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Features of our Setup

•   BSM sector giving rise to a (pseudo)NGB field with the quantum numbers
           of the Higgs; 

•   coupling of SM fields to BSM physics through Partial Compositeness;

•   purely 4d strongly interacting sector;

•   low energy description of strongly coupled physics with the help of
           supersymmetry, via Seiberg duality for gauge theories.

Motivation

 Address SM Naturalness problem: mechanism to protect Higgs mass.
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⇒    V(h)≠0

Higgs as a pNGB
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Gf/Hf , SU(2)×U(1) ⊆ Hf (0.24)
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Partial Compositeness

•   Flavour hierarchies

•   GIM-like mechanism suppressing FCNC and CP processes

QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh γ = γtree + γg + γm, β = βg + βm, δ = δg + δm (0.50)

ξ = sin2
〈h〉
f

= ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
(0.51)

tR ∈ Mia N = 1 SO(4)m N = 1 SO(N) Nf = N (0.52)

L ⊇ εMξ, ξ ∈ SM (0.53)

L = ξ̄i/∂ξ + M̄(i/∂ −mM)M + εMξ + h.c. tan φ =
ε

mM
(0.54)

light = ξ cosφ+M sinφ

heavy = −ξ sin+M cosφ
(0.55)

3

QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh γ = γtree + γg + γm, β = βg + βm, δ = δg + δm (0.50)

ξ = sin2
〈h〉
f

= ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
(0.51)

tR ∈ Mia N = 1 SO(4)m N = 1 SO(N) Nf = N (0.52)

L ⊇ εMξ, ξ ∈ SM (0.53)

L = ξ̄i/∂ξ + M̄(i/∂ −mM)M + εMξ + h.c. tan φ =
ε

mM
(0.54)

light = ξ cosφ+M sinφ

heavy = −ξ sin+M cosφ
(0.55)

3

QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh γ = γtree + γg + γm, β = βg + βm, δ = δg + δm (0.50)

ξ = sin2
〈h〉
f

= ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
(0.51)

tR ∈ Mia N = 1 SO(4)m N = 1 SO(N) N = Nf = 11 (0.52)

L ⊇ εMξ, ξ ∈ SM (0.53)

L = ξ̄i/∂ξ + M̄(i/∂ −mM)M + εMξ + h.c. tan φ =
ε

mM
(0.54)

light = ξ cosφ+M sinφ

heavy = −ξ sinφ+M cosφ
(0.55)

Gf = SO(5)× SO(6) (0.56)

3



5Alberto Parolini

poles for the SM couplings in subsection 3.2; a similar analysis is repeated in section 4 for the

model II, with a fully composite tR; in subsection 4.1 we argue that the metastable vacuum is

long-lived by showing the absence of SUSY vacua where it could tunnel to and in subsection

4.2 we compute the Landau poles for the SM gauge couplings; in section 5 we give a closer look

at the connection between the above UV models and the phenomenological pCHM considered

in the literature; we discuss open questions and conclude in section 6; two appendices complete

the paper; in appendix A we report our conventions for the group generators; in appendix B we

review the RG flow of soft terms in N = 1 SUSY gauge theories, and apply the results to our

context.

2 The Basic Construction

The key points underlying our models are best illustrated in a set-up where we keep only the

essential structure and remove important, but model-dependent, details. We focus on construc-

tions where the Higgs is the NGB of an SO(5)/SO(4) coset, but the generalization to other

cosets should be obvious. Consider an N = 1 SUSY SO(N) gauge theory with Nf = N flavors

in the fundamental of SO(N), with superpotential

Wel = mabQ
aQb + λIJKQIQJξK . (2.1)

In the first term of eq.(2.1), we split the flavor index I in two sets I = (i, a), a = 1, . . . , 5, i =

6, . . . , N . The fields ξK are singlets under SO(N) and in general can be in some representation of

the flavor group Hf ⊂ Gf left unbroken by the Yukawa couplings λIJK . The ξK ’s are eventually

identified as the visible chiral fields, such as the top fields. We take λIJK " 1, so that these

couplings are marginally relevant, with no Landau poles, and can be considered as a small

perturbation in the whole UV range of validity of the theory. We assume the presence of an

external source of SUSY breaking, whose origin will not be specified, that produces soft terms

for all the SM gauginos and sfermions. For simplicity, we neglect for the moment the dynamics

of the singlets ξK and the impact of the external source of SUSY breaking in the composite

sector. We take the quark mass matrix proportional to the identity, mab = mQδab, to maximize

the unbroken anomaly-free global group. For λIJK = 0, this is equal to

Gf = SO(5)× SU(N − 5) . (2.2)

We take mQ " Λ, where Λ is the dynamically generated scale of the theory.

For N ≤ 3(N−2)/2, namely N ≥ 6, the theory flows to an IR-free theory with superpotential

[12, 19]

Wmag = qIM
IJqJ − µ2Maa + εIJKM IJξK , (2.3)

where

εIJK = λIJKΛ, µ2 = −mQΛ. (2.4)
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essential structure and remove important, but model-dependent, details. We focus on construc-

tions where the Higgs is the NGB of an SO(5)/SO(4) coset, but the generalization to other

cosets should be obvious. Consider an N = 1 SUSY SO(N) gauge theory with Nf = N flavors

in the fundamental of SO(N), with superpotential

Wel = mabQ
aQb + λIJKQIQJξK . (2.1)

In the first term of eq.(2.1), we split the flavor index I in two sets I = (i, a), a = 1, . . . , 5, i =

6, . . . , N . The fields ξK are singlets under SO(N) and in general can be in some representation of

the flavor group Hf ⊂ Gf left unbroken by the Yukawa couplings λIJK . The ξK ’s are eventually

identified as the visible chiral fields, such as the top fields. We take λIJK " 1, so that these

couplings are marginally relevant, with no Landau poles, and can be considered as a small

perturbation in the whole UV range of validity of the theory. We assume the presence of an

external source of SUSY breaking, whose origin will not be specified, that produces soft terms

for all the SM gauginos and sfermions. For simplicity, we neglect for the moment the dynamics

of the singlets ξK and the impact of the external source of SUSY breaking in the composite

sector. We take the quark mass matrix proportional to the identity, mab = mQδab, to maximize

the unbroken anomaly-free global group. For λIJK = 0, this is equal to

Gf = SO(5)× SU(N − 5) . (2.2)

We take mQ " Λ, where Λ is the dynamically generated scale of the theory.

For N ≤ 3(N−2)/2, namely N ≥ 6, the theory flows to an IR-free theory with superpotential

[12, 19]

Wmag = qIM
IJqJ − µ2Maa + εIJKM IJξK , (2.3)

where

εIJK = λIJKΛ, µ2 = −mQΛ. (2.4)

5

QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh γ = γtree + γg + γm, β = βg + βm, δ = δg + δm (0.50)

ξ = sin2
〈h〉
f

= ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
(0.51)

tR ∈ Mia N = 1 SO(4)m N = 1 SO(N) Nf = N (0.52)
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QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh γ = γtree + γg + γm, β = βg + βm, δ = δg + δm (0.50)

ξ = sin2
〈h〉
f

= ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
(0.51)

tR ∈ Mia N = 1 SO(4)m N = 1 SO(N) Nf = N (0.52)
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b = 3(N − 2)−Nf = 2(N − 3) I = (i, a), a = 1, . . . , 5, i = 6, . . . , N (0.1)

SO(4)m × SO(5) × SU(N − 5) → SO(4)D × SU(N − 5) (0.2)

1

For simplicity, we identify the dynamically generated scales in the electric and magnetic theo-

ries,4 whose precise relation is anyhow incalculable. We also set to one the value of the Yukawa

coupling of the cubic qMq term in the magnetic theory. The fields qI are the dual magnetic

quarks in the fundamental representation of the dual SO(Nf − N + 4)m = SO(4)m magnetic

gauge group, with coupling gm, and M IJ = QIQJ are neutral mesons, normalized to have

canonical dimension one. The Kähler potential for the mesons M IJ and the dual quarks qI is

taken as follows:

K = trM †M + q†Ie
VmagqI , (2.5)

where Vmag is the SO(4)m vector superfield.

The original Yukawa couplings λIJKQIQJξK in the electric theory flow in the IR to a

mixing mass term εIJKM IJξK between elementary and composite fields, the SUSY version

of the fermion mixing terms appearing in weakly coupled models with partial compositeness

[6]. The quark mass term mQQaQa, introduced to break the flavor group from SU(N) down to

SO(5)×SU(N−5), is also responsible for a spontaneous breaking of supersymmetry by the rank

condition, as shown by Intriligator, Seiberg and Shih (ISS) [15]. Up to global SO(5) × SO(4)m
rotations, the non-supersymmetric, metastable, vacuum is at5

〈qnm〉 = µ δnm , (2.6)

with all other fields vanishing. For simplicity, in the following we take µ to be real and positive.

In eq.(2.6) we have decomposed the flavor index a = (m, 5), m,n = 1, 2, 3, 4, and we have

explicitly reported the gauge index n as well. When λIJK = 0, the vacuum (2.6) spontaneously

breaks

SO(4)m × SO(5) → SO(4)D , (2.7)

where SO(4)D is the diagonal subgroup of SO(4)m × SO(4). In the global limit gm → 0, this

symmety breaking pattern results in 10 NGB’s:

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions , (2.8)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions . (2.9)

For gm '= 0, the would-be NGB’s (2.8) are eaten by the SO(4)m magnetic gauge fields ρµ,

that become massive, while the NGB’s (2.9) remain massless and are identified with the 4 real

components of the Higgs field.

The remaining spectrum of the magnetic theory around the vacuum (2.6) is easily obtained

by noticing that all fields, but the magnetic quarks qn5 and the mesons M5n, do not feel at

tree-level the SUSY breaking induced by the F -term of M55:

FM55 = −µ2. (2.10)

4Adopting a notation used in the literature, we often refer to the UV and IR theories as electric and magnetic

theories, respectively.
5With a common abuse of language, we denote with the same symbol a chiral superfield and its lowest scalar

component, since it should be clear from the context the distinction among the two.

6

b = 3(N − 2)−Nf = 2(N − 3) I = (i, a), a = 1, . . . , 5, i = 6, . . . , N (0.1)

SO(4)m × SO(5) × SU(N − 5) → SO(4)D × SU(N − 5) (0.2)

N ≤ 3(N − 2)/2 ⇒ N ≥ 6 (0.3)

SU(3)c ⊆ SU(N − 5) SU(2)0,L × SU(2)0,R ∼= SO(4) ⊆ SO(5) (0.4)

Y = T3R +X, U(1)X ⊆ SU(N − 5) (0.5)

ε =
µ

Λ
, m1 = Λ εκ ΛL

3 ∼ 102 − 103 TeV (0.6)

FMab
= qna q

n
b − µ2δab (0.7)

1

b = 3(N − 2)−Nf = 2(N − 3) I = (i, a), a = 1, . . . , 5, i = 6, . . . , N (0.1)

SO(4)m × SO(5) × SU(N − 5) → SO(4)D × SU(N − 5) (0.2)

N ≤ 3(N − 2)/2 ⇒ N ≥ 6 (0.3)

SU(3)c ⊆ SU(N − 5) SU(2)0,L × SU(2)0,R ∼= SO(4) ⊆ SO(5) (0.4)

Y = T3R +X, U(1)X ⊆ SU(N − 5) (0.5)

ε =
µ

Λ
, m1 = Λ εκ ΛL

3 ∼ 102 − 103 TeV (0.6)

FMab
= qna q

n
b − µ2δab (0.7)

ΛL
1 ∼ 103 TeV (0.8)

〈qnm〉, 〈Mmn〉, 〈M55〉 += 0 Wel ⊇ mQQ
aQa mQ → mQ(1 + θ2Bm) (0.9)

SU(2) ×U(1) → U(1) (0.10)

SO(Nc)g SU(Nf ) U(1)R

QN
I Nc Nf

(Nf−Nc+2)
Nf

SO(Nf −Nc + 4)g SU(Nf ) U(1)R

qnI Nf −Nc + 4 Nf
Nc−2
Nf

MIJ 1
1

2
Nf (Nf + 1)

2(Nf−Nc+2)
Nf

Λ
3(Nc−2)−Nf

el Λ
3(Nf−Nc+2)−Nf
mag ∝ (−1)Nf−NcµNf (0.11)

Wmag ∝
1

µ
qnIM

IJqnJ (0.12)

L ⊇ λq̄O + h.c. (0.13)

〈qna 〉 =











µ14

∣

∣

∣

∣

∣

∣

∣

∣

∣

0

0

0

0











(0.14)

1

QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.37)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.38)

eaten by the magnetic vector bosons ; (0.39)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.40)

identified with the Higgs field . (0.41)

3
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Explicit Soft SUSY Breakingbreak the global group Gf of the composite sector and in the magnetic theory they flow to

εL(ξL)
iaMia + εR(ξR)

iaMia . (3.8)

For simplicity, we neglect here the effects induced by possible soft terms present in the electric

theory. We discuss their impact in some detail in appendix B and in the next section, where we

consider a model where they cannot be neglected. We then add

−L
!
!
!SUSY = m̃2

L|t̃L|2+m̃2
R|t̃R|2+

(
εLBL(ξL)iaMia+ εRBR(ξR)iaMia+

1

2
m̃g,αλαλα+h.c.

)
, (3.9)

where λα are the SM gauginos and α = 1, 2, 3 runs over the U(1)0,Y , SU(2)0,L and SU(3)c groups.

In order to simplify the expressions below, we take the SM soft terms larger than µ.8 Due to the

terms (3.8) and the interactions with the SM gauginos, the SUSY breaking is transmitted to the

composite sector as well. More in detail, the Dirac fermions
(
λmn, (ψqmn − ψqnm)/

√
2
)
mix with

the SM gauginos: as a result the former get splitted into two Majorana fermions with masses√
2gmµ± δm̃λ. Expanding for heavy SM gauginos, we have

δm̃λ,α ∼ g2αµ
2

2m̃g,α
. (3.10)

Similarly, the scalar mesons and magnetic quarks that mix with the stops get soft terms of order

m̃2
s ∼ −|εL,R|2 , (3.11)

that tend to decrease their SUSY mass value. The spectrum of the fields in the Mi5 and in the

Mim-qmi sectors is affected by the the terms (3.8), while all the other sectors are unchanged. In

the limit of decoupled stops, we see that a linear combination of fermions given by tR and the

appropriate components of ψMia remains massless. This field is identified with the actual SM

right-handed top. A similar argument applies to tL. At this stage, the “Goldstino” ψM55 is still

massless. In the case in which we also consider soft terms in the electric SO(N) theory (see

appendix B for details), the mesons Mab get a non-vanishing VEV and a mass for ψM55 can be

induced from higher dimensional operators in the Kähler potential. Independently of this effect,

a linear combination of ψM55 and the Goldstino associated to the external SUSY breaking is

eaten by the gravitino, while the orthogonal combination gets a mass at least of order of the

gravitino mass (see [22] for an analysis of Goldstini in presence of multiple sectors of SUSY

breaking and specifically [23] for a set-up analogous to the one we are advocating here). We do

not further discuss the mechanisms through which ψM55 can get a mass.

3.1 Vacuum Decay

In presence of the meson mass terms (3.4), in addition to the ISS vacuum (2.6), other non-

SUSY vacua can appear [21]. They can be dangerous if less energetic than the ISS vacuum,

8Notice that we cannot take the soft terms parametrically large, in particular the stop mass terms, because in

this way we would reintroduce a fine-tuning to keep the quadratic Higgs mass term at the electroweak scale.

10

✦    Gauginos’ masses

✦    SM Sparticles’ masses
(as in the MSSM)

no qualitative change in the spectrum

General breaking:

QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.37)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.38)

eaten by the magnetic vector bosons ; (0.39)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.40)

identified with the Higgs field . (0.41)

N = 1 (0.42)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.43)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.44)

⇒ (0.45)

3

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.18)

SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi +

(
1

2
m̃λλ

abλab + h.c.

)
(0.23)

m̃2
2el

m̃2
1el

>
8

5
(0.24)

Gf = SO(5)×U(1)X Hf = SO(4)×U(1)X Y = T3R +X, Hs (0.25)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.26)

U → g U h† (0.27)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.28)

U = exp

(

i

√
2

f
hâTâ

)

, U → g U h†, f =
√
2µ (0.29)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.30)

SO(5)/SO(4) (0.31)

Wel ⊇ QN
a QN

b ξRξL Wmag ⊇ MabξRξL ∆L ∼ b̄RbLh
Λ

ΛL
(〈Mnn〉 − 〈M55〉) (0.32)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.33)

Mij Mi5 ψM55
(0.34)

Reqn5 , ReM5n MIJ ∼ QN
I QN

J (0.35)

N = Nf = 11 N = Nf = 9 (0.36)

Mia → UabMib, ψMia → UabψMib
(0.37)

2
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Higgs Potential
Higgs potential in the SUSY composite Higgs model

July 21, 2013

The tree-level + one-loop potential is V = V (0) + V (1). Due to the pNGB nature of the

Higgs, it depends only on sh. For small sh, the potential admits an expansion of the form

V = −γs2h + βs4h + δs4h log sh +O(s6h) . (0.1)

The last non-analytic term cannot obviously be obtained by a Taylor expansion around sh = 0

and is due to the contribution of the top, W and Z particles, whose masses vanish for sh = 0. In

a naive expansion around sh = 0, the presence of this term would be detected by the appearance

of a spurious IR divergence in the coefficient β. For simplicity, in most of the literature the effect

of the non-analytic term δ is neglected. This simplification is justified by the fact that typically

δ < β and for natural, not so small, values of sh the third term in (0.1) is sub-dominant with

respect to the second one. We will keep the effect of this term, at first order in an expansion in

δ/β. The non trivial minimum of the potential is found at

ξ = ξ0
(
1−

δ

4β
(1 + 2 log ξ0)

)
, (0.2)

where

ξ0 =
γ

2β
(0.3)

is the leading order minimum for δ = 0. The Higgs mass is given by

m2
H =

8β

f2
ξ0(1− ξ0) +

4δξ0
f2

(
1−

ξ0
2

+ ξ0 log ξ0
)
. (0.4)

For ξ0 " 1 we get

mH # m0
H

(
1 +

δ

4β

)
(0.5)

where

(m0
H)2 #

8β

f2
ξ0 . (0.6)

In the following we will often separately discuss various contributions to the Higgs potential,

and write

γ = γ0 + γg + γm , β = βg + βm , δ = δg + δm (0.7)

where the subscripts g and m stand for the gauge (vector multiplets) and matter (chiral mul-

tiplets) one-loop contributions, respectively. As we will see in the next subsection, the only

possible tree-level contributions to the Higgs potential can arise in γ and have been denoted by

γ0 in (0.7).

26/08/2013

QN
I =





QN
1
...
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QN
6
...

QN
Nf


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



QN

a





QN

i

(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh (0.50)
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
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QN
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(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh γ = γtree + γg + γm, β = βg + βm, δ = δg + δm (0.50)

3
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QN
1
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QN
6
...

QN
Nf






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QN
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



QN

i

(0.38)
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eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1
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m2SS

2
ia + λ2Q

iQaSia (0.45)
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iaQiQa Wmag ⊇ εL(ξL)
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iaMia (0.49)

sin
h

f
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ξ = sin2
〈h〉
f

= ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
(0.51)

tR ∈ Mia N = 1 SO(4)m N = 1 SO(N) N = Nf = 11 (0.52)

L ⊇ εMξ, ξ ∈ SM (0.53)

L = ξ̄i/∂ξ + M̄(i/∂ −mM)M + εMξ + h.c. tan φ =
ε

mM
(0.54)

light = ξ cosφ+M sinφ

heavy = −ξ sinφ+M cosφ
(0.55)

Gf = SO(5)× SO(6) ξ = sin2
〈h〉
f

=
γ

2β
+O (δ) (0.56)
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Conclusions

•      Explicit 4d realization of pNGB Higgs idea

•      Partial Compositeness

•      SUSY
 

Possible Future Directions (in progress)

•      Higgs Potential
 
•      SUSY

•      Non top SM fields masses:

•      Pert. unitar. of WLWL scattering          (4 x 4 = 1+6+9)
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•      W deformations
•      K deformations
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Model I

fields. This explains the subscript 0 in SU(2)L,R and U(1)Y,R and in g and g′ in eq.(2.15). The

combination of fields along the diagonal SU(2)L × U(1)Y ⊂ SO(4)D × U(1)X group is finally

identified with the SM vector fields. The SM gauge couplings g and g′ are given by

1

g2
=

1

g2m
+

1

g20
,

1

g′2
=

1

g2m
+

1

g′20
. (2.16)

This mixing between elementary and composite gauge fields is analogous to the one advocated

in bottom-up 4D constructions of composite Higgs models. The situation is simpler for the color

group, since the gauge fields of SU(3)c are directly identified with the ordinary gluons of QCD.

The set-up above is still unrealistic because of the presence of unwanted exotic massless

states (Mij and Mi5). There are various ways to address these points. We do that in the next

two sections, where we consider in greater detail two specific models within the above set-up.

3 Model I: a Semi-Composite tR

The first model we consider is based on a SUSY SO(11) gauge theory with Nf = N = 11 electric

quarks. We also have two additional singlet fields, Sij and Sia, transforming as (1,20⊕ 1) and

(5,6) of SO(5)× SU(6), respectively.6 We add to the superpotential (2.1) the following terms:

1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia . (3.1)

The mass terms in eq.(3.1) break the SU(6) global symmetry to SO(6). The total global sym-

metry of the model is then

Gf = SO(5)× SO(6) . (3.2)

For m1S,2S > Λ, the singlets Sij and Sia can be integrated out in the electric theory. We get7

W eff
el = mabQ

aQb − λ2
1

2m1S
(QiQj)2 − λ2

2

2m2S
(QiQa)2 . (3.3)

In the magnetic dual superpotential, the quartic deformations give rise to mass terms for the

mesons Mij and Mi5:

Wmag ⊃ −1

2
m1M

2
ij −

1

2
m2M

2
ia , (3.4)

where

mi =
Λ2λ2

i

miS
, i = 1, 2 . (3.5)

The mass deformations do not affect the vacuum (2.6), but obviously change the mass spectrum

given in section 2. The multiplets Mij and Mi5 are now massive, with masses given by m1 and

6See [20] for a similar set-up in the context of models with direct gaugino mediation of SUSY breaking.
7Of course, we could have started directly by deforming the superpotential (2.1) with the irrelevant operators

quartic in the quark fields appearing in eq.(3.3). In the spirit of our paper, we want to emphasize how easy is

to UV complete the above quartic terms. See [21] for studies of ISS theories deformed by irrelevant operators

quartic in the quark fields.
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SO(11)el SO(5) SO(6)

QN
i 11 1 6

QN
a 11 5 1

Sij 1 1 20⊕ 1

Sia 1 5 6

(a)

SO(4)mag SO(5) SO(6)

qni 4 1 6

qna 4 5 1

Mij 1 1 20⊕ 1

Mia 1 5 6

Mab 1 14⊕ 1 1

(b)

Table 1: Quantum numbers under Gf and the strong gauge group of the matter fields appearing

in the composite sector of model I: (a) UV electric and (b) IR magnetic theories.

m2, respectively, and the multiplets Mim and qmi form massive multiplets with squared masses

(m2
2 + 16µ2 ±m2

√
m2

2 + 32µ2)/8. We take the masses m1 and m2 as free parameters, although

phenomenological considerations favour the values of m2 for which the mesons Mia, the ones

that are going to mix with the elementary SM fields, have a mass around µ. We summarize

in table 1 the gauge and flavor quantum numbers of the fields appearing in the electric and

magnetic theories. We embed SU(3)c into SO(6) and SU(2)0,L × U(1)0,Y in SO(5) × U(1)X ,

where U(1)X is a U(1) factor coming from SO(6) (see appendix A). We consider in what follows

the top quark only, since this is the relevant field coupled to the electroweak symmetry breaking

sector. In terms of the UV theory, we might have Yukawa couplings of the top with the electric

quarks, or mixing terms with the singlet fields. When the singlets are integrated out, we simply

get a shift in the mixing of the top with the meson fields. So, without loss of generality, we can

ignore mixing terms between the top and the singlets. The most general mixing term is then

λL(ξL)
iaQiQa + λR(ξR)

iaQiQa . (3.6)

We assume in what follows that λL,R # 1 so that the elementary fields do not significantly

perturb the above results. We have written the mixing terms in a formal Gf invariant way in

terms of the fields ξL and ξR. These are spurion superfields, whose only dynamical components

are the SM doublet superfields QL = (tL, bL)t and the singlet tc, whose θ-component is the

conjugate of the right-handed top tR. In order to write ξL and ξR in terms of QL and tc, we

have to choose an embedding of SU(3) ⊂ SO(6):

(ξL)
ia =






b1 −ib1 t1 it1 0

−ib1 −b1 −it1 t1 0

b2 −ib2 t2 it2 0

−ib2 −b2 −it2 t2 0

b3 −ib3 t3 it3 0

−ib3 −b3 −it3 t3 0






2/3

, (ξR)
ia =






0 0 0 0 (tc)1

0 0 0 0 i(tc)1

0 0 0 0 (tc)2

0 0 0 0 i(tc)2

0 0 0 0 (tc)3

0 0 0 0 i(tc)3






−2/3

, (3.7)

in terms of SO(6)×SO(5) multiplets, where the superscript in the fields denote the color SU(3)c
index. The subscript ±2/3 denotes the U(1)X charge of the fermion. The terms (3.6) explicitly
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L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.18)

SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.23)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.24)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.25)

U → g U h† (0.26)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.27)

U = exp

(

i

√
2

f
hâTâ

)

, U → g U h†, f =
√
2µ (0.28)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.29)

SO(5)/SO(4) (0.30)

Wel ⊇ QN
a QN

b ξRξL Wmag ⊇ MabξRξL ∆L ∼ b̄RbLh
Λ

ΛL
(〈Mnn〉 − 〈M55〉) (0.31)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.32)

Mij Mi5 ψM55
(0.33)

Reqn5 , ReM5n MIJ ∼ QN
I QN

J (0.34)

N = Nf = 11 N = Nf = 9 (0.35)

2

The SU(2)0,L × U(1)0,Y gauge fields W a
µ and Bµ introduced in this way are not yet the actual

SM gauge fields, because the flavor-color locking given by the VEV (2.6) generates a mixing

between the SO(4)m ∼= SU(2)m,L × SU(2)m,R magnetic gauge fields and the elementary gauge

fields. This explains the subscript 0 in SU(2)L,R and U(1)Y,R and in g and g′ in eq.(2.15). The

combination of fields along the diagonal SU(2)L × U(1)Y ⊂ SO(4)D × U(1)X group is finally

identified with the SM vector fields. The SM gauge couplings g and g′ are given by

1

g2
=

1

g2m
+

1

g20
,

1

g′2
=

1

g2m
+

1

g′20
. (2.16)

This mixing between elementary and composite gauge fields is analogous to the one advocated

in bottom-up 4D constructions of composite Higgs models. The situation is simpler for the color

group, since the gauge fields of SU(3)c are directly identified with the ordinary gluons of QCD;

since the group H in eq.(1.1) contains SU(3) × U(1), the minimal anomaly-free choices for H

are SO(6) or SU(4).

The set-up above is still unrealistic because of the presence of unwanted exotic massless states

(Mij and Mi5). There are various ways to address these points. We do that in the next two

sections, where we consider in greater detail the two models with H = SO(6) and H = SU(4),

corresponding to Nf = 11 and Nf = 9 flavors, respectively.

3 Model I: a Semi-Composite tR

The first model we consider is based on a SUSY SO(11) gauge theory with Nf = N = 11 electric

quarks. We also have two additional singlet fields, Sij and Sia, transforming as (1,20⊕ 1) and

(5,6) of SO(5)× SU(6), respectively.6 We add to the superpotential (2.1) the following terms:

1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia . (3.1)

The mass terms in eq.(3.1) break the SU(6) global symmetry to SO(6). The total global sym-

metry of the model is then

Gf = SO(5)× SO(6) . (3.2)

For m1S,2S > Λ, the singlets Sij and Sia can be integrated out in the electric theory. We get7

W eff
el = mabQ

aQb − λ2
1

2m1S
(QiQj)2 − λ2

2

2m2S
(QiQa)2 . (3.3)

In the magnetic dual superpotential, the quartic deformations give rise to mass terms for the

mesons Mij and Mi5:

Wmag ⊃ −1

2
m1M

2
ij −

1

2
m2M

2
ia , (3.4)

6See [20] for a similar set-up in the context of models with direct gaugino mediation of SUSY breaking.
7Of course, we could have started directly by deforming the superpotential (2.1) with the irrelevant operators

quartic in the quark fields appearing in eq.(3.3). In the spirit of our paper, we want to emphasize how easy is

to UV complete the above quartic terms. See [21] for studies of ISS theories deformed by irrelevant operators

quartic in the quark fields.
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√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.40)

identified with the Higgs field . (0.41)
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ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.43)

The chiral multiplets Mij and Mi5 stay massless;
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is the Goldstino.
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Z boson mass mZ . In deriving eq.(3.21) we have matched the SU(2) × U(1) couplings at the

scale µ, using eq.(2.16) with

αm(µ) =
2π

5log
(
Λ
µ

) . (3.22)

Notice that the scale of the poles does not depend onm1S , since it cancels out in the contributions

coming from Sij and Mij . Demanding for consistency that ΛL
i > m2S constrains ε to be not

too small. This is welcome from a phenomenological point of view, since a too small ε leads to

a parametrically weakly coupled magnetic sector (see eq.(3.22)) and too light magnetic vector

fields. On the other hand, ε cannot be too large for the stability of the vacuum, but values as

high as 1/10 or so should be fine, given the estimate (3.20). By taking natural choices for µ

around the TeV scale, we see that all the Landau poles occur above m2S , with SU(3)c being the

first coupling that blows up, entering the non-perturbative regime in the 102 − 103 TeV range.

The Yukawa couplings λ1,2 and λL,R in the superpotential (3.1) and (3.6) might also develop

Landau poles. A simple one-loop computation, in the limit in which the SM gauge couplings are

switched off, shows that these poles appear at scales much higher than those defined in eq.(3.21).

In a large part of the parameter space the Yukawa’s actually flow to zero in the UV. This is

even more so, when the SM gauge couplings are switched on, due to their growth in the UV.

4 Model II: a Fully Composite tR

The second model we consider is based on a SUSY SO(9) gauge theory with Nf = 9 electric

quarks and an additional singlet Sij in the (1,10) of SO(5)×SU(4). We add to the superpotential

(2.1) the following term:

λQiQjSij . (4.1)

The terms (4.1) do not break any global symmetry. The total anomaly-free global symmetry of

the model is

Gf = SO(5) × SU(4) . (4.2)

In the magnetic theory eq.(4.1) turns into a mass term λΛM ijSij. If we take λ ∼ O(1) around

the scale Λ, the singlets Sij and M ij can be integrated out. At leading order in the heavy mass,

this boils down to remove the chiral fields Sij and M ij from the Lagrangian. We summarize

in table 2 the gauge and flavor quantum numbers of the fields appearing in the electric and

magnetic theories.

The mass spectrum is the same as given in section 2, with the exception of the multiplet

M ij that has been decoupled together with the singlet Sij. The multiplet Mi5 is massless. We

embed SU(3)c × U(1)X into SU(4) and SU(2)0,L × U(1)0,Y into SO(5) × U(1)X . The U(1)X is

identified as the diagonal SU(4) generator not contained in SU(3)c, properly normalized, so that

4 → 32/3 ⊕1−2 under SU(3)c ×U(1)X . We identify tR as the (conjugate) fermion component of

Mα5, α = 6, 7, 8. We also get an unwanted extra fermion, coming from M95. Being an SU(2)L
singlet, ψM95 corresponds to an exotic particle with hypercharge Y = X = 2. We can get rid
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L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.16)

ξia =
1√
2





b1L b2L b3L 0
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0 0 0 0


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2/3
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0 0 0 0

0 0 0 ψc
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

−2

(0.17)

SU(4) ⊃ SU(3)c ×U(1)X 4 = 32/3 + 12 (0.18)

2

SO(9)el SO(5) SU(4)

QN
i 9 1 4

QN
a 9 5 1

Sij 1 1 10

(a)

SO(4)mag SO(5) SU(4)

qni 4 1 4

qna 4 5 1

Mia 1 5 4

Mab 1 14⊕ 1 1

(b)

Table 2: Quantum numbers under Gf and the strong gauge group of the matter fields appearing

in the composite sector of model II: (a) UV electric and (b) IR magnetic theories.
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4 → 32/3 ⊕1−2 under SU(3)c ×U(1)X . We identify tR as the (conjugate) fermion component of

Mα5, α = 6, 7, 8. We also get an unwanted extra fermion, coming from M95. Being an SU(2)L
singlet, ψM95 corresponds to an exotic particle with hypercharge Y = X = 2. We can get rid

of this particle by adding to the visible sector a conjugate chiral field ψc that mixes with M95,

in the same way as Mia is going to mix with tL. The field ψc is actually necessary for the

consistency of the model, so that all anomalies cancel. In the UV theory, the mixing terms are

λtξ
iaQiQa + λφφ

iaQiQa . (4.3)

Like in the previous section, we have written the mixing terms in a formal Gf invariant way by

means of the superfields ξ and φ. These are spurions, whose only dynamical components are

the SM doublet QL and the singlet ψc. More explicitly, we have

ξαa =
1√
2






bL
−ibL
tL
itL
0


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
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0

ψc






−2

, (4.4)

where we have omitted the color index in Q and ψc. In the magnetic theory the Yukawa’s (4.3)

become

εtξ
iaMia + εφφ

iaMia . (4.5)

Thanks to the last term in eq.(4.5), the multiplets M95 and ψc combine and get a mass εφ/
√
2.

The assumption of an external source of SUSY breaking affecting only the visible sector cannot
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stays massless:

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)
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SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
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†iQi m̃2
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m̃2
1el

>
8

5
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Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.24)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.25)

U → g U h† (0.26)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.27)
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√
2µ (0.28)

qnb = exp
( i

√
2

f
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where we have omitted the color index in Q and ψc. In the magnetic theory the Yukawa’s (4.3)
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


QN

i

(0.37)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.38)

eaten by the magnetic vector bosons ; (0.39)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.40)

identified with the Higgs field . (0.41)

N = 1 (0.42)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.43)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.44)

⇒ mZ µ Λ miS mi (0.45)

Wel ⊇ λQiQjSij (0.46)

Wmag ⊇ MMijSij (0.47)
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RG Flow of Soft Terms

5 of SO(5) decomposes as 5 = (2,2) ⊕ (1,1) under SU(2)L × SU(2)R and can be written as

follows:

Ψ5 =
1√
2





d− − u+
−i(u+ + d−)

u− + d+
i(u− − d+)√

2s




, (A.4)

where

q± =

(
u±
d±

)

(A.5)

are the two doublets with T3R = ±1/2, respectively, forming the bi-doublet, and s is the singlet.

B Renormalization Group Flow of Soft Terms

In this appendix we briefly review, following [16], how to understand the fate of UV soft terms

in a SUSY gauge theory at strong coupling.11 For concreteness we focus here on SO(N) gauge

theories with N − 2 < Nf ≤ 3/2(N − 2) flavors in the fundamental, admitting a Seiberg dual

IR-free description. This is the case of interest for us, but what follows has clearly a wider

applicability. More specifically, we want to determine the form of the IR soft terms in the

magnetic theory in terms of the electric ones. We first consider the case with no superpotential:

Wel = 0. Soft terms can be seen as the θ-dependent terms of spurion superfields whose lowest

components are the wave-function renormalization of the Kähler potential and the (holomorphic)

gauge coupling constant. The Lagrangian renormalized at the scale E is

Lel =

∫
d4θ

Nf∑

I=1

ZI(E)Q†
Ie

VelQI +
(∫

d2θS(E)Wα
elWel,α + h.c.

)
, (B.1)

where

ZI(E) =Z0
I (E)

(
1− θ2BI(E) − θ̄2B†

I(E)− θ2θ̄2(m̃2
I(E)− |BI(E)|2)

)
,

S(E) =
1

g2(E)
− iΘ

8π2
+ θ2

m̃λ(E)

g2(E)

(B.2)

are the spurion superfields that encode the B-terms BI , non-holomorphic mass terms m̃2
I and

the gaugino mass m̃λ. When there is no superpotential, the BI terms are irrelevant and can be

set to zero. The Lagrangian (B.1) is invariant under a U(1)Nf symmetry under which

QI → eAIQI , ZI → e−AI−A†
IZI , S → S −

Nf∑

I=1

tI
8π2

AI , (B.3)

11An alternative derivation of the results of [16] has recently been formulated [17]. We follow the original papers

because we have found easier in this way to estimate the corrections coming from superpotential effects, although

a reformulation in terms of the flow of conserved currents and of the would-be conserved R-symmetry should be

possible.
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where AI are constant chiral superfields and tI are the Dynkin indices of the representations of

the fields QI , tI = 1 for SO(N) fundamentals. In terms of these spurions, one can construct the

following RG invariant quantities:

ΛS = Ee−
8π2S(E)

b , ẐI = ZI(E)e
−

∫R(E) γI (E)
β(R)

dR
. (B.4)

In eq.(B.4), b = 3(N − 2) − Nf is the coefficient of the one-loop β-function β(R), γI are the

anomalous dimensions of the fields QI , and R(E) is defined as S(E) in eq.(B.2), but in terms

of the physical, rather than holomorphic, gauge coupling constant. In terms of ΛS and ẐI , one

can further construct a U(1)Nf and RG invariant superfield:

I = Λ†
S

( Nf∏

I=1

Ẑ
2tI
b

I

)
ΛS . (B.5)

In the far IR, the dynamics of the system is best described by the magnetic theory, whose degrees

of freedom are the mesons MIJ = QIQJ , the dual magnetic quarks qI and the SO(Nf −N + 4)

magnetic vector fields Vm. We can use the RG invariants I and ẐI and dimensional analysis to

write the lowest dimensional operators in the low-energy Lagrangian:

Lmag =

∫
d4θ

(
cMIJ

M †
IJ ẐI ẐJMIJ

I
+ cqIq

†
Ie

Vmag Ẑ−1
I (

∏

J

Ẑ
tJ
b

J )qI
)

+

∫
d2θ

(
Sm(E)Wα

mWm,α +
qIMIJqJ

ΛS

)
+ h.c. ,

(B.6)

where

Sm(E) =
1

g2m(E)
− iΘm

8π2
+ θ2

m̃m,λ(E)

g2m(E)
(B.7)

is the magnetic version of the spurion S defined in eq.(B.2). As shown in [16], these terms are

the leading sources of soft terms provided that m̃I " Λ, condition that will always be assumed.

The last term in the second row in eq.(B.6) is the induced superpotential in the magnetic

theory. Demanding the invariance of W fixes the U(1)Nf charges of the dual quarks qI to be

QI(qJ) = 1/b − δIJ . These, in turn, fix the Ẑ-dependence of the Kähler potential term of the

magnetic quarks. The coefficients cMIJ
and cqI are real superfield spurions, the IR analogues of

the wave function renormalization constants ZI(E). A relation between IR and UV soft terms is

achieved by noticing that in the far UV (IR) the electric (magnetic) theory is free. This implies

that for sufficiently high E, we can identify ẐI with ZI , neglecting quantum corrections, and

identify m2
I(E) ≡ m̃2

I with the physical UV electric soft terms. Similarly, in the far IR, we can

neglect the θ2 and θ4 corrections induced by quantum corrections to cMIJ
and cqI . We can then

compute the IR soft terms by working out the θ2 and θ4 terms in the Lagrangian (B.6). The

physical non-holomorphic soft masses for the mesons and magnetic quarks are

m̃2
MIJ

= m̃2
I + m̃2

J − 2

b

Nf∑

K=1

m̃2
K , m̃2

qI = −m̃2
I +

1

b

Nf∑

K=1

m̃2
K . (B.8)
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can further construct a U(1)Nf and RG invariant superfield:

I = Λ†
S

( Nf∏

I=1

Ẑ
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is the magnetic version of the spurion S defined in eq.(B.2). As shown in [16], these terms are

the leading sources of soft terms provided that m̃I " Λ, condition that will always be assumed.
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QI(qJ) = 1/b − δIJ . These, in turn, fix the Ẑ-dependence of the Kähler potential term of the

magnetic quarks. The coefficients cMIJ
and cqI are real superfield spurions, the IR analogues of

the wave function renormalization constants ZI(E). A relation between IR and UV soft terms is

achieved by noticing that in the far UV (IR) the electric (magnetic) theory is free. This implies
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and cqI . We can then

compute the IR soft terms by working out the θ2 and θ4 terms in the Lagrangian (B.6). The
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In order to match our theories with the bottom-up pCHM, it is convenient to take the unitary

gauge πa = 0 and work with an effective SO(5)/SO(4) coset parametrized by

U = exp

(

i

√
2

f
hâTâ

)

. (5.3)

In this gauge one has, omitting indices,

iU tDµq = iU t
(
∂µ − i(g0W

a
µTaL + g′0BµT3R)

)
Uq̃ − gmq̃ρaµT

a

=(dâµT
â + Ea

µT
a)q̃ − gmq̃ρaµT

a ,
(5.4)

where ρaµ are the magnetic vector mesons,

dâµ =−
√
2

f
(Dµh)

â + . . . ,

Ea
µ =g0A

a
µ +

i

f2
(h

↔
Dµ h)a + . . .

(5.5)

are the CCWZ fields and Aa
µ are defined in eq.(2.14). Plugging the parametrization (5.4) into

the kinetic term |Dµqna |2 and setting q̃na = µδna gives

|Dµq
n
a |2 ⊃

f2

4
(dâµ)

2 +
f2

2
(gmρaµ − Ea

µ)
2 . (5.6)

The second term in eq.(5.6) is responsible for the mixing of SM and magnetic gauge fields. We

can match the terms (5.6) with the ones appearing in the bottom-up constructions. In the

notations and conventions of [10], we have

gm = gρ , f = fρ . (5.7)

When the Higgs field gets a VEV, say 〈h4̂〉 ≡ h '= 0, the SM gauge bosons get a mass

mW =
gf

2
sin

〈h〉
f

≡ gv

2
, mZ =

mW

cos θW
, (5.8)

where tan θW = g′/g, in terms of the canonical SM couplings (2.16). As expected, the tree-level

ρ-parameter equals one, thanks to the custodial symmetry underlying the theory.

Ignoring the SM gauge couplings and the mass mixing in the superpotential, the Higgs can

be completely removed from the non-derivative part of the Lagrangian (including the SO(4)m
D-term potential) by a field redefinition of all bosons and fermions with SO(5) flavor indices:

Mab → (UMU t)ab, ψMab
→ (UψMU t)ab , (5.9)

and so on. Notice that complex conjugate fields also transform with the matrix U , the latter

being real: U = U∗. The Higgs appears in the SU(2)0,L ×U(1)0,Y D-terms when the SM gauge

couplings are turned on. The lowest-order interactions involving the Higgs are trilinear couplings

18

where we have explicitly reported the SO(5) group indices. Each of the above two operators

(2.17) can couple to the SM fermion fields. The latter are conveniently written in terms of

spurion five-component fermions ξL and ξR, formally transforming in the fundamental of SO(5)

and with U(1)X charge qX = 2/3. Keeping only the SM doublet qL = (tL, bL)t and tR, we can

write the following two chiral spurions:

ξL =
1√
2





bL

−ibL

tL

itL

0




, ξR =





0

0

0

0

tR




. (2.18)

The leading order Lagrangian for the SM and composite fermions is easily constructed:

Lf,0 = q̄Li /DqL + t̄Ri /DtR +
NS�

i=1

S̄i(i /∇−miS)Si +

NQ�

j=1

Q̄j(i /∇−miQ)Qj+

NS�

i=1

� �itS√
2
ξ̄RPLUSi + �iqS ξ̄LPRUSi

�
+

NQ�

j=1

��jtQ√
2
ξ̄RPLUQi + �jqQξ̄LPRUQi

�
+ h.c.,

(2.19)

where a
√
2 factor in the definition of �i,jtS,tQ has been introduced for later convenience and

∇µ = ∂µ − iEµ − iqXg
�
0Bµ . (2.20)

There are in general 3NQ + 3NS complex phases appearing in eq.(2.19), 2NQ + 2NS + 1 of

which can be reabsorbed by appropriate phase redefinitions of the fermion fields, for a total of

NQ +NS − 1 physical phases. Therefore, without any loss of generality, we can take the vector

masses miS and mjQ to be real and positive. Along the lines of [6], it will be useful to rewrite

the last row in (2.19) as

NS�

i=1

�
t̄RE

i
tSPLUSi + q̄LE

i
qSPRUSi

�
+

NQ�

j=1

�
t̄RE

j
tQPLUQi + q̄LE

j
qQPRUQi

�
+ h.c. (2.21)

where the E’s are spurion mixing terms, transforming as follows under the enlarged group

SU(2)0L × U(1)0R × U(1)0X × SO(5)× U(1)X , eventually broken to GSM by the spurion VEV’s:

E
i
tS , E

j
tQ ∼ (1, 0, 2/3, 5̄,−2/3), E

i
qS , E

j
qQ ∼ (2,−1/2, 2/3, 5̄,−2/3) . (2.22)

Couplings between spin 1/2 and spin 1 resonances and additional couplings to the σ-model

fields dµ and Eµ are easily constructed by recalling that gρρµ − Eµ, aµ and dµ, under SO(5),

homogeneously transform according to local SO(4) transformations. The most general leading

order couplings are the following (assuming LR symmetry):

Lf,int =
�

η=L,R

�
k
V,η
ijk Q̄jγ

µ(gρiρ
i
µ − Eµ)PηQk + k

mix
ijklQ̄iγ

µ(gρkρ
k
µ − gρlρ

l
µ)PηQj

+ k
A,η
ikj S̄iγ

µ
gaka

k
µPηQj +

�

i,j

k
d,η
ij S̄iγ

µ
dµPηQj + h.c.

�
,

(2.23)
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of the schematic form hq̃2. In particular, no tree-level Higgs potential can be induced by the

scalar interactions in the D-term potential.

The field redefinitions like eq.(5.9) affect the kinetic terms of the fields. Focusing on a specific

2-component fermion, say ψMia , we get

ψ†
Mia

iσ̄µDµψMia → ψ†
Mia

U tiσ̄µDµ(UψMia) = ψ†
Mia

iσ̄µ
(
∇ij

µ δab − i(dµ)abδij
)
ψMjb

(5.10)

where

∇ij
µ = δij(∂µ − iEµ)− iXijg

′
0Bµ . (5.11)

Similar considerations apply to the other scalar and fermion fields in the composite sector. The

magnetic quarks would also feature in the covariant derivative the vector mesons ρµ. When

the B-terms in the composite sector are considered, the mesons Mab develop a VEV, eq.(B.17).

The Higgs NGB’s come from a combination of the dual quarks qa and the mesons Mab, and

correspondingly a parametrization similar to that in eq.(5.1) applies to Mab as well. The Higgs

kinetic term arises now from the sum of the |Dµqa|2 and |DµMab|2 terms. We do not further

discuss the deformations induced by the meson VEV’s.

After the field redefinitions (5.9), the fermion mass mixing terms become of the form ξUM

and explicitly depend on the Higgs field. In the model I, ψMin mix with ψqni . The 6 of SO(6) splits

in two fields in the 3 and 3̄ of SU(3)c, both in the 5 of SO(5), that combine pairwise in Dirac mass

terms. In total we have two Dirac fermions Qi in the 4 ∼= (2,2) of SO(4)D ∼= SU(2)L×SU(2)R,

coming from Min and qni , and one Dirac fermion singlet S, coming from Mi5. The canonical

mass basis requires an SO(2) rotation among the fields Q1 and Q2: Q1 → Q1 cosω +Q2 sinω,

Q2 → Q2 cosω −Q1 sinω, where

tanω =
−m2 +

√
32µ2 +m2

2

4
√
2µ

. (5.12)

After this rotation, we see that the fermion mixing is of the general form advocated in [10], with

a mismatch in the number of composite fermion bi-doublets and singlets coupling to the SM

fields, (NQ = 2, NS = 1) in the notation of [10]. We can match the mixing (3.8) with the ones

defined in eq.(2.19) of [10]:

εtS = εR , ε1tQ = εR cosω , ε2tQ = εR sinω ,

εqS =
εL√
2
, ε1qQ =

εL√
2
cosω , ε2qQ =

εL√
2
sinω .

(5.13)

Fermion mixing in the model II is particularly simple. No diagonalization is needed in the

composite sector and only one (Dirac) fermion bi-doublet couples to tL. The fields tR and SL,

and hence the parameters mS , εtS and εtQ, should be removed from eq.(2.19) of [10], being the

right-handed top fully composite and identified with SR. Matching the remaining mixing gives

εqS = εqQ = εt . (5.14)
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model I model II

1205.0770

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.18)

SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.23)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.24)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.25)

U → g U h† (0.26)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.27)

U = exp

(

i

√
2

f
hâTâ

)

, U → g U h†, f =
√
2µ (0.28)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.29)

SO(5)/SO(4) (0.30)

Wel ⊇ QN
a QN

b ξRξL Wmag ⊇ MabξRξL ∆L ∼ b̄RbLh
Λ

ΛL
(〈Mnn〉 − 〈M55〉) (0.31)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.32)

Mij Mi5 ψM55
(0.33)

Reqn5 , ReM5n MIJ ∼ QN
I QN

J (0.34)

N = Nf = 11 N = Nf = 9 (0.35)

Mia → UabMib, ψMia → UabψMib
(0.36)

2
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compositeness for the light fermions and assume that they get mass from irrelevant operators of

the form εabξLMabξR. These operators in the UV come from quartic superpotential terms of the

form λabξLQaQbξR. When the mesons Mab develop tadpoles, they provide a mass for the SM

fermions. Of course, one should now find an alternative solution to the flavor bounds. Realizing

UV completions of pCHM with all SM fermions partially composite remains an open problem.

The generalization of our results to other cosets or to models featuring different fermion

representations should not be too difficult. It would also be very interesting to study in more

detail the phenomenological consequences of our models, including the impact of an almost

SUSY composite sector on the radiatively induced Higgs potential.
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A SO(6), SU(3) and SO(5) Generators

We show here the group theoretical conventions used in the paper. Let us denote by

tabij = −tbaij =
i

2
(δai δ

b
j − δbi δ

a
j ) (A.1)

the n × n anti-symmetric matrices, labeled by a, b = 1, . . . , n, with matrix elements i, j. The

matrices tab have (+i/2) in the a-th row and b-th column and (−i/2) in the b-th row and a-th

column, with all other components zero. The SO(6) generators are taken to be, for n = 6,

T 1 = t32 + t14, T 2 = t31 + t42, T 3 = t12 + t43, T 4 = t16 + t52, T 5 = t51 + t62, (A.2)

T 6 = t36 + t54, T 7 = t53 + t64, T 8 =
1√
3
(t12 + t34 + 2t65), T 9 = t36 + t54, T 10 = t14 + t23,

T 11 = t24 + t31, T 12 = t16 + t25, T 13 = t36 + t45, T 14 = t46 + t53, T 15 =

√
2

3
(t12 + t34 + t56).

In this basis, T 1,...,8 generate SU(3)c. The U(1)X generator is given by (4/
√
6)T 15, so that the

fields ξL and ξR have U(1)X charges 2/3 and −2/3, respectively.

The SO(5) generators are also expressed in terms of the matrices tab with n = 5. We take

T 1
L = t32 + t41, T 2

L = t13 + t42, T 3
L = t21 + t43,

T 1
R = t32 + t14, T 2

R = t13 + t24, T 3
R = t21 + t34,

T â =
√
2 ta5, â = 1, 2, 3, 4 .

(A.3)

In this basis, T 1,2,3
L generate SU(2)L and T 1,2,3

R generate SU(2)R of the SO(4) ∼= SU(2)L×SU(2)R
local isomorphism. The matrices t1̂,2̂,3̂,4̂ generate the coset SO(5)/SO(4). A multiplet Ψ5 in the
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A SO(6), SU(3) and SO(5) Generators

We show here the group theoretical conventions used in the paper. Let us denote by

tabij = −tbaij =
i

2
(δai δ

b
j − δbi δ

a
j ) (A.1)

the n × n anti-symmetric matrices, labeled by a, b = 1, . . . , n, with matrix elements i, j. The

matrices tab have (+i/2) in the a-th row and b-th column and (−i/2) in the b-th row and a-th

column, with all other components zero. The SO(6) generators are taken to be, for n = 6,

T 1 = t32 + t14, T 2 = t31 + t42, T 3 = t12 + t43, T 4 = t16 + t52, T 5 = t51 + t62, (A.2)

T 6 = t36 + t54, T 7 = t53 + t64, T 8 =
1√
3
(t12 + t34 + 2t65), T 9 = t36 + t54, T 10 = t14 + t23,

T 11 = t24 + t31, T 12 = t16 + t25, T 13 = t36 + t45, T 14 = t46 + t53, T 15 =

√
2

3
(t12 + t34 + t56).

In this basis, T 1,...,8 generate SU(3)c. The U(1)X generator is given by (4/
√
6)T 15, so that the

fields ξL and ξR have U(1)X charges 2/3 and −2/3, respectively.

The SO(5) generators are also expressed in terms of the matrices tab with n = 5. We take

T 1
L = t32 + t41, T 2

L = t13 + t42, T 3
L = t21 + t43,

T 1
R = t32 + t14, T 2

R = t13 + t24, T 3
R = t21 + t34,

T â =
√
2 ta5, â = 1, 2, 3, 4 .

(A.3)

In this basis, T 1,2,3
L generate SU(2)L and T 1,2,3

R generate SU(2)R of the SO(4) ∼= SU(2)L×SU(2)R
local isomorphism. The matrices t1̂,2̂,3̂,4̂ generate the coset SO(5)/SO(4). A multiplet Ψ5 in the

22

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.18)

SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 12 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.23)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.24)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.25)

U → g U h† (0.26)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.27)

U = exp

(

i

√
2

f
hâTâ

)

, U → g U h†, f =
√
2µ (0.28)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.29)

SO(5)/SO(4) (0.30)

Wel ⊇ QN
a QN

b ξRξL Wmag ⊇ MabξRξL ∆L ∼ b̄RbLh
Λ

ΛL
(〈Mnn〉 − 〈M55〉) (0.31)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.32)

Mij Mi5 ψM55
(0.33)

Reqn5 , ReM5n MIJ ∼ QN
I QN

J (0.34)
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since the latter can decay through tunneling too quickly to them. These vacua do not appear

in our model, since the superpotential does not include meson terms of the form M2
ab. Other

non-SUSY vacua can be found at qnm ∼ qni ∼ Mij ∼ Mnm ∼ Min ∼ µ, qn5 = 0, Mn5 = 0, Mi5 = 0,

while M55 is still a flat direction. They do not lead to the desired pattern of symmetry breaking

and they do not allow us to embed the SM in the flavor group. All these vacua, even if present,

have however exactly the same tree-level energy of the ISS vacuum and would be irrelevant for

the tunneling rate.

Supersymmetric vacua9 are expected when the mesons get a large VEV, in analogy with

[15, 21]. The scalar potential has a local maximum at the origin in field space, with energy

VMax = 5µ4, while at the local minimum VMin = µ4. We look for SUSY vacua in the region of

large meson values, |Mij | " µ, |Mab| " µ. For simplicity, we take

Mab = X δab , Mij = Y δij , Mia = 0 . (3.12)

For |X|, |Y | " µ, the magnetic quarks are all massive and can be integrated out. Below this

scale, we get a pure SUSY SO(N) Yang-Mills theory with a set of neutral mesons M . The

resulting superpotential is

W = 2Λ− 5
2 (detM)

1
2 − µ2Maa −

1

2
m1M

2
ij −

1

2
m2M

2
ia , (3.13)

where we neglect the elementary sector, that gives rise to subleading corrections. By imposing

the vanishing of the F -term conditions, we find SUSY vacua at

X =Λ
5
6µ− 1

3m
1
2
1 = ε−

1
3

√
Λm1 = ε−

5
6
√
µm1 ,

Y =Λ
5
12µ

5
6m

− 1
4

1 = ε
5
6Λ

( Λ

m1

) 1
4
= ε−

5
12µ

( µ

m1

) 1
4
,

(3.14)

where

ε =
µ

Λ
(3.15)

is a parametrically small number. The vacua (3.14) can also be found directly in the electric

theory. In the region where Sij is non-vanishing, all the quarks Q are massive and the theory

develops an Affleck-Dine-Seiberg superpotential of the form [24]

Wnp = (N −Nf − 2)Λ
Nf−3(N−2)

Nf−N+2 (detM)
1

Nf−N+2 , (3.16)

where M = MIJ = QIQJ . It is straightforward to check that this term induces in fact the SUSY

vacua (3.14). The vacuum (3.14) lies in the range of calculability of the magnetic theory if

µ % |X|, |Y | % Λ . (3.17)

9By supersymmetric vacua we mean those that are SUSY in the limit where we switch off the external source

of SUSY breaking.
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b = 3(N − 2)−Nf = 2(N − 3) I = (i, a), a = 1, . . . , 5, i = 6, . . . , N (0.1)

SO(4)m × SO(5) × SU(N − 5) → SO(4)D × SU(N − 5) (0.2)

N ≤ 3(N − 2)/2 ⇒ N ≥ 6 (0.3)

SU(3)c ⊆ SU(N − 5) SU(2)0,L × SU(2)0,R ∼= SO(4) ⊆ SO(5) (0.4)

Y = T3R +X, U(1)X ⊆ SU(N − 5) (0.5)

ε =
µ

Λ
, m1 = Λ εκ (0.6)

1

The conditions (3.17), together with the requirement that the mesons Mij are not anomalously

light, m1 ≥ µ, determine the allowed range for m1. Parametrizing

m1 = Λεκ , (3.18)

we get
2

3
< κ ≤ 1 . (3.19)

As a very crude estimate of the lifetime of the metastable vacuum, we can parametrize the

potential using the triangular approximation [25], neglecting the direction in field space along

the Y direction, which is always closer to the ISS vacuum, given the bound (3.19). The bounce

action is parametrically given by [26, 15, 25]

Sb ∼
|X|4

VMax
∼ ε−

16
3 +2κ ! ε−

10
3 . (3.20)

We conclude that for small ε the metastable vacuum is parametrically long-lived and a mild

hierarchy between µ and Λ should be enough to get a vacuum with a lifetime longer than the

age of the universe.

3.2 Landau Poles

Similarly to what happens in models with direct gauge mediation of SUSY breaking, where the

SM group is obtained by gauging a global subgroup of the hidden sector, one should worry about

the possible presence of Landau poles in the SM couplings, the QCD coupling α3 in particular,

due to the proliferation of colored fields. Our model is no exception and Landau poles develop

for the SM gauge couplings αi. In order to simplify the RG evolution, we conservatively take

all the masses of the magnetic theory to be of order µ, SM superpartners included, with the

exception of the mesons Mij , whose mass m1 is determined in terms of m1S and Λ. We run from

mZ up to µ with the SM fields, from µ up to Λ with the degrees of freedom of the magnetic

theory and above Λ with the degrees of freedom of the electric theory.

A one-loop computation shows that the SU(3)c, SU(2)0,L and U(1)0,Y couplings develop

Landau poles at the scales

ΛL
3 =m2S exp

( 2π

21α3(mZ)

)(mZ

µ

)− 1
3
(µ
Λ

) 2
7
( Λ

m2S

) 16
21
,

ΛL
2 =m2S exp

( 2π

17α2(mZ)

)(mZ

µ

)− 19
102

(µ
Λ

) 22
17
( Λ

m2S

) 11
17
,

ΛL
1 =m2S exp

( 2π

91α1(mZ)

)(mZ

µ

) 41
546

(µ
Λ

) 336
546

( Λ

m2S

) 215
273

.

(3.21)

We have taken λ1,2 ∼ 1 in the superpotential (3.1), so that m2S ∼ Λ/ε is the highest scale in

the electric theory, α1,2,3(mZ) are the U(1)Y × SU(2)L × SU(3)c SM couplings evaluated at the
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Mixing Terms

SO(9)el SO(5) SU(4)

QN
i 9 1 4

QN
a 9 5 1

Sij 1 1 10

(a)

SO(4)mag SO(5) SU(4)

qni 4 1 4

qna 4 5 1

Mia 1 5 4

Mab 1 14⊕ 1 1

(b)

Table 2: Quantum numbers under Gf and the strong gauge group of the matter fields appearing

in the composite sector of model II: (a) UV electric and (b) IR magnetic theories.

of this particle by adding to the visible sector a conjugate chiral field ψc that mixes with M95,

in the same way as Mia is going to mix with tL. The field ψc is actually necessary for the

consistency of the model, so that all anomalies cancel. In the UV theory, the mixing terms are

λtξ
iaQiQa + λφφ

iaQiQa . (4.3)

Like in the previous section, we have written the mixing terms in a formal Gf invariant way by

means of the superfields ξ and φ. These are spurions, whose only dynamical components are

the SM doublet QL and the singlet ψc. More explicitly, we have

ξαa =
1√
2





bL
−ibL
tL
itL
0





2/3

, ξ9a = 0 , φαa = 0 , φ9a =





0

0

0

0

ψc





−2

, (4.4)

where we have omitted the color index in Q and ψc. In the magnetic theory the Yukawa’s (4.3)

become

εtξ
iaMia + εφφ

iaMia . (4.5)

Thanks to the last term in eq.(4.5), the multiplets M95 and ψc combine and get a mass εφ/
√
2.

The assumption of an external source of SUSY breaking affecting only the visible sector cannot

work now, because tR is a fully composite particle, and would result in an unacceptable light

stop t̃R. We then also add SUSY breaking terms in the composite sector, by assuming that

they respect the global symmetry Gf . In order to have a well-defined UV theory, we introduce

positive definite scalar soft terms in the electric theory and analyze their RG flow towards the IR

following [16]. See appendix B for all the details on how this is performed and the approximations

underlying the procedure. Neglecting soft masses for the magnetic gauginos and B-terms, the

non-SUSY IR Lagrangian reads

−L
!
!!SUSY = m̃2

L|t̃L|2 + m̃2
ψ|ψ̃|2 + (εLBL(ξL)iaMia +

1

2
m̃g,αλαλα + h.c.)

+ m̃2
1|Mia|2 + m̃2

2|Mab|2 + m̃2
3|qi|2 − m̃2

4|qa|2 ,
(4.6)
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14

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.16)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0
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

2/3

, φia =
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

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.17)
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Explicit SUSY Breaking
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following [16]. See appendix B for all the details on how this is performed and the approximations

underlying the procedure. Neglecting soft masses for the magnetic gauginos and B-terms, the

non-SUSY IR Lagrangian reads
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positive definite scalar soft terms in the electric theory and analyze their RG flow towards the IR

following [16]. See appendix B for all the details on how this is performed and the approximations

underlying the procedure. Neglecting soft masses for the magnetic gauginos and B-terms, the
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As can be seen from eq.(4.7), there is no choice of ω for which all the magnetic soft terms are
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Landau Poles model I

The conditions (3.17), together with the requirement that the mesons Mij are not anomalously

light, m1 ≥ µ, determine the allowed range for m1. Parametrizing

m1 = Λεκ , (3.18)

we get
2

3
< κ ≤ 1 . (3.19)

As a very crude estimate of the lifetime of the metastable vacuum, we can parametrize the

potential using the triangular approximation [25], neglecting the direction in field space along

the Y direction, which is always closer to the ISS vacuum, given the bound (3.19). The bounce

action is parametrically given by [26, 15, 25]

Sb ∼
|X|4

VMax
∼ ε−

16
3 +2κ ! ε−

10
3 . (3.20)

We conclude that for small ε the metastable vacuum is parametrically long-lived and a mild

hierarchy between µ and Λ should be enough to get a vacuum with a lifetime longer than the

age of the universe.

3.2 Landau Poles

Similarly to what happens in models with direct gauge mediation of SUSY breaking, where the

SM group is obtained by gauging a global subgroup of the hidden sector, one should worry about

the possible presence of Landau poles in the SM couplings, the QCD coupling α3 in particular,

due to the proliferation of colored fields. Our model is no exception and Landau poles develop

for the SM gauge couplings αi. In order to simplify the RG evolution, we conservatively take

all the masses of the magnetic theory to be of order µ, SM superpartners included, with the

exception of the mesons Mij , whose mass m1 is determined in terms of m1S and Λ. We run from

mZ up to µ with the SM fields, from µ up to Λ with the degrees of freedom of the magnetic

theory and above Λ with the degrees of freedom of the electric theory.

A one-loop computation shows that the SU(3)c, SU(2)0,L and U(1)0,Y couplings develop

Landau poles at the scales
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We have taken λ1,2 ∼ 1 in the superpotential (3.1), so that m2S ∼ Λ/ε is the highest scale in

the electric theory, α1,2,3(mZ) are the U(1)Y × SU(2)L × SU(3)c SM couplings evaluated at the
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the possible presence of Landau poles in the SM couplings, the QCD coupling α3 in particular,
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for the SM gauge couplings αi. In order to simplify the RG evolution, we conservatively take

all the masses of the magnetic theory to be of order µ, SM superpartners included, with the

exception of the mesons Mij , whose mass m1 is determined in terms of m1S and Λ. We run from

mZ up to µ with the SM fields, from µ up to Λ with the degrees of freedom of the magnetic

theory and above Λ with the degrees of freedom of the electric theory.
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We have taken λ1,2 ∼ 1 in the superpotential (3.1), so that m2S ∼ Λ/ε is the highest scale in

the electric theory, α1,2,3(mZ) are the U(1)Y × SU(2)L × SU(3)c SM couplings evaluated at the
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We have taken λ1,2 ∼ 1 in the superpotential (3.1), so that m2S ∼ Λ/ε is the highest scale in

the electric theory, α1,2,3(mZ) are the U(1)Y × SU(2)L × SU(3)c SM couplings evaluated at the
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We have taken λ1,2 ∼ 1 in the superpotential (3.1), so that m2S ∼ Λ/ε is the highest scale in

the electric theory, α1,2,3(mZ) are the U(1)Y × SU(2)L × SU(3)c SM couplings evaluated at the
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We have taken λ1,2 ∼ 1 in the superpotential (3.1), so that m2S ∼ Λ/ε is the highest scale in

the electric theory, α1,2,3(mZ) are the U(1)Y × SU(2)L × SU(3)c SM couplings evaluated at the
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The conditions (3.17), together with the requirement that the mesons Mij are not anomalously

light, m1 ≥ µ, determine the allowed range for m1. Parametrizing

m1 = Λεκ , (3.18)

we get
2

3
< κ ≤ 1 . (3.19)

As a very crude estimate of the lifetime of the metastable vacuum, we can parametrize the

potential using the triangular approximation [25], neglecting the direction in field space along

the Y direction, which is always closer to the ISS vacuum, given the bound (3.19). The bounce

action is parametrically given by [26, 15, 25]

Sb ∼
|X|4

VMax
∼ ε−

16
3 +2κ ! ε−

10
3 . (3.20)

We conclude that for small ε the metastable vacuum is parametrically long-lived and a mild

hierarchy between µ and Λ should be enough to get a vacuum with a lifetime longer than the

age of the universe.

3.2 Landau Poles

Similarly to what happens in models with direct gauge mediation of SUSY breaking, where the

SM group is obtained by gauging a global subgroup of the hidden sector, one should worry about
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We have taken λ1,2 ∼ 1 in the superpotential (3.1), so that m2S ∼ Λ/ε is the highest scale in

the electric theory, α1,2,3(mZ) are the U(1)Y × SU(2)L × SU(3)c SM couplings evaluated at the
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Landau Poles model II
b = 3(N − 2)−Nf = 2(N − 3) I = (i, a), a = 1, . . . , 5, i = 6, . . . , N (0.1)

SO(4)m × SO(5) × SU(N − 5) → SO(4)D × SU(N − 5) (0.2)

N ≤ 3(N − 2)/2 ⇒ N ≥ 6 (0.3)

SU(3)c ⊆ SU(N − 5) SU(2)0,L × SU(2)0,R ∼= SO(4) ⊆ SO(5) (0.4)

Y = T3R +X, U(1)X ⊆ SU(N − 5) (0.5)

ε =
µ

Λ
, m1 = Λ εκ ΛL

3 ∼ 102 − 103 TeV (0.6)

FMab
= qna q

n
b − µ2δab (0.7)

ΛL
1 ∼ 103 TeV (0.8)

1

and U(1)0,Y couplings develop Landau poles at the scales

ΛL
3 =Λ exp

( π

2α3(mZ)

)(mZ

µ

)− 7
4
(µ

Λ

) 1
4
,

ΛL
2 =Λ exp

( 2π

9α2(mZ)

)(mZ

µ

)− 19
54
(µ
Λ

)2
,

ΛL
1 =Λ exp

( 6π

305α1(mZ)

)(mZ

µ

) 41
610

(µ
Λ

) 236
305

,

(4.15)

where we have matched the SU(2)×U(1) couplings at the scale µ, using eq.(2.16) with

αm(µ) =
2π

3log
(
Λ
µ

) . (4.16)

The presence of less flavors and singlet fields in the model II with respect to the model I allows

for a significant improvement in the UV behaviour of α3, that now blows up at extremely high

energies. However, the different embedding of U(1)X in the global group gives rise to several

fields with hypercharge |2| that significantly contribute to the running of α1. As a result, the

first coupling to blow up is now α1. For a sensible choice of parameters, e.g. µ around the TeV

scale and ε ∼ 1/10, we see that ΛL
1 is about two orders of magnitude higher than Λ, around 103

TeV.

5 Connection with Phenomenological Bottom-up Approaches

In this section we give a closer look at how the pNGB Higgs interacts with the other fields.

The guideline for 4D bottom-up constructions of pNGB composite Higgs models is given by

the Callan-Coleman-Wess-Zumino (CCWZ) construction [27] in terms of a chiral Lagrangian

parametrizing the pNGB degrees of freedom. For the minimal SO(5) → SO(4) symmetry break-

ing pattern the construction has been given in [7] and subsequently generalized in [9, 10] to

include vector and fermion resonances. First of all, let us better identify the 10 NGB’s πA asso-

ciated to the symmetry breaking pattern SO(5)× SO(4) → SO(4)D. When composite B-terms

are neglected, the NGB’s come entirely from the fields qnb . We can parametrize them as10

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (5.1)

where q̃mc encode all the non-NGB fields. One can check that the parametrization (5.1) matches

eqs.(2.8) and (2.9) at linear order in the field fluctuations. The NGB’s decay constant f is

fixed by demanding that all the NGB’s kinetic terms, coming from |Dµqna |2, are canonically

normalized. One has

f =
√
2µ . (5.2)

10Notice that it is not naively possible to write eq.(5.1) in terms of superfields, because the NGB’s are real fields,

while the sigma-model fields such as U in eq.(5.3) should be promoted to chiral (and hence complex) superfields.

A SUSY formulation is however possible by complexifying the coset space G/H . We will not enter into such

construction here (see [28] for a detailed analysis) because SUSY is anyhow broken in the vacuum (2.6).
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(
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8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.20)

(N − 2) < Nf ≤
3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.21)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.22)
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SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.23)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.24)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.25)

U → g U h† (0.26)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.27)

U = exp

(

i

√
2

f
hâTâ

)

, U → g U h†, f =
√
2µ (0.28)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.29)

SO(5)/SO(4) (0.30)

Wel ⊇ QN
a QN

b ξRξL Wmag ⊇ MabξRξL ∆L ∼ b̄RbLh
Λ

ΛL
(〈Mnn〉 − 〈M55〉) (0.31)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.32)

Mij Mi5 ψM55
(0.33)

Reqn5 , ReM5n MIJ ∼ QN
I QN

J (0.34)

2
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At this point we turn back to the original action (42) and switch off the unphysical

gauge fields keeping only those of SU(2)L × U(1)Y . By using eq.(41) we obtain:

L =
1

2
(PT )

µν

��
ΠX

0 (q
2
) + Π0(q

2
) +

sin
2
(h/f)

4
Π1(q

2
)

�
BµBν

+

�
Π0(q

2
) +

sin
2
(h/f)

4
Π1(q

2
)

�
AaL

µ AaL
ν

+ 2 sin
2
(h/f)Π1(q

2
) Ĥ†T aLY Ĥ AaL

µ Bν

�
,

(48)

where Bµ is the hypercharge field and we defined

Ĥ ≡ 1

h
H =

1

h

�
h1 − ih2

h3 − ih4

�
. (49)

This is the effective action for the SM gauge fields in the background of Σ that we were

looking for. By expanding the form factors at momenta small compared to the mass

scale of the strong resonances, q2 � m2
ρ, one obtains an effective Lagrangian in terms of

local operators. Without loss of generality, one can always perform an SO(4) rotation

and align the Higgs vev along the h3
direction, so that (h1, h2, h3, h4

) = (0, 0, 1, 0) and
Ĥ t

= (0, 1). Hence, at order q2 one has

L = (PT )
µν

�
1

2

�
f 2

sin
2
(�h�/f)
4

��
BµBν +W 3

µW
3
ν − 2W 3

µBν

�

+

�
f 2

sin
2
(�h�/f)
4

�
W+

µ W−
ν

+
q2

2

�
Π�

0(0)W
aL
µ W aL

ν +
�
Π�

0(0) + ΠX �
0 (0)

�
BµBν

�
+ . . .

�
(50)

where Π�
denotes the first derivative of Π with respect to q2. From the above Lagrangian

we can thus identify

1

g2
= −Π�

0(0) ,
1

g�2
= −

�
Π�

0(0) + ΠX �
0 (0)

�
(51)

and

v = f sin
�h�
f

, so that ξ ≡ v2

f 2
= sin

2 �h�
f

. (52)

Notice that the formulas in eq.(51) show the contribution to the low-energy gauge

couplings from the strong dynamics only. If one adds to the effective action (42) bare

kinetic terms for the external SU(2)L × U(1)X fields, the expressions for g and g� will
be modified to

1

g2
= −Π�

0(0) +
1

g20
,

1

g�2
= −

�
Π�

0(0) + ΠX �
0 (0)

�
+

1

g�20
. (53)
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SM interactions   ⇒    V(h)

Higgs as a pNGB
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Lagrangian (111) can be easily diagonalized by rotating the left-handed fields:

�
ψL

χL

�
→

�
cosϕL sinϕL

− sinϕL cosϕL

��
ψL

χL

�
, tanϕL =

∆L

m∗
. (112)

The mass eigenstate fields, a light left-handed fermion (to be identified with the SM

field), and a heavy Dirac fermion of mass m =

�
m2

∗ +∆2
L, are superpositions of

elementary and composite states:

|light� =cosϕL|ψ�+ sinϕL|χ�

|heavy� =− sinϕL|ψ�+ cosϕL|χ� .
(113)

The angle ϕL thus parametrizes the degree of partial compositeness of the correspond-

ing SM field. Similar formulas can be derived in the case of the mixing of a right-handed

elementary field in terms of a right handed angle ϕR. Since the origin of the breaking

of the electroweak symmetry resides, by assumption, in the composite sector, the mass

acquired by a SM fermion ψ entirely stems from the composite components of ψL and

ψR,

y = Y∗ sinϕL sinϕR , (114)

where Y∗ is a Yukawa coupling among composites. Thus, heavier SM fields must have

larger degree of compositeness. In particular, light quarks and leptons are almost

elementary fields. This explains why all the standard bounds on the compositeness of

these particles can be easily evaded in the present framework. Furthermore, the Higgs

boson and the longitudinal components of the W and the Z are full composites. The

transverse polarization of the SM gauge fields will be instead partly composites, the

degree of compositeness this time being fixed in term of the ratio of elementary and

composite gauge couplings.

Besides those sketched above, this theoretical framework has simple and important

consequences for the physics at present and future colliders, as well as on the pattern

of deviations expected in precision measurements. We do not have time here to review

all of them, but the interested reader can find more details in Ref. [65].

3.4 Higgs potential from the top quark

So far we have assumed that the Higgs potential at its minimum can induce the cor-

rect amount of electroweak symmetry breaking. Here we want to show that this can

naturally follow due to the contribution of the SM top quark. Let us assume that the

fermionic content of the elementary sector is that of the Standard Model, and that

each SU(3)c × SU(2)L × U(1)Y multiplet couples linearly to a corresponding compos-

ite operator. The composite operators transform as a complete representations of the

global symmetry G of the strong sector, while, in general, the external fermions will

not. This means that the linear couplings violate G explicitly, so that loops of elemen-

tary fermions will induce a Higgs potential. The dominant contribution will come from

41

sector is flavor anarchic, and the flavor structure of the SM Yukawa couplings entirely

arises from the RG evolution of the composite-elementary couplings λi. In this case,

four-fermion operators involving light external quarks will be suppressed by their small

couplings to the strong sector at low energy, providing a sort of GIM protection against

large FCNC [52–55,58]. Important effect can still arise, however, from the sizable cou-

pling of the third generation quarks to the strong sector. In particular, it has been

shown that important constraints on the scale Λ arise from CP violation in the KK̄

system [59–62], b → sγ [55, 58, 61, 62] and lepton-violating processes such as µ → eγ
and µ → 3e [54,63,64]. Here we will not discuss these constraints, referring to the vast

literature on the subject for more details.

There is an extremely interesting phenomenological consequence of linear couplings

which was already noticed in Ref. [56]: similarly to QCD, where a current made of

quarks has the quantum numbers to excite a heavy spin-1 resonance from the vacuum,

at energies below the scale Λ, at which the strong dynamics is assumed to condense,

a composite operator O can excite a heavy fermionic resonance. More exactly, there

will be a full tower of composite fermions of increasing mass that can be excited by

the operator O.
15

The linear coupling (103) thus becomes a mass mixing term at low

energy between the elementary fermion ψ and the tower of composite fermions χn:

Lmix =

�

n

∆n

�
ψ̄χn + h.c.

�
, �0|O|χn� = ∆n . (109)

Similarly, and in complete analogy with QCD, a conserved current Jµ associated with

the global symmetry G of the strong sector will excite a tower of spin-1 resonances ρn
which will mix with the elementary gauge fields Aµ:

Lmix =

�

n

mρnfρnAµρ
µ
n , �0|Jµ|ρn(�r)� = �rµmρnfρn . (110)

The corresponding phenomenon is known as ρ-photon mixing in the QCD literature.

As a consequence of the mass mixings (109) and (110), the physical fermion and

vector eigenstates (to be identified with the SM fields) will be admixtures of elementary

and composite states. In this case one speaks of partial compositeness of the SM

particles [56,65]. A qualitative and simple understanding of the phenomenology of such

scenarios can be obtained by considering the simplifying limit in which one includes

only the first resonance of each tower in the low-energy theory, and neglects the other

heavy states [65]. For example, the effective Lagrangian describing one elementary

chiral field ψL and one composite heavy fermion χ is

L = ψ̄L i �∂ ψL + χ̄ (i �∂ −m)χ+∆Lψ̄LχR + h.c. (111)

Notice that, as a result of the RG evolution above Λ, the mass mixing parameter

∆L can be naturally much smaller than the mass m∗ of the composite fermion. The

15We are assuming that the operator O is vector-like, so that the excited composite fermions are
massive Dirac states.
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



1 0 0
0 c23 s23

0 −s23 c23





·





c13 0 e−iδs13

0 1 0
−eiδs13 0 c13





·





c12 s12 0
−s12 c12 0
0 0 1





·





eiα1 0 0
0 eiα2 0
0 0 1





=




eiα1c12c13 eiα2c13s12 e−iδs13

eiα1(−c23s12 − c12e
iδs13s23) eiα2(c12c23 − eiδs12s13s23) c13s23

eiα1(−c12c23e
iδs13 + s12s23) eiα2(−c23e

iδs12s13 − c12s23) c13c23





tanϕL =
∆L

m
(1)

1





1 0 0
0 c23 s23
0 −s23 c23



 ·





c13 0 e−iδs13
0 1 0

−eiδs13 0 c13



 ·





c12 s12 0
−s12 c12 0
0 0 1



 ·





eiα1 0 0
0 eiα2 0
0 0 1





=




eiα1c12c13 eiα2c13s12 e−iδs13
eiα1(−c23s12 − c12e

iδs13s23) eiα2(c12c23 − eiδs12s13s23) c13s23
eiα1(−c12c23e

iδs13 + s12s23) eiα2(−c23e
iδs12s13 − c12s23) c13c23





tanϕL =
∆L

m
(1)

δg

g
≈

∆2

g2ρ
ξ (2)

Λ ≈ 4πf (3)

αS = 4e2
[

Π′

33(0)−Π′

3Q(0)
]

(4)

αT =
e2

s2W c2WM2
Z

[Π11(0)−Π33(0)] , ρ = 1 + αT (5)

∆F = 0, 1, 2, !!CP (6)

L ⊇ χ̄Y∗Hχ̃+ h.c. ⇒ y = Y∗ sinϕL sinϕR (7)

1

Partial Compositeness

•   Flavour hierarchies

•   GIM-like mechanism suppressing FCNC and CP processes
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Higgs Potential

plot??

plot??

26/08/2013

Preliminar Results:

ListPlot[{Data[[All, {imh, imLMF}]], Data[[All, {imh, imLMS}]]}, AxesLabel -> {"mh [GeV]", "m [GeV]"}, PlotRange -> {{40, 170}, {0, 2550}}, AxesStyle -> Thick, 
LabelStyle -> "Large",PlotStyle -> {Directive[PointSize[0.02], Blue], Directive[PointSize[0.02], Red]}, ImageSize -> 600, PlotLegends -> SwatchLegend[{Style
["Lightest Fermion", Blue, Large], Style["Lightest Scalar", Red, Large]}, LegendMarkers -> "Bubble"]]

ListPlot[Data[[All, {imh, iFT}]], AxesLabel -> {"mh [GeV]", "FT"}, AxesStyle -> Thick, LabelStyle -> "Large", PlotStyle -> PointSize[0.02],ImageSize -> 500]

Data = ToExpression[Import["/Users/albertoparolini/Dropbox/Higgs potential in susy\compositeness/susy chm/data/DataAllRangeXi01blind.dat", "Table"]];
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Motivation

A(χ+χ− → ψψ̄) =
mψ

√
s

v2
(1− ac) +O

�
m2

h

E2

�
.

Only for a = b = c = 1 the EWSB sector is weakly interacting (provided the scalar h
is light), as for example a �= 1 implies a strong WW → WW scattering with violation
of perturbative unitarity at energies

√
s ≈ 4πv/

√
1− a2, and similarly for the other

channels.
The point a = b = c = 1 in fact defines what I will call the “Higgs model”: LH (with

vanishing higher-order terms in h) can be rewritten in terms of the SU(2)L doublet

H(x) =
1√
2
eiσ

aχa(x)/v

�
0

v + h(x)

�
(17)

and gets the usual form of the Standard Model Higgs Lagrangian. In other words, χa

and h together form a linear representation of SU(2)L × SU(2)R. The unitarity of the
model can be thus traced back to its renormalizability. In terms of the Higgs doublet
H, the custodial invariance of the Lagrangian appears like an accidental symmetry:
at the renormalizable level, all the (SU(2)L×U(1)Y )-invariant operators are functions
of H†H =

�
i
ω2
i
, where ωi are the four real components parametrizing the complex

doublet H. This implies that the theory is invariant under an SO(4) ∼ SU(2)L ×
SU(2)R invariance, broken down to SO(3) ∼ SU(2)c in the vacuum �H†H� = v2,
under which the ωi components are rotated.

The weakly-interacting Higgs model has two main virtues: it is theoretically at-
tractive because of its calculability, and it is insofar phenomenologically successful, as
it satisfies the LEP and SLD electroweak precision tests [13]. Both calculability (which
stems from perturbativity) and the success in passing the precision tests follow from
the Higgs boson being light. It is however well known that an elementary light scalar,
such as h, is unstable under radiative corrections: its mass receives quadratically diver-
gent corrections, which makes a light Higgs scalar highly unnatural in absence of some
symmetry protection. In this sense, the Higgs model should perhaps be regarded as
a parametrization rather than a dynamical explanation of the electroweak symmetry
breaking.

2.2 Technicolor models

The Higgs model is an extremely economical way to perturbatively unitarize the theory
and parametrize the symmetry breaking, but we know that it is not the solution that
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√
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Seiberg Duality for            SO(N) SQCD
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For simplicity, we identify the dynamically generated scales in the electric and magnetic theo-

ries,4 whose precise relation is anyhow incalculable. We also set to one the value of the Yukawa

coupling of the cubic qMq term in the magnetic theory. The fields qI are the dual magnetic

quarks in the fundamental representation of the dual SO(Nf − N + 4)m = SO(4)m magnetic

gauge group, with coupling gm, and M IJ = QIQJ are neutral mesons, normalized to have

canonical dimension one. The Kähler potential for the mesons M IJ and the dual quarks qI is

taken as follows:

K = trM †M + q†Ie
VmagqI , (2.5)

where Vmag is the SO(4)m vector superfield.

The original Yukawa couplings λIJKQIQJξK in the electric theory flow in the IR to a

mixing mass term εIJKM IJξK between elementary and composite fields, the SUSY version

of the fermion mixing terms appearing in weakly coupled models with partial compositeness

[6]. The quark mass term mQQaQa, introduced to break the flavor group from SU(N) down to

SO(5)×SU(N−5), is also responsible for a spontaneous breaking of supersymmetry by the rank

condition, as shown by Intriligator, Seiberg and Shih (ISS) [15]. Up to global SO(5) × SO(4)m
rotations, the non-supersymmetric, metastable, vacuum is at5

〈qnm〉 = µ δnm , (2.6)

with all other fields vanishing. For simplicity, in the following we take µ to be real and positive.

In eq.(2.6) we have decomposed the flavor index a = (m, 5), m,n = 1, 2, 3, 4, and we have

explicitly reported the gauge index n as well. When λIJK = 0, the vacuum (2.6) spontaneously

breaks

SO(4)m × SO(5) → SO(4)D , (2.7)

where SO(4)D is the diagonal subgroup of SO(4)m × SO(4). In the global limit gm → 0, this

symmety breaking pattern results in 10 NGB’s:

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions , (2.8)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions . (2.9)

For gm '= 0, the would-be NGB’s (2.8) are eaten by the SO(4)m magnetic gauge fields ρµ,

that become massive, while the NGB’s (2.9) remain massless and are identified with the 4 real

components of the Higgs field.

The remaining spectrum of the magnetic theory around the vacuum (2.6) is easily obtained

by noticing that all fields, but the magnetic quarks qn5 and the mesons M5n, do not feel at

tree-level the SUSY breaking induced by the F -term of M55:

FM55 = −µ2. (2.10)

4Adopting a notation used in the literature, we often refer to the UV and IR theories as electric and magnetic

theories, respectively.
5With a common abuse of language, we denote with the same symbol a chiral superfield and its lowest scalar

component, since it should be clear from the context the distinction among the two.
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poles for the SM couplings in subsection 3.2; a similar analysis is repeated in section 4 for the

model II, with a fully composite tR; in subsection 4.1 we argue that the metastable vacuum is

long-lived by showing the absence of SUSY vacua where it could tunnel to and in subsection

4.2 we compute the Landau poles for the SM gauge couplings; in section 5 we give a closer look

at the connection between the above UV models and the phenomenological pCHM considered

in the literature; we discuss open questions and conclude in section 6; two appendices complete

the paper; in appendix A we report our conventions for the group generators; in appendix B we

review the RG flow of soft terms in N = 1 SUSY gauge theories, and apply the results to our

context.

2 The Basic Construction

The key points underlying our models are best illustrated in a set-up where we keep only the

essential structure and remove important, but model-dependent, details. We focus on construc-

tions where the Higgs is the NGB of an SO(5)/SO(4) coset, but the generalization to other

cosets should be obvious. Consider an N = 1 SUSY SO(N) gauge theory with Nf = N flavors

in the fundamental of SO(N), with superpotential

Wel = mabQ
aQb + λIJKQIQJξK . (2.1)

In the first term of eq.(2.1), we split the flavor index I in two sets I = (i, a), a = 1, . . . , 5, i =

6, . . . , N . The fields ξK are singlets under SO(N) and in general can be in some representation of

the flavor group Hf ⊂ Gf left unbroken by the Yukawa couplings λIJK . The ξK ’s are eventually

identified as the visible chiral fields, such as the top fields. We take λIJK " 1, so that these

couplings are marginally relevant, with no Landau poles, and can be considered as a small

perturbation in the whole UV range of validity of the theory. We assume the presence of an

external source of SUSY breaking, whose origin will not be specified, that produces soft terms

for all the SM gauginos and sfermions. For simplicity, we neglect for the moment the dynamics

of the singlets ξK and the impact of the external source of SUSY breaking in the composite

sector. We take the quark mass matrix proportional to the identity, mab = mQδab, to maximize

the unbroken anomaly-free global group. For λIJK = 0, this is equal to

Gf = SO(5)× SU(N − 5) . (2.2)

We take mQ " Λ, where Λ is the dynamically generated scale of the theory.

For N ≤ 3(N−2)/2, namely N ≥ 6, the theory flows to an IR-free theory with superpotential

[12, 19]

Wmag = qIM
IJqJ − µ2Maa + εIJKM IJξK , (2.3)

where

εIJK = λIJKΛ, µ2 = −mQΛ. (2.4)
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Model I

fields. This explains the subscript 0 in SU(2)L,R and U(1)Y,R and in g and g′ in eq.(2.15). The

combination of fields along the diagonal SU(2)L × U(1)Y ⊂ SO(4)D × U(1)X group is finally

identified with the SM vector fields. The SM gauge couplings g and g′ are given by

1

g2
=

1

g2m
+

1

g20
,

1

g′2
=

1

g2m
+

1

g′20
. (2.16)

This mixing between elementary and composite gauge fields is analogous to the one advocated

in bottom-up 4D constructions of composite Higgs models. The situation is simpler for the color

group, since the gauge fields of SU(3)c are directly identified with the ordinary gluons of QCD.

The set-up above is still unrealistic because of the presence of unwanted exotic massless

states (Mij and Mi5). There are various ways to address these points. We do that in the next

two sections, where we consider in greater detail two specific models within the above set-up.

3 Model I: a Semi-Composite tR

The first model we consider is based on a SUSY SO(11) gauge theory with Nf = N = 11 electric

quarks. We also have two additional singlet fields, Sij and Sia, transforming as (1,20⊕ 1) and

(5,6) of SO(5)× SU(6), respectively.6 We add to the superpotential (2.1) the following terms:

1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia . (3.1)

The mass terms in eq.(3.1) break the SU(6) global symmetry to SO(6). The total global sym-

metry of the model is then

Gf = SO(5)× SO(6) . (3.2)

For m1S,2S > Λ, the singlets Sij and Sia can be integrated out in the electric theory. We get7

W eff
el = mabQ

aQb − λ2
1

2m1S
(QiQj)2 − λ2

2

2m2S
(QiQa)2 . (3.3)

In the magnetic dual superpotential, the quartic deformations give rise to mass terms for the

mesons Mij and Mi5:

Wmag ⊃ −1

2
m1M

2
ij −

1

2
m2M

2
ia , (3.4)

where

mi =
Λ2λ2

i

miS
, i = 1, 2 . (3.5)

The mass deformations do not affect the vacuum (2.6), but obviously change the mass spectrum

given in section 2. The multiplets Mij and Mi5 are now massive, with masses given by m1 and

6See [20] for a similar set-up in the context of models with direct gaugino mediation of SUSY breaking.
7Of course, we could have started directly by deforming the superpotential (2.1) with the irrelevant operators

quartic in the quark fields appearing in eq.(3.3). In the spirit of our paper, we want to emphasize how easy is

to UV complete the above quartic terms. See [21] for studies of ISS theories deformed by irrelevant operators

quartic in the quark fields.
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L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.18)

SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.23)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.24)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.25)

U → g U h† (0.26)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.27)

U = exp

(

i

√
2

f
hâTâ

)

, U → g U h†, f =
√
2µ (0.28)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.29)

SO(5)/SO(4) (0.30)

Wel ⊇ QN
a QN

b ξRξL Wmag ⊇ MabξRξL ∆L ∼ b̄RbLh
Λ

ΛL
(〈Mnn〉 − 〈M55〉) (0.31)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.32)

Mij Mi5 ψM55
(0.33)

Reqn5 , ReM5n MIJ ∼ QN
I QN

J (0.34)

N = Nf = 11 N = Nf = 9 (0.35)
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b = 3(N − 2)−Nf = 2(N − 3) I = (i, a), a = 1, . . . , 5, i = 6, . . . , N (0.1)

SO(4)m × SO(5) × SU(N − 5) → SO(4)D × SU(N − 5) (0.2)

N ≤ 3(N − 2)/2 ⇒ N ≥ 6 (0.3)

SU(3)c ⊆ SU(N − 5) SU(2)0,L × SU(2)0,R ∼= SO(4) ⊆ SO(5) (0.4)

Y = T3R +X, U(1)X ⊆ SU(N − 5) (0.5)

ε =
µ

Λ
, m1 = Λ εκ ΛL

3 ∼ 102 − 103 TeV (0.6)

1

Z boson mass mZ . In deriving eq.(3.21) we have matched the SU(2) × U(1) couplings at the

scale µ, using eq.(2.16) with

αm(µ) =
2π

5log
(
Λ
µ

) . (3.22)

Notice that the scale of the poles does not depend onm1S , since it cancels out in the contributions

coming from Sij and Mij . Demanding for consistency that ΛL
i > m2S constrains ε to be not

too small. This is welcome from a phenomenological point of view, since a too small ε leads to

a parametrically weakly coupled magnetic sector (see eq.(3.22)) and too light magnetic vector

fields. On the other hand, ε cannot be too large for the stability of the vacuum, but values as

high as 1/10 or so should be fine, given the estimate (3.20). By taking natural choices for µ

around the TeV scale, we see that all the Landau poles occur above m2S , with SU(3)c being the

first coupling that blows up, entering the non-perturbative regime in the 102 − 103 TeV range.

The Yukawa couplings λ1,2 and λL,R in the superpotential (3.1) and (3.6) might also develop

Landau poles. A simple one-loop computation, in the limit in which the SM gauge couplings are

switched off, shows that these poles appear at scales much higher than those defined in eq.(3.21).

In a large part of the parameter space the Yukawa’s actually flow to zero in the UV. This is

even more so, when the SM gauge couplings are switched on, due to their growth in the UV.

4 Model II: a Fully Composite tR

The second model we consider is based on a SUSY SO(9) gauge theory with Nf = 9 electric

quarks and an additional singlet Sij in the (1,10) of SO(5)×SU(4). We add to the superpotential

(2.1) the following term:

λQiQjSij . (4.1)

The terms (4.1) do not break any global symmetry. The total anomaly-free global symmetry of

the model is

Gf = SO(5) × SU(4) . (4.2)

In the magnetic theory eq.(4.1) turns into a mass term λΛM ijSij. If we take λ ∼ O(1) around

the scale Λ, the singlets Sij and M ij can be integrated out. At leading order in the heavy mass,

this boils down to remove the chiral fields Sij and M ij from the Lagrangian. We summarize

in table 2 the gauge and flavor quantum numbers of the fields appearing in the electric and

magnetic theories.

The mass spectrum is the same as given in section 2, with the exception of the multiplet

M ij that has been decoupled together with the singlet Sij. The multiplet Mi5 is massless. We

embed SU(3)c × U(1)X into SU(4) and SU(2)0,L × U(1)0,Y into SO(5) × U(1)X . The U(1)X is

identified as the diagonal SU(4) generator not contained in SU(3)c, properly normalized, so that

4 → 32/3 ⊕1−2 under SU(3)c ×U(1)X . We identify tR as the (conjugate) fermion component of

Mα5, α = 6, 7, 8. We also get an unwanted extra fermion, coming from M95. Being an SU(2)L
singlet, ψM95 corresponds to an exotic particle with hypercharge Y = X = 2. We can get rid
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L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.18)

SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.23)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.24)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.25)

U → g U h† (0.26)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.27)
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, U → g U h†, f =
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2µ (0.28)
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√
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Λ
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(〈Mnn〉 − 〈M55〉) (0.31)

∆L = ∆ψ̄O [O] =
5
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+ γ ∆IR = ∆IR(∆UV , γ) (0.32)

Mij Mi5 ψM55
(0.33)

Reqn5 , ReM5n MIJ ∼ QN
I QN
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N = Nf = 11 N = Nf = 9 (0.35)

2

Model II

b = 3(N − 2)−Nf = 2(N − 3) I = (i, a), a = 1, . . . , 5, i = 6, . . . , N (0.1)

SO(4)m × SO(5) × SU(N − 5) → SO(4)D × SU(N − 5) (0.2)

N ≤ 3(N − 2)/2 ⇒ N ≥ 6 (0.3)

SU(3)c ⊆ SU(N − 5) SU(2)0,L × SU(2)0,R ∼= SO(4) ⊆ SO(5) (0.4)

Y = T3R +X, U(1)X ⊆ SU(N − 5) (0.5)

ε =
µ

Λ
, m1 = Λ εκ ΛL

3 ∼ 102 − 103 TeV (0.6)

FMab
= qna q

n
b − µ2δab (0.7)

ΛL
1 ∼ 103 TeV (0.8)

〈qnm〉, 〈Mmn〉, 〈M55〉 += 0 Wel ⊇ mQQ
aQa mQ → mQ(1 + θ2Bm) (0.9)

SU(2)L ×U(1)Y → U(1)em (0.10)

N = 1 (0.11)

SO(N)g SU(Nf ) U(1)R

QN
I N Nf

(Nf−N+2)
Nf

SO(Nf −N + 4)g SU(Nf ) U(1)R

qnI Nf −N+ 4 Nf
N−2
Nf

MIJ 1
1

2
Nf (Nf + 1)

2(Nf−N+2)
Nf

Λ
3(N−2)−Nf

el Λ
3(Nf−N+2)−Nf
mag ∝ (−1)Nf−NµNf (0.12)

Wmag ∝ 1

µ
qnIM

IJqnJ (0.13)

L ⊇ λq̄O + h.c. (0.14)

〈qna 〉 =




µ14

∣∣∣∣∣∣∣∣∣

0

0

0

0




(0.15)

SO(5)× SU(N − 5) ⊇ SU(3)c × SU(2)0,L ×U(1)0,Y (0.16)

L ⊇ i
√
2µgmTr[λmψ] +

−i
√
2µg0Tr[λ0ψ]− i

√
2µg′0Tr[λ

′
0ψ] +

+
1

2
m̃g,2Tr[λ0λ0] +

1

2
m̃g,1λ

′
0λ

′
0 + h.c.

1

Main difference:                   fully composite

QN
I =





QN
1
...

QN
5

QN
6
...

QN
Nf









QN

a





QN

i

(0.38)

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions (0.39)

eaten by the magnetic vector bosons ; (0.40)
√
2Re qn5 : along the broken SO(5)/SO(4)D directions (0.41)

identified with the Higgs field . (0.42)

N = 1 (0.43)

ΛNP $ MP l ΛNP = Λ ≈ 4πf (0.44)

The chiral multiplets Mij and Mi5 stay massless;

ψM55
is the Goldstino.

Wel ⊇
1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia (0.45)

⇒ mZ µ Λ miS mi (0.46)

Wel ⊇ λQiQjSij (0.47)

Wmag ⊇ MMijSij (0.48)

Wel ⊇ λL(ξL)
iaQiQa + λR(ξR)

iaQiQa Wmag ⊇ εL(ξL)
iaMia + εR(ξR)

iaMia (0.49)

sin
h

f
= sh γ = γtree + γg + γm, β = βg + βm, δ = δg + δm (0.50)

ξ = sin2
〈h〉
f

= ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
(0.51)

tR ∈ Mia (0.52)

3
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SO(11)el SO(5) SO(6)

QN
i 11 1 6

QN
a 11 5 1

Sij 1 1 20⊕ 1

Sia 1 5 6

(a)

SO(4)mag SO(5) SO(6)

qni 4 1 6

qna 4 5 1

Mij 1 1 20⊕ 1

Mia 1 5 6

Mab 1 14⊕ 1 1

(b)

Table 1: Quantum numbers under Gf and the strong gauge group of the matter fields appearing

in the composite sector of model I: (a) UV electric and (b) IR magnetic theories.

m2, respectively, and the multiplets Mim and qmi form massive multiplets with squared masses

(m2
2 + 16µ2 ±m2

√
m2

2 + 32µ2)/8. We take the masses m1 and m2 as free parameters, although

phenomenological considerations favour the values of m2 for which the mesons Mia, the ones

that are going to mix with the elementary SM fields, have a mass around µ. We summarize

in table 1 the gauge and flavor quantum numbers of the fields appearing in the electric and

magnetic theories. We embed SU(3)c into SO(6) and SU(2)0,L × U(1)0,Y in SO(5) × U(1)X ,

where U(1)X is a U(1) factor coming from SO(6) (see appendix A). We consider in what follows

the top quark only, since this is the relevant field coupled to the electroweak symmetry breaking

sector. In terms of the UV theory, we might have Yukawa couplings of the top with the electric

quarks, or mixing terms with the singlet fields. When the singlets are integrated out, we simply

get a shift in the mixing of the top with the meson fields. So, without loss of generality, we can

ignore mixing terms between the top and the singlets. The most general mixing term is then

λL(ξL)
iaQiQa + λR(ξR)

iaQiQa . (3.6)

We assume in what follows that λL,R # 1 so that the elementary fields do not significantly

perturb the above results. We have written the mixing terms in a formal Gf invariant way in

terms of the fields ξL and ξR. These are spurion superfields, whose only dynamical components

are the SM doublet superfields QL = (tL, bL)t and the singlet tc, whose θ-component is the

conjugate of the right-handed top tR. In order to write ξL and ξR in terms of QL and tc, we

have to choose an embedding of SU(3) ⊂ SO(6):

(ξL)
ia =






b1 −ib1 t1 it1 0

−ib1 −b1 −it1 t1 0

b2 −ib2 t2 it2 0

−ib2 −b2 −it2 t2 0

b3 −ib3 t3 it3 0

−ib3 −b3 −it3 t3 0






2/3

, (ξR)
ia =






0 0 0 0 (tc)1

0 0 0 0 i(tc)1

0 0 0 0 (tc)2

0 0 0 0 i(tc)2

0 0 0 0 (tc)3

0 0 0 0 i(tc)3






−2/3

, (3.7)

in terms of SO(6)×SO(5) multiplets, where the superscript in the fields denote the color SU(3)c
index. The subscript ±2/3 denotes the U(1)X charge of the fermion. The terms (3.6) explicitly
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and U(1)0,Y couplings develop Landau poles at the scales

ΛL
3 =Λ exp

( π

2α3(mZ)

)(mZ

µ

)− 7
4
(µ

Λ

) 1
4
,

ΛL
2 =Λ exp

( 2π

9α2(mZ)

)(mZ

µ

)− 19
54
(µ
Λ

)2
,

ΛL
1 =Λ exp

( 6π

305α1(mZ)

)(mZ

µ

) 41
610

(µ
Λ

) 236
305

,

(4.15)

where we have matched the SU(2)×U(1) couplings at the scale µ, using eq.(2.16) with

αm(µ) =
2π

3log
(
Λ
µ

) . (4.16)

The presence of less flavors and singlet fields in the model II with respect to the model I allows

for a significant improvement in the UV behaviour of α3, that now blows up at extremely high

energies. However, the different embedding of U(1)X in the global group gives rise to several

fields with hypercharge |2| that significantly contribute to the running of α1. As a result, the

first coupling to blow up is now α1. For a sensible choice of parameters, e.g. µ around the TeV

scale and ε ∼ 1/10, we see that ΛL
1 is about two orders of magnitude higher than Λ, around 103

TeV.

5 Connection with Phenomenological Bottom-up Approaches

In this section we give a closer look at how the pNGB Higgs interacts with the other fields.

The guideline for 4D bottom-up constructions of pNGB composite Higgs models is given by

the Callan-Coleman-Wess-Zumino (CCWZ) construction [27] in terms of a chiral Lagrangian

parametrizing the pNGB degrees of freedom. For the minimal SO(5) → SO(4) symmetry break-

ing pattern the construction has been given in [7] and subsequently generalized in [9, 10] to

include vector and fermion resonances. First of all, let us better identify the 10 NGB’s πA asso-

ciated to the symmetry breaking pattern SO(5)× SO(4) → SO(4)D. When composite B-terms

are neglected, the NGB’s come entirely from the fields qnb . We can parametrize them as10

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (5.1)

where q̃mc encode all the non-NGB fields. One can check that the parametrization (5.1) matches

eqs.(2.8) and (2.9) at linear order in the field fluctuations. The NGB’s decay constant f is

fixed by demanding that all the NGB’s kinetic terms, coming from |Dµqna |2, are canonically

normalized. One has

f =
√
2µ . (5.2)

10Notice that it is not naively possible to write eq.(5.1) in terms of superfields, because the NGB’s are real fields,

while the sigma-model fields such as U in eq.(5.3) should be promoted to chiral (and hence complex) superfields.

A SUSY formulation is however possible by complexifying the coset space G/H . We will not enter into such

construction here (see [28] for a detailed analysis) because SUSY is anyhow broken in the vacuum (2.6).
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In order to match our theories with the bottom-up pCHM, it is convenient to take the unitary

gauge πa = 0 and work with an effective SO(5)/SO(4) coset parametrized by

U = exp

(

i

√
2

f
hâTâ

)

. (5.3)

In this gauge one has, omitting indices,

iU tDµq = iU t
(
∂µ − i(g0W

a
µTaL + g′0BµT3R)

)
Uq̃ − gmq̃ρaµT

a

=(dâµT
â + Ea

µT
a)q̃ − gmq̃ρaµT

a ,
(5.4)

where ρaµ are the magnetic vector mesons,

dâµ =−
√
2

f
(Dµh)

â + . . . ,

Ea
µ =g0A

a
µ +

i

f2
(h

↔
Dµ h)a + . . .

(5.5)

are the CCWZ fields and Aa
µ are defined in eq.(2.14). Plugging the parametrization (5.4) into

the kinetic term |Dµqna |2 and setting q̃na = µδna gives

|Dµq
n
a |2 ⊃

f2

4
(dâµ)

2 +
f2

2
(gmρaµ − Ea

µ)
2 . (5.6)

The second term in eq.(5.6) is responsible for the mixing of SM and magnetic gauge fields. We

can match the terms (5.6) with the ones appearing in the bottom-up constructions. In the

notations and conventions of [10], we have

gm = gρ , f = fρ . (5.7)

When the Higgs field gets a VEV, say 〈h4̂〉 ≡ h '= 0, the SM gauge bosons get a mass

mW =
gf

2
sin

〈h〉
f

≡ gv

2
, mZ =

mW

cos θW
, (5.8)

where tan θW = g′/g, in terms of the canonical SM couplings (2.16). As expected, the tree-level

ρ-parameter equals one, thanks to the custodial symmetry underlying the theory.

Ignoring the SM gauge couplings and the mass mixing in the superpotential, the Higgs can

be completely removed from the non-derivative part of the Lagrangian (including the SO(4)m
D-term potential) by a field redefinition of all bosons and fermions with SO(5) flavor indices:

Mab → (UMU t)ab, ψMab
→ (UψMU t)ab , (5.9)

and so on. Notice that complex conjugate fields also transform with the matrix U , the latter

being real: U = U∗. The Higgs appears in the SU(2)0,L ×U(1)0,Y D-terms when the SM gauge

couplings are turned on. The lowest-order interactions involving the Higgs are trilinear couplings
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and U(1)0,Y couplings develop Landau poles at the scales

ΛL
3 =Λ exp

( π

2α3(mZ)

)(mZ

µ

)− 7
4
(µ

Λ

) 1
4
,

ΛL
2 =Λ exp

( 2π

9α2(mZ)

)(mZ

µ

)− 19
54
(µ
Λ

)2
,

ΛL
1 =Λ exp

( 6π

305α1(mZ)

)(mZ

µ

) 41
610

(µ
Λ

) 236
305

,

(4.15)

where we have matched the SU(2)×U(1) couplings at the scale µ, using eq.(2.16) with

αm(µ) =
2π

3log
(
Λ
µ

) . (4.16)

The presence of less flavors and singlet fields in the model II with respect to the model I allows

for a significant improvement in the UV behaviour of α3, that now blows up at extremely high

energies. However, the different embedding of U(1)X in the global group gives rise to several

fields with hypercharge |2| that significantly contribute to the running of α1. As a result, the

first coupling to blow up is now α1. For a sensible choice of parameters, e.g. µ around the TeV

scale and ε ∼ 1/10, we see that ΛL
1 is about two orders of magnitude higher than Λ, around 103

TeV.

5 Connection with Phenomenological Bottom-up Approaches

In this section we give a closer look at how the pNGB Higgs interacts with the other fields.

The guideline for 4D bottom-up constructions of pNGB composite Higgs models is given by

the Callan-Coleman-Wess-Zumino (CCWZ) construction [27] in terms of a chiral Lagrangian

parametrizing the pNGB degrees of freedom. For the minimal SO(5) → SO(4) symmetry break-

ing pattern the construction has been given in [7] and subsequently generalized in [9, 10] to

include vector and fermion resonances. First of all, let us better identify the 10 NGB’s πA asso-

ciated to the symmetry breaking pattern SO(5)× SO(4) → SO(4)D. When composite B-terms

are neglected, the NGB’s come entirely from the fields qnb . We can parametrize them as10

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (5.1)

where q̃mc encode all the non-NGB fields. One can check that the parametrization (5.1) matches

eqs.(2.8) and (2.9) at linear order in the field fluctuations. The NGB’s decay constant f is

fixed by demanding that all the NGB’s kinetic terms, coming from |Dµqna |2, are canonically

normalized. One has

f =
√
2µ . (5.2)

10Notice that it is not naively possible to write eq.(5.1) in terms of superfields, because the NGB’s are real fields,

while the sigma-model fields such as U in eq.(5.3) should be promoted to chiral (and hence complex) superfields.

A SUSY formulation is however possible by complexifying the coset space G/H . We will not enter into such

construction here (see [28] for a detailed analysis) because SUSY is anyhow broken in the vacuum (2.6).
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L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.16)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.17)

SU(4) ⊃ SU(3)c ×U(1)X (0.18)

4 = 32/3 + 12 10 = 12 + 32/3 + 6−2/3 (0.19)

Λel = E exp

(
−

8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.20)

(N − 2) < Nf ≤
3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.21)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.22)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.23)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.24)

U → g U h† (0.25)

δm2
∣∣
top

∼ −
Nc|yt|2

8π2
Λ2 δm2 ∼

#

16π2
Λ2 (0.26)

U = exp

(

i

√
2

f
hâTâ

)

, f =
√
2µ (0.27)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.28)
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hâTâ
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Higgs Potential

Notice that the D-term scalar potential , as well as the F-term potential given by the dual quarks

q manifestly vanish in the vacuum

qna = Un
a (h)

µ√
h5

, (0.14)

with all other fields vanishing. The first two terms in eq.(0.13) are soft susy-breaking terms. In

the vacuum (0.14), modulo an irrelevant constant term, they give rise to a tree-level Higgs mass

term of the form m2
Hs2hµ

2/h5, where

m2
H = m2

1 −m2
2 . (0.15)

The mass term (0.15) violates the SO(5) global symmetry of the composite sector, which is

assumed to be exact in the limit of vanishing mixing terms εi and SM gauge couplings. We

assume in the following that mH at the scale µ assumes a value of the same order of magnitude

of the one expected to be given by radiative corrections, namely ∼ |ε|2/(16π2) or g2/(16π2). In

this way, we are justified of neglecting its effect in the tree-level potential.

The 1-loop potential V (1) is given by

V (1) =
1

16π2

∑

n

(−1)2sn

4
(2sn + 1)m4

n

(
log

m2
n

Q2
−

3

2

)
=

1

64π2
STr

[
M4

(
log

M2

Q2
−

3

2

)]
, (0.16)

where m2
n are the mass squared eigenvalues for the scalars, fermions and gauge fields in the

theory and we have denoted the sliding scale by Q, to distinguish it from the VEV µ. The

RG-invariance of the scalar potential at one-loop level reads

∂

∂ logQ
V (1) + βλI

∂

∂λI
V (0) − γnΦn

∂

∂Φn
V (0) = 0, (0.17)

where the indices I and n run over all the masses and couplings and all the scalar fields in

the theory, respectively. Postponing to the next section a detailed analysis of the one-loop

potential V (1), in the following we check that the Q-dependence of V (1) is the one expected from

eq.(0.17). For simplicity we only focus on Higgs-dependent terms in the potential, neglecting

field-independent factors.

It is easy to check that in the vacuum (0.14), the last term in eq.(0.17) vanishes when we

recover the SO(5) invariant limit with hi = h. The relevant β-functions entering in the second

term of eq.(0.17) are βhi , βm2
1
and βm2

2
.2 We have

βm2
1
= 0 , βm2

2
= −

1

16π2
2
(
3g2M2

2 + g′2M2
1

)
,

βh1
= h1(2γ

q
S + γMS ), βh2

= h2(γ
q
D1/2

+ γMD1/2
+ γqS) , βh3

= h3(2γ
q
D1/2

+ γMT1
) ,

βh4
= h4(2γ

q
D1/2

+ γMT0
) , βh5 = h5(2γ

q
D1/2

+ γMS ) , (0.18)

2In principle, we also have βµ2 , but it anyway cannot contribute to the one-loop Higgs-dependent potential,

since Maa is an SU(2)L × U(1)Y singlet.

3

The fine-tuning ∆FT needed to get a mild separation of scales between the Higgs VEV v and

f mainly occurs in γ. A rough, but efficient, way to compute ∆FT is obtained by comparing

the natural value ξnat one would expect from (0.3) in absence of cancellations, with the wanted

one, ξ0:1

∆FT !
(
100 ×

ξ0
ξnat

)
% . (0.8)

0.1 Renormalization of the Higgs potential

Notice: this section should be generalized to include the SO(9) model. Alberto can

you please do that ?

The model-independent superpotential terms in our models is

Wmag = hqaM
abqb − µ2Maa . (0.9)

The superpotential (0.9) is invariant under global SO(5) transformations. At tree-level, with a

canonical Kähler potential, this leads to an SO(5) invariant (and hence Higgs independent) F-

term scalar potential. At the radiative level, however, the Kähler potential is renormalized and

the gauging of SU(2)L ×U(1)Y explicitly breaks the SO(5) global symmetry. This implies that

although holomorphy protects the superpotential (0.9) from quantum corrections, the physical,

rather than holomorphic, coupling h splits into several components with different RG evolutions,

depending on the SU(2)L ×U(1)Y quantum numbers of the fields qa and Mab. For this reason,

in order to better understand the one-loop behaviour of the scalar potential, it is convenient

to directly start by the generalization of (0.9), where we distinguish all the couplings h with

a different one-loop evolution. Recalling that q contains one singlet and two SU(2)L doublets

with Y = ±1/2 and Mab contains three SU(2)L triplets with Y = −1, 0, 1, two SU(2)L doublets

with Y = ±1/2 and two singlets, we have:

Wmag =
5∑

i=1

hi(qaM
abqb)

(i) − µ2Maa (0.10)

where i runs over all the five distinct possible combinations:

(10·10·10), (10·2±1/2·2∓1/2), (2±1/2·3∓1·2±1/2), (2∓1/2·30·2±1/2), (2∓1/2·1′0·2±1/2) . (0.11)

We write the effective Higgs potential as

V (sh) = V (0)(sh) + V (1) + . . . . (0.12)

The tree level potential V (0) is given by

V (0) = m2
1|qn5 |2 +m2

2|qnm|2 +
5∑

i=1

|hi|2|F
M(i)
ab |2. (0.13)

1It is understood that whenever ξnat > 1, there is no non-trivial minimum, since 0 ≤ ξ ≤ 1.
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