Measuring CPViolation in h $\rightarrow \tau^+ \tau^-$ at Colliders

Reinard Primulando

with R. Harnik, A. Martin, T. Okui and F.Yu (arXiv:1308.1094)

CP Property of $h \rightarrow f f$

- $h \rightarrow q\bar{q}$ (polarization washed out by hadronization)
- $h \rightarrow e^+ e^-, \mu^+ \mu^-$ (unable to measure lepton polarization)
- ttH (can be done, see e.g. Gunion & He: hep-ph/9602226, Godbole, et.al.: 1103.5404, Primulando, Stolarski, Zupan: in progress)
- $h \rightarrow \tau^+ \tau^-$ (this work)

CPViolation in $h \rightarrow \tau^+ \tau^-$

$$\mathcal{L}_{\text{pheno}} \supset -m_{\tau} \,\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \,h\bar{\tau}(\cos\Delta + \mathrm{i}\gamma_5\sin\Delta)\tau$$

- The tau spin correlation is sensitive to the CP phase, Δ .
- We consider the decay of $\tau \to \rho \nu$ with subsequent decay of $\rho^{\pm} \to \pi^{\pm} \pi^{0}$
- The tau spin information is encoded in the momentum distribution of its decay products.

 $|\mathcal{M}|^2 \propto P_{\mathcal{A},S} + P_{\Delta,\mathcal{S}} + P_{\Delta,S} + P_{\Delta,S}$

$|\mathcal{M}|^{2} \propto (P_{\mathcal{A},S} + P_{\Delta,S} + P_{\Delta,S} + P_{\Delta,S} + P_{\Delta,S})$

Independent of Δ

Define

$$\vec{E}_{\pm} = p_{\tau^{\pm}}^0 \, \vec{k}_{\pm} - k_{\pm}^0 \, \vec{p}_{\tau^{\pm}}$$

where

$$k^{\mu} = y_{\pm} (p^{\mu}_{\pi^{\pm}} - p^{\mu}_{\pi^{0}}) + r \, p^{\mu}_{\nu^{\pm}}$$

$$y_{\pm} = \frac{E_{\pi^{\pm}} - E_{\pi^{0}_{\pm}}}{E_{\pi^{\pm}} + E_{\pi^{0}_{\pm}}} \bigg|_{\tau \text{ rest frame}} r \equiv \frac{m_{\rho}^{2} - 4m_{\pi}^{2}}{m_{\tau}^{2} + m_{\rho}^{2}}$$

O Variable

 $|\mathcal{M}|^2 \propto P_{\mathcal{A},S} + P_{\Delta,\mathfrak{F}} - 4|\vec{E}_+||\vec{E}_-|\cos(2\Delta - \Theta)|$

• The CP phase Δ can be determined by observing the minimum of the Θ distribution. Truth level Θ and truth level ϕ^* for $\Delta = 0$

Comparison with ϕ^*

0.00

Θ

- The acoplanarity angle (φ^*) between the decay plane of ρ^+ and ρ^- in the $\rho^+\rho^-$ rest frame can also be used to distinguish various CP phase; Bower, et.al. (hep-ph/0204292).
- Other studies e.g. Berge,et.al. (1308.2674) are based on reconstructing the impact parameter vectors of the visible τ decay products.

ILC

- We consider ILC 250 GeV with luminosity I ab⁻¹.
- We assume the SM production cross section of hZ and SM branching ratio of $h \rightarrow \tau^+ \, \tau^-.$
- The ZZ background is neglected because we can reconstruct the Higgs mass.
- The neutrino momenta can be reconstructed at the ILC with a twofold ambiguity.

hypoth	nesis	with	an a	lternati	ive Δ	=δ	hypotl	nesis.

$\sigma_{e^+e^- \to hZ}$	0.30 pb
$\operatorname{Br}(h \to \tau^+ \tau^-)$	6.1%
$\operatorname{Br}(\tau^- \to \pi^- \pi^0 \nu)$	26%
$Br(Z \rightarrow visibles)$	80%
N_{events}	990
Accuracy	4.4°

hypothesis with an alternative $\Delta = \delta$ hypothesis.

$\sigma_{e^+e^- \to hZ}$	0.30 pb
$\operatorname{Br}(h \to \tau^+ \tau^-)$	6.1%
${\rm Br}(au^- o \pi^- \pi^0 u)$	26%
$Br(Z \to visibles)$	80%
N_{events}	990
Accuracy	4.4°

LHC

- We consider pp → h j process at 14 TeV LHC with the Higgs is produced by gluon fusion process.
- At the LHC, the neutrino momentum can not be reconstructed.
- We employ collinear approximation for neutrino momenta.

LHC

- The main backgrounds are Z+jets and QCD.
- We employ cuts:

- We assume that the QCD background is 10% of Z+jets.
- We assume 50% and 70% tau tagging efficiencies.

LHC

	hj	Z j
Inclusive σ	2.0 pb	420 pb
$Br(\tau^+\tau^- decay)$	6.1%	3.4%
$\operatorname{Br}(\tau^- \to \pi^- \pi^0 \nu)$	26%	26%
Cut efficiency	18%	0.24%
Nevents	1100	1800

τ_h efficiency	50%	70%
3σ	$L = 550 \text{ fb}^{-1}$	$L = 300 \text{ fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°

Pseudoscalar and scalar hypotheses can be distinguished at 3 sigma with 550 fb⁻¹ assuming 50% tau tagging efficiency.

Conclusion

- We constructed a new variable, Θ , that can be used to distinguish various CP mixing of $h \rightarrow \tau^+ \tau^-$.
- The accuracy of 250 GeV, I ab⁻¹ILC is 4.4⁰.
- The accuracy of 14 TeV LHC, 3 ab⁻¹LHC is 11.5⁰ assuming 50% tau tagging efficiency and 5.0⁰ assuming 70% efficiency.
- Study on other production and decay channels might increase the sensitivity.