mu\nu} \nabla^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} \, Z_{\mu\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{\mu\nu} \nabla^{\mu\nu} + \kappa_{\mu\nu} \nabla^{\mu\nu} \nabla^{\mu\nu} \nabla^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} \, Z_{\mu\nu} \partial_{\mu} \nabla^{\mu\nu} +$$

INFORMATION FOR FRBLOCH lock # Lambda ca kSM kHbb kAbb dHaa kAaa kHza kAza kHaa (Hz z ĸAzz 00e+00 kHdz 000e+00 # kHdw

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,b,\tau} \bar{\psi}_{f} (c_{\alpha} \kappa_{Hff} g_{Hff} + is_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5}) \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left(c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} \right] g_{HWW} W_{\mu}^{+} W^{-\mu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right] + \left[s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \right$$

Mass and angular distributions -- spin0

Kentarou Mawatari (Vrije U. Brussel)

• The most general interactions at the lowest canonical dimension:

$$\mathcal{L}_{1}^{f} = \sum_{f=q,\ell} \bar{\psi}_{f} \gamma_{\mu} (\kappa_{fa} a_{f} - \kappa_{fb} b_{f} \gamma_{5}) \psi_{f} X_{1}^{\mu}$$

$$\mathcal{L}_{1}^{W} = i \kappa_{W_{1}} g_{WWZ} (W_{\mu\nu}^{+} W^{-\mu} - W_{\mu\nu}^{-} W^{+\mu}) X_{1}^{\nu} + i \kappa_{W_{2}} g_{WWZ} W_{\mu}^{+} W_{\nu}^{-} X_{1}^{\mu\nu}$$

$$- \kappa_{W_{3}} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} X_{1}^{\nu} + \partial^{\nu} X_{1}^{\mu})$$

$$+ i \kappa_{W_{4}} W_{\mu}^{+} W_{\nu}^{-} \widetilde{X}_{1}^{\mu\nu} - \kappa_{W_{5}} \epsilon_{\mu\nu\rho\sigma} [W^{+\mu} (\partial^{\rho} W^{-\nu}) - (\partial^{\rho} W^{+\mu}) W^{-\nu}] X_{1}^{\sigma}$$

$$\mathcal{L}_1^Z = -\kappa_{Z_1} Z_{\mu\nu} Z^\mu X_1^\nu - \kappa_{Z_3} X_1^\mu (\partial^\nu Z_\mu) Z_\nu - \kappa_{Z_5} \epsilon_{\mu\nu\rho\sigma} X_1^\mu Z^\nu (\partial^\rho Z^\sigma)$$

Parity conservation implies that

for X₁-
$$\kappa_{f_b} = \kappa_{V_4} = \kappa_{V_5} = 0$$

for X₁+ $\kappa_{f_a} = \kappa_{V_1} = \kappa_{V_2} = \kappa_{V_3} = 0$

 via the energy-momentum tensor of the SM fields, starting from D5:

$$\mathcal{L}_{2}^{f} = -\frac{1}{\Lambda} \sum_{f=q,\ell} \kappa_{f} T_{\mu\nu}^{f} X_{2}^{\mu\nu}$$
$$\mathcal{L}_{2}^{V} = -\frac{1}{\Lambda} \sum_{V=Z,W,\gamma,g} \kappa_{V} T_{\mu\nu}^{V} X_{2}^{\mu\nu}$$

The second se

The E-M tensor for QED:

$$\begin{split} T^f_{\mu\nu} &= - g_{\mu\nu} \Big[\bar{\psi}_f (i\gamma^\rho D_\rho - m_f) \psi_f - \frac{1}{2} \partial^\rho (\bar{\psi}_f i\gamma_\rho \psi_f) \Big] \\ &+ \Big[\frac{1}{2} \bar{\psi}_f i\gamma_\mu D_\nu \psi_f - \frac{1}{4} \partial_\mu (\bar{\psi}_f i\gamma_\nu \psi_f) + (\mu \leftrightarrow \nu) \Big] \,, \\ T^\gamma_{\mu\nu} &= - g_{\mu\nu} \Big[- \frac{1}{4} A^{\rho\sigma} A_{\rho\sigma} + \partial^\rho \partial^\sigma A_\sigma A_\rho + \frac{1}{2} (\partial^\rho A_\rho)^2 \Big] \\ &- A^{\ \rho}_\mu A_{\nu\rho} + \partial_\mu \partial^\rho A_\rho A_\nu + \partial_\nu \partial^\rho A_\rho A_\mu \,, \end{split}$$

All the relevant channels can be simulated in a consistent, systematic and accurate way. e.g.VBF ($pp \rightarrow jjX$)

Kentarou Mawatari (Vrije U. Brussel)

Aug. 26, 2013 SUSY2013@Trieste

Higher order effects in QCD

- The LO predictions can be systematically improved by including the effects due to the emission of QCD partons.
 - LO Matrix-Element/Parton-Shower merging [ME+PS]
 - full-NLO matrix element with parton-shower [aMC@NLO]

Kentarou Mawatari (Vrije U. Brussel)

Higher order effects in QCD (I) inclusive production in $pp \rightarrow X(J^p)$

Higher order effects in QCD (I) inclusive production in $pp \rightarrow X(J^p)$

The matched sample is harder than aMC@NLO at large pT due to the extra 2 ME patrons in the matched sample.

The different shapes are due to the different initial state.

Higher order effects in QCD (I) inclusive production in $pp \rightarrow X(J^p)$

The matched sample is harder than aMC@NLO at large pT due to the extra 2 ME patrons in the matched sample. excellent agre

The different shapes are due to the different initial state.

excellent agreement between ME+PS and aMC@NLO

Higher order effects in QCD (II) unitarity-violating behavior of models with a spin-2 state

Kentarou Mawatari (Vrije U. Brussel)

Aug. 26, 2013 SUSY2013@Trieste

Higher order effects in QCD (II)

unitarity-violating behavior of models with a spin-2 state

A model with non-universal couplings dramatically changes the pT(X) spectrum.

Higher order effects in QCD (III)

on spin observables for a spin-2 state

Kentarou Mawatari (Vrije U. Brussel)

Summary

- After the discovery of a Higgs-like resonance at the LHC, the main focus of the analyses now is the determination of the Higgs Lagrangian.
- This includes
 - the structure of the operators, linked to the spin/parity of the 'Higgs' boson.
 - an independent measurement of the coupling strength.
- Our FR/MG5 Higgs Characterisation model is publicly available, which can provide a framework to perform SMS characterisation studies in a consistent, systematic and accurate way.
 - <u>http://feynrules.irmp.ucl.ac.be/wiki/HiggsCharacterisation</u>
 - contact to kentarou.mawatari@vub.ac.be

back-up

Effective Lagrangian \rightarrow Feynman rules

$$\mathcal{L} = \frac{1}{2} c_{\alpha} \kappa_{\mathrm{SM}} g_{HZZ} Z_{\mu} Z^{\mu} X_{0} \longrightarrow i c_{\alpha} \kappa_{\mathrm{SM}} g_{HZZ} g_{\mu\nu}$$

$$-\frac{1}{4} \frac{1}{\Lambda} c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} \longrightarrow i c_{\alpha} \frac{\kappa_{HZZ}}{\Lambda} (g_{\mu\nu} q_{1.} q_{2} - q_{2\mu} q_{1\nu})$$

$$-\frac{1}{4} \frac{1}{\Lambda} s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \longrightarrow i s_{\alpha} \frac{\kappa_{AZZ}}{\Lambda} \epsilon_{\mu\nu\rho\sigma} q_{2}^{\rho} q_{1}^{\sigma}$$

$$-\frac{1}{\Lambda} c_{\alpha} \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} \longrightarrow i c_{\alpha} \frac{\kappa_{H\partial Z}}{\Lambda} [g_{\mu\nu} (q_{1.} q_{1} + q_{2.} q_{2}) - q_{1\mu} q_{1\nu} - q_{2\mu} q_{2\nu}]$$

hyp. SM : SM-like coupling to the Z bosons

$$\kappa_{\rm SM} = 1$$
 $\kappa_{HZZ} = 0 = \kappa_{AZZ}$ $c_{\alpha} = 1$
hyp. HD: coupling involving a superposition of HD operators $Z_{\mu\nu}Z^{\mu\nu}$ and $Z_{\mu\nu}\tilde{Z}^{\mu\nu}$
 $\kappa_{\rm SM} = 0$ $\kappa_{HZZ} = 1 = \kappa_{AZZ}$ c_{α} free

Mass and angular distributions -- spinl

Mass and angular distributions -- spin2

Accuracy with aMC@NLO/ME+PS merging

Kentarou Mawatari (Vrije U. Brussel)

Aug. 26, 2013 SUSY2013@Trieste

26

Accuracy with aMC@NLO/ME+PS merging

Kentarou Mawatari (Vrije U. Brussel)

Aug. 26, 2013 SUSY2013@Trieste

Accuracy with aMC@NLO/ME+PS merging

How can we get the spin/parity information?

I. X→γγ
2. X→VV*→4
3. pp→jjX
4. pp→VX
5. X→TT

Spin/parity determination I. $X \rightarrow \gamma \gamma$

Kentarou Mawatari (Vrije U. Brussel)

Vrije Universiteit Brussel

Spin/parity determination

 $\mathcal{L}_{0^+_{\rm SM}} = g_{0^+_{\rm SM}} V_\mu V^\mu X_0$

[Dell'Aquilla, Nelson, PRD(1986)] [Choi, Miller, Mühlleitner, Zerwas, PLB(2003)] [Gao et al, PRD(2010)] ...

[Bolognesi et al, PRD(2012)]

Universiteit Brussel

Vrije

Spin/parity determination

[Choi, Miller, Mühlleitner, Zerwas, PLB(2003)] $X \rightarrow 41 \text{ vs.VBF}$ [Gao et al, PRD(2010)] ...

[Plehn, Rainwater, Zeppenfeld, PRL(2002)] [Hagiwara, Li, KM, JHEP(2009)] ...

[Bolognesi et al, PRD(2012)]

[Englert, Goncalves-Netto, KM, Plehn, JHEP(2013)]

 $d\sigma/d\Delta\phi\sim {\rm const.}$ for $0^+_{
m SM}$, $d\sigma/d\Delta\phi\sim 1\pm A\cos 2\Delta\phi$ for $0^\pm_{
m D5}$.

Nontrivial azimuthal angle correlations of the decay planes $(X \rightarrow ZZ)$ and the jets (VBF) can be explained as the quantum interference among different helicity states of the intermediate vector-bosons.

Spin/parity determination 3. $pp \rightarrow jjX$

Spin/parity determination 3. $pp \rightarrow jjX$

 $\Delta\eta$ as well as $\Delta\Phi$ are the powerful observables.

Kentarou Mawatari (Vrije U. Brussel)

Obs-by-obs based strategy in VBF

The di-jet correlations are the most decisive, in particular to separate the different scalar coupling structures.

Spin/parity determination $4. pp \rightarrow ZX$

Englert, Goncalves-Netto, KM, Plehn (2013)

Spin/parity determination

 $d^2\Gamma/dz_1dz_2 \sim 1 \mp z_1z_2$ for spin-0/1, $d\Gamma/d\Delta\phi \sim 1 \mp A \cos \Delta\phi$ for 0^{\pm}

au could be a spin/parity analyzer!

Kentarou Mawatari (Vrije U. Brussel)

a library to simulate polarized tau decays via FeynRules/MadGraph5

We implemented the effective Lagrangians

[Hagiwara, Li, KM, Nakamura, 1212.6247]

$$\mathcal{L}_{\pi} = \sqrt{2}G_{F}f_{\pi}\cos\theta_{C}\bar{\tau}\gamma^{\mu}P_{L}\nu_{\tau}\partial_{\mu}\pi^{-} + h.c.$$

$$\mathcal{L}_{\rho} = 2G_{F}\cos\theta_{C}F_{\rho}(Q^{2})\bar{\tau}\gamma^{\mu}P_{L}\nu_{\tau}(\pi^{0}\partial_{\mu}\pi^{-} - \pi^{-}\partial_{\mu}\pi^{0}) + h.c.$$

into FEYNRULES, providing the model file for MADGRAPH5.

Full spin correlations for any kinds of new physics models can be generated for free.

Kentarou Mawatari (Vrije U. Brussel)

Specific channel: X₀ into 4 charged leptons

- ▶ generation of $X_0 \rightarrow \mu^+ \mu^- e^+ e^-$ events: ME+matching approach (validated with aMC@NLO + parton shower), basic cuts on the leptons (p_T > 7 GeV, |y|<2.4)
- IM pseudo-experiments with N=10 events under each assumptions (SM of HD)
- Discriminating variable for the statistical test SM versus HD is set to the likelihood ratio, built upon 1-dimension distribution or upon the matrix elements

$$L_{\mathcal{O}} = \prod_{i}^{N} \frac{\sigma_{\mathrm{HD}(c_{\alpha})}^{-1} \frac{d\sigma_{\mathrm{HD}(c_{\alpha})}}{d\mathcal{O}}(\mathcal{O}_{i})}{\sigma_{\mathrm{SM}}^{-1} \frac{d\sigma_{\mathrm{SM}}}{d\mathcal{O}}(\mathcal{O}_{i})}.$$

likelihood ratio based on I-dim. distribution

$$L_{\rm MEM} = \prod_{i}^{N} \frac{|M_{HD(c_{\alpha})}(i)|^2}{|M_{\rm SM}(i)|^2}$$

likelihood ratio based on matrix elements

Distribution of SM and HD events with respect to the MEM-based discriminator D

Significance

Significance estimated by calculating the median $q_{\rm SM,1/2}$ of the SM distribution and by counting the fraction of pseudo-experiments in the HD distribution with $q < q_{\rm SM,1/2}$ This fraction = expected p-value associated with the test of rejecting hypothesis HD if the SM hypothesis is realized.

Significance

The optimal significance is reached with the MEM-based likelihood approach

Phenomenology group at the Vrije Universiteit Brussel

• Since October 2010, to make a chain between the theoretical and experimental groups at the VUB.

pheno@vub.ac.be, kentarou.mawatari@vub.ac.be

HEP@VUB High Energy Physics Research Centre @VUB

- The 5-year pheno project was rearranged into a larger framework in January 2013
 - Theory: Ben Craps, Alexander Sevrin (string/cosmology)
 - Collider physics: Jorgen D'Hondt, Freya Blekman, Steven Lowette (CMS)
 - Astor-particle physics: Catherine De Clercq, Nick Van Eindhoven (IceCube)
 - Phenomenology: Kentarou Mawatari
- Pheno members
 - Kentarou Mawatari Project leader since 2010
 - Laura Lopez Honorez PD since 2012
 - Priscila de Aquino PD since 2012
 - Bettina Oexl PhD since 2010
 - Karen De Causmaecker PhD since 2011
 - Pantelis Tziveloglou (from Ecole Polytechnique, CPHT) PD since 2013
 - Jonathan Lindgren (from Chalmers U. of Tech) PhD since 2013