

Search for SUSY in multilepton final states at CMS

Andrea Gozzelino

(University of Padova and INFN LNL) on behalf of CMS Collaboration

Trieste, August 26th 2013

CMS lepton SUSY searches

CMS searches for SUSY in wide range of final states, including final states with leptons

Covered by Josh's talk

Covered by this talk

=3 leptons $+ \ge 1$ b jets inclusive targeted searches

CMS-SUS-13-008

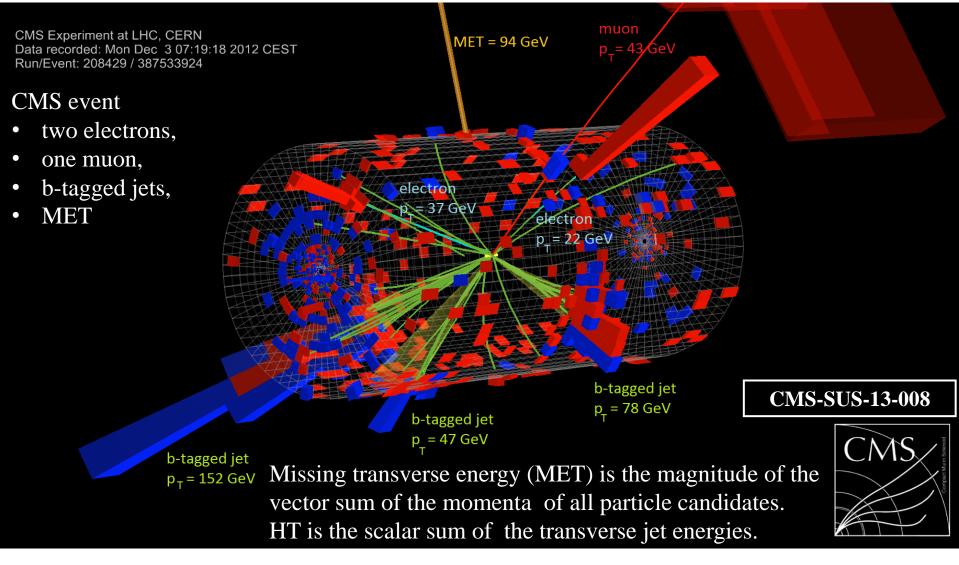
Events with multiple leptons provide a clean and well controlled environment for evidence of new physics Beyond the Standard Model.

Covered by Marco Andrea's talk

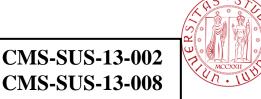
CMS searches are SUSY model-independent, but in this talk several interpretions of results in chosen specific SUSY models are shown.

In the following, results from two analysis will be shown. Both of them used the full dataset 2012 LHC proton proton collisions at center-of-mass energy of 8 TeV, corresponding to $L \approx 20$ fb⁻¹.

≥3 leptons inclusive searches


CMS-SUS-13-002

Trieste, August 26th 2013



Trieste, August 26th 2013

Physics objects

Online selections with dilepton (DoubleMu, DoubleEle, MuE) triggers first lepton $p_T > 17$ GeV, second lepton $p_T > 8$ GeV

Event selections

first lepton $p_T > 20$ GeV, other leptons $p_T > 10$ GeV

CLASSIFICATION

Optimized signal regions to achieve greater sensitivity to an array of different SUSY cascades Many mutually exclusive with varying requirements on

- Number of leptons
- Lepton and jet flavor, charge and flavor combinations
- Number of jets
- Number of b-jets
- MET
- HT

A search for anomalous production of events with three or more leptons

CMS-SUS-13-002

Searching strategies

Candidate multilepton events

• \geq 3 lepton candidates

MET distributions for 64 categories

Example of results table with categories

3 leptons, maximum number of opposite-sign same flavor (OSSF) dilepton pair , presence of τ , presence of a leptonically-decaying Z if at least one OSSF pair invariant mass is in Z mass window, presence of b tagged jets, HT, MET

Selection		$E_{\mathrm{T}}^{\mathrm{miss}}$	$N(\tau_h)$ =	=0 $N_{b-jets}=0$	$N(\tau_h)$	=1, N_{b-jets} =0	$N(\tau_h)$	=0, $N_{b-jets} \ge 1$	$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
3 Lepton Results		-	obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T > 200$	NA	(100,∞)	5	3.7 ± 1.6	35	33 ± 14	1	5.5 ± 2.2	47	61 ± 30
OSSF0 $H_T > 200$	NA	(50,100)	3	3.5 ± 1.4	34	36 ± 16	8	7.7 ± 2.7	82	91 ± 46
OSSF0 $H_T > 200$	NA	(0,50)	4	2.1 ± 0.8	25	25 ± 9.7	1	3.6 ± 1.5	52	59 ± 29
OSSF1 $H_T > 200$	above-Z	(100,∞)	5	3.6 ± 1.2	2	10 ± 4.8	3	4.7 ± 1.6	19	22 ± 11
OSSF1 $H_T > 200$	below-Z	(100,∞)	7	9.7 ± 3.3	18	14 ± 6.4	8	9.1 ± 3.4	21	23 ± 11
OSSF1 $H_T > 200$	on-Z	(100,∞)	39	61 ± 23	17	15 ± 4.9	9	14 ± 4.4	10	12 ± 5.8
OSSF1 $H_T > 200$	above-Z	(50,100)	4	5 ± 1.6	14	11 ± 5.2	6	6.8 ± 2.4	32	30 ± 15
OSSF1 $H_T > 200$	below-Z	(50,100)	10	11 ± 3.8	24	19 ± 6.4	10	9.9 ± 3.7	25	32 ± 16
OSSF1 $H_T > 200$	on-Z	(50,100)	78	80 ± 32	70	50 ± 11	22	22 ± 6.3	36	24 ± 9.8
OSSF1 $H_T > 200$	above-Z	(0,50)	3	7.3 ± 2	41	33 ± 8.7	4	5.3 ± 1.5	15	23 ± 11
OSSF1 $H_T > 200$	below-Z	(0,50)	26	25 ± 6.8	110	86 ± 23	5	10 ± 2.5	24	26 ± 11
OSSF1 $H_T > 200$	on-Z	(0,50)	*135	127 ± 41	542	543 ± 159	31	32 ± 6.5	86	75 ± 19

Trieste, August 26th 2013

Background estimations

CMS-SUS-13-002

• Background from non-prompt leptons or tau candidates

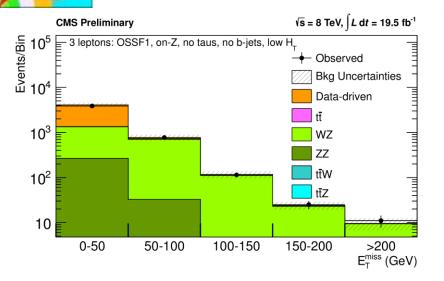
Z boson production with associated jets, where Z decays leptonically and a third lepton is a result of misidentification from a jet

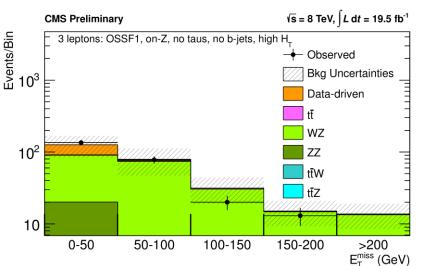
 \rightarrow Data driven method to estimate contributions from Drell -Yan

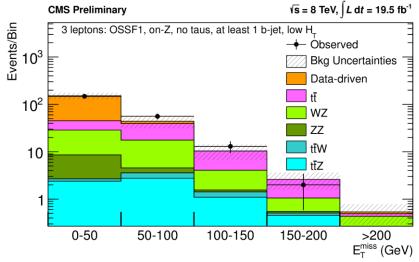
• Irreducible background from WZ production

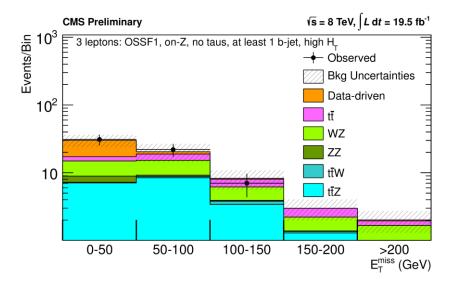
Diboson + jets production where both bosons decay leptonically

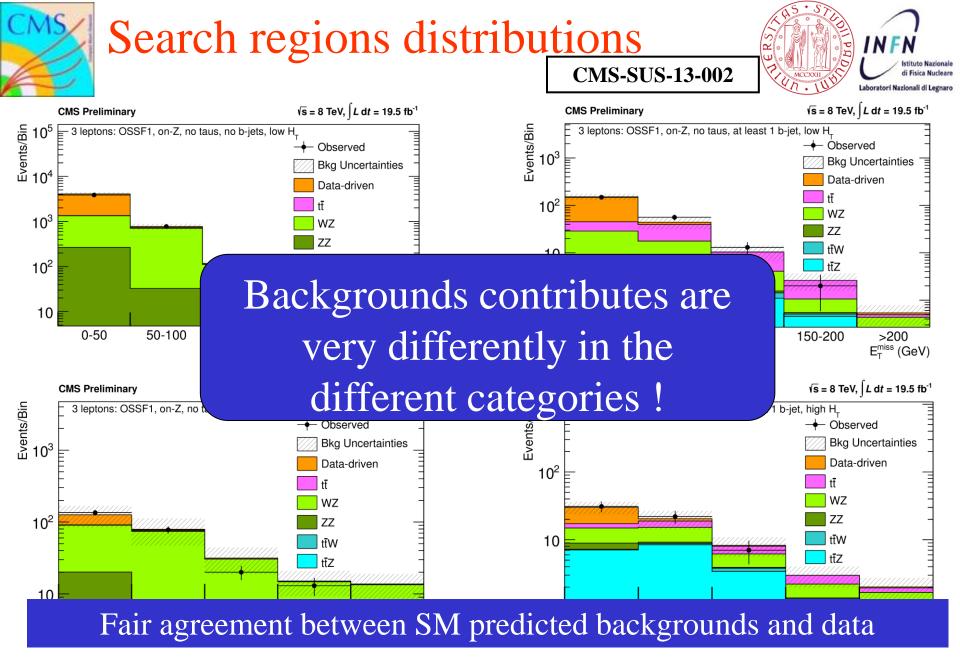
- \rightarrow Expected rate from theory and Monte Carlo simulations
- Background from tt(bar) production
- \rightarrow Estimation from simulation after validation procedures
- Backgrounds from asymmetric internal photon conversion

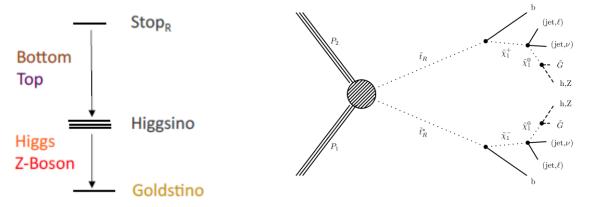

External conversion: an on-shell photon decays into a lepton pair in the material of the detector Internal conversion: virtual photon produces lepton pair


 \rightarrow Estimation from data-based measurement



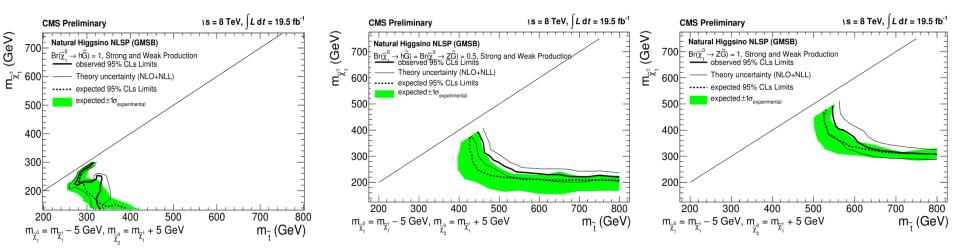

CMS-SUS-13-002





Natural Higgsino NLSP scenario

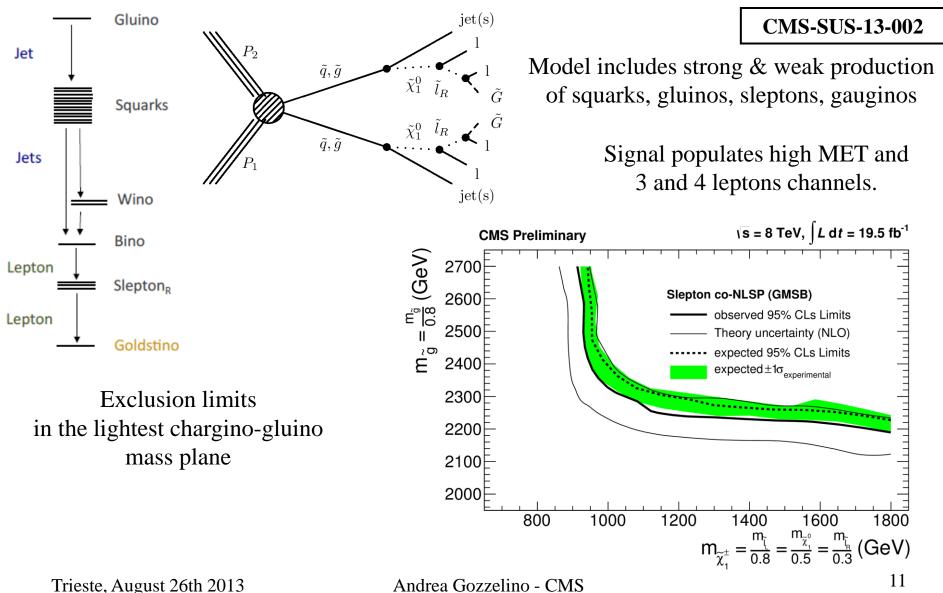
Gauge Mediated Supersymmetry Breaking (GMSB) model

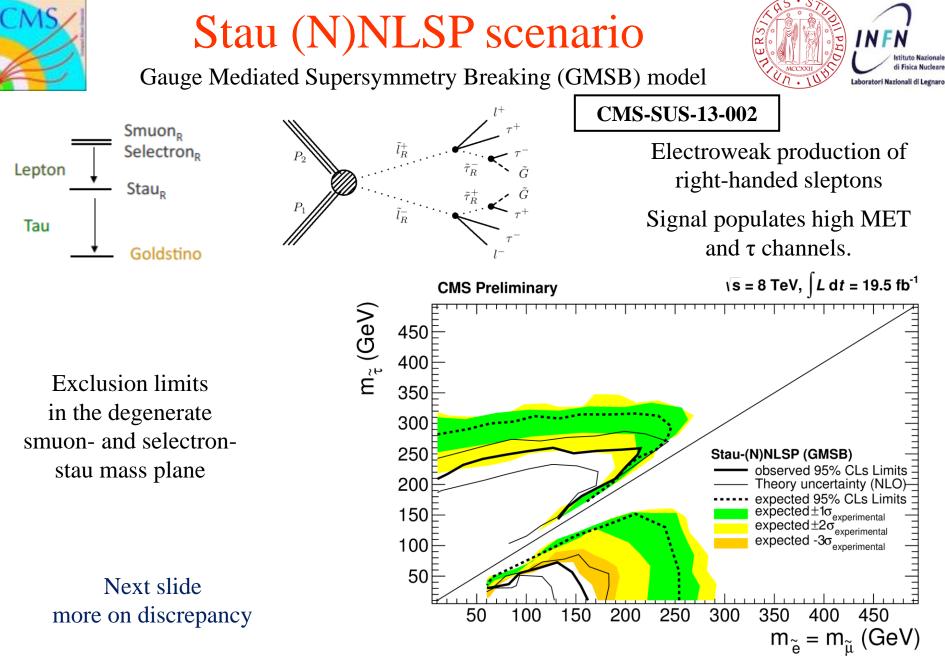


CMS-SUS-13-002

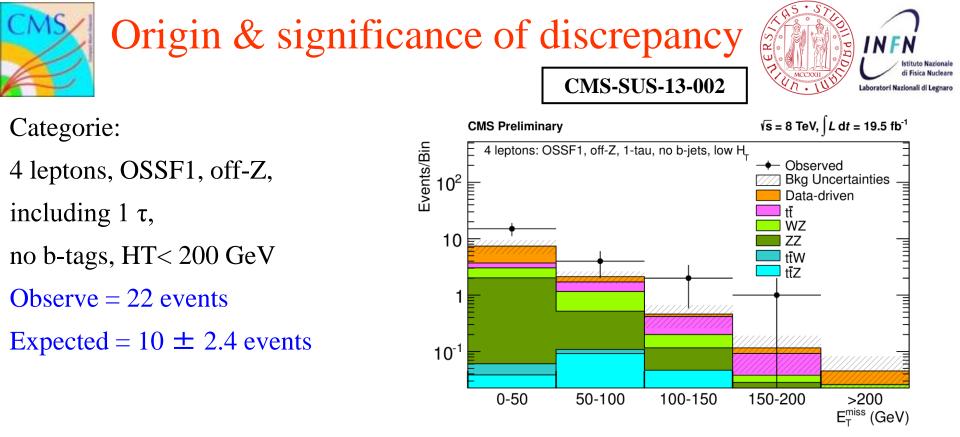
Top squark production with decays to neutral di-boson pair

Exclusion limits in the stop-chargino mass plane (different Br scenarios)





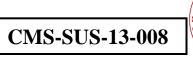
Slepton co-NLSP scenario


Gauge Mediated Supersymmetry Breaking (GMSB) model

Trieste, August 26th 2013

Probability for 1 out of 64 categories to have as large a fluctuation $\approx 50 \%$ Probability for all bins in 1 out of 64 categories to have as large a fluctuation $\approx 5 \%$

Given that we search for new physics in 64 different categories of multi-lepton events, it is not surprising that we find one category with a large deviation between observed yield and expected SM background.



Search for supersymmetry in pp collisions at 8 TeV in events with three leptons and at least one b-tagged jet

CMS-SUS-13-008

Candidate multilepton events

• = 3 lepton candidates $+ \ge 2$ jets $+ \ge 1$ b-tagged jet

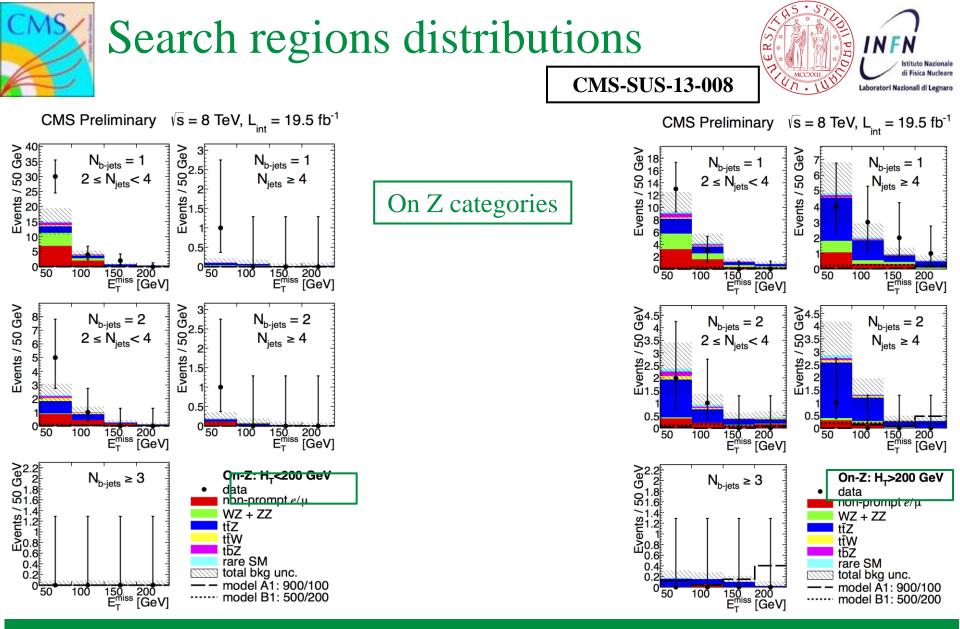
Baseline selections

60 search regions

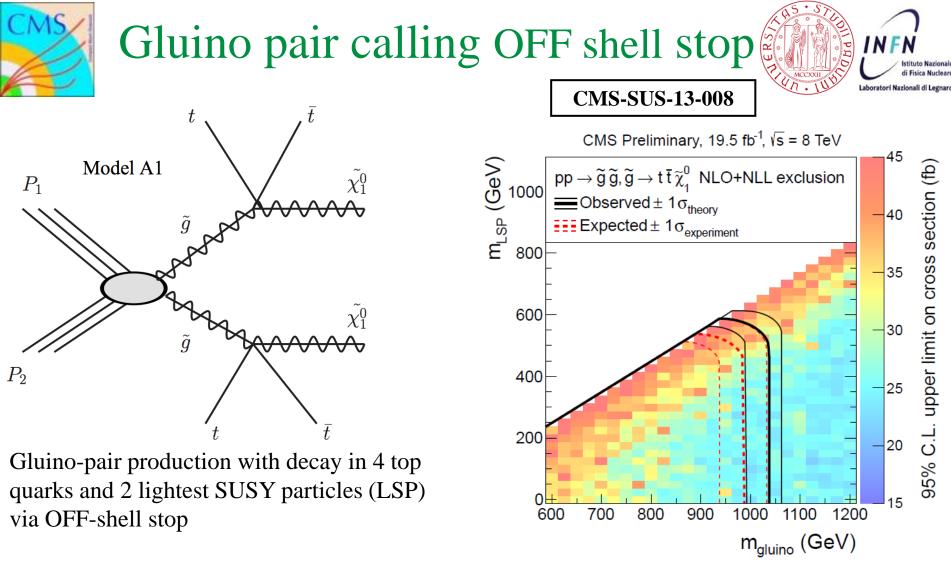
Variable	Baseline		Search	Regions	
Sign/Flavor	$3~e/\mu$	On-Z		Off-Z	
${ m N}_{ m b-jets}$	≥ 1	1	2		≥ 3
$\mathrm{N_{jets}}$	≥ 2	2-3		≥ 4	
$H_{\rm T}~({ m GeV})$	≥ 60	60 - 200		≥ 200	
$E_{\rm T}^{\rm miss}$ (GeV)	≥ 50	50 - 100	100	0–200	≥ 200

Backgrounds

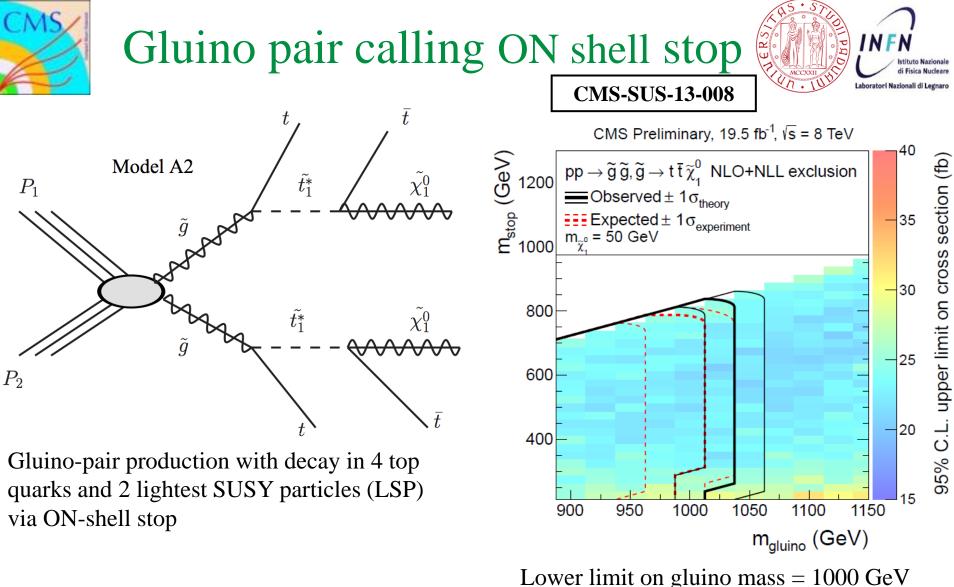
One or more non-prompt or misidentified leptons Three prompt leptons from diboson production Rare SM processes


Results in On Z regions

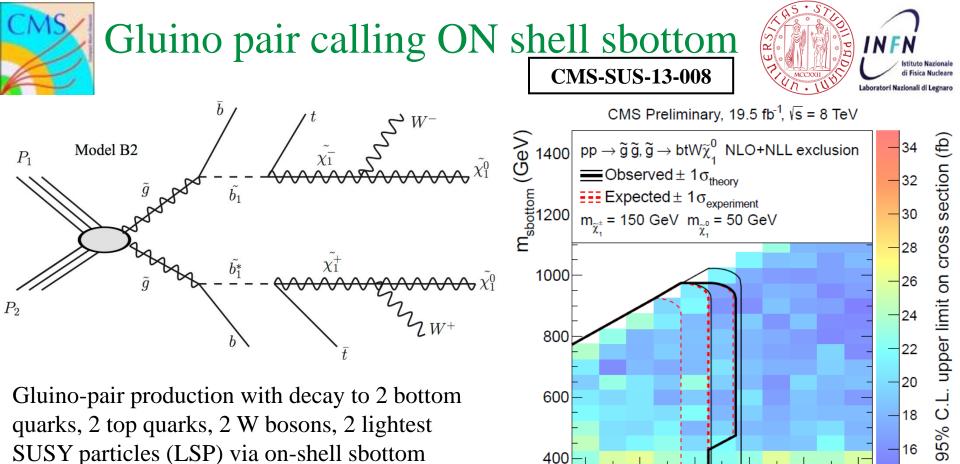
CMS-SUS-13-008


Searching results in different signal regions for events with a Z candidate present (On-Z)

N.	N.	$E_{\rm T}^{\rm miss}$ (GeV)	$H_{\rm T} < 20$	$0 \mathrm{GeV}$	$H_{\rm T} > 200 {\rm ~GeV}$		
N_{b-tags}	N_{jets}	$L_{\rm T}$ (GeV)	Expected	Observed	Expected	Observed	
		50 - 100	15.0 ± 4.5	30	9.3 ± 3.2	13	
	$2\!-\!3$	100 - 200	5.0 ± 1.7	6	5.5 ± 2.0	3	
1		≥ 200	0.36 ± 0.22	0	0.9 ± 0.4	0	
T		50 - 100	0.11 ± 0.12	1	4.9 ± 2.0	4	
	≥ 4	100 - 200	< 0.19	0	3.0 ± 1.3	5	
		≥ 200	< 0.11	0	0.56 ± 0.31	1	
		50 - 100	2.3 ± 0.8	5	2.6 ± 1.0	2	
	2 - 3	100 - 200	1.3 ± 0.5	1	1.3 ± 0.6	1	
2		≥ 200	0.12 ± 0.12	0	0.46 ± 0.24	0	
2		50 - 100	0.20 ± 0.16	1	2.9 ± 1.3	1	
	≥ 4	100 - 200	< 0.22	0	1.6 ± 0.8	0	
		≥ 200	< 0.09	0	0.29 ± 0.19	0	
		50 - 100	< 0.09	0	0.17 ± 0.14	0	
≥ 3	≥ 3	100 - 200	< 0.09	0	0.25 ± 0.16	0	
		≥ 200	< 0.09	0	0.02 ± 0.09	0	



Fair agreement between SM predicted backgrounds and data


Trieste, August 26th 2013

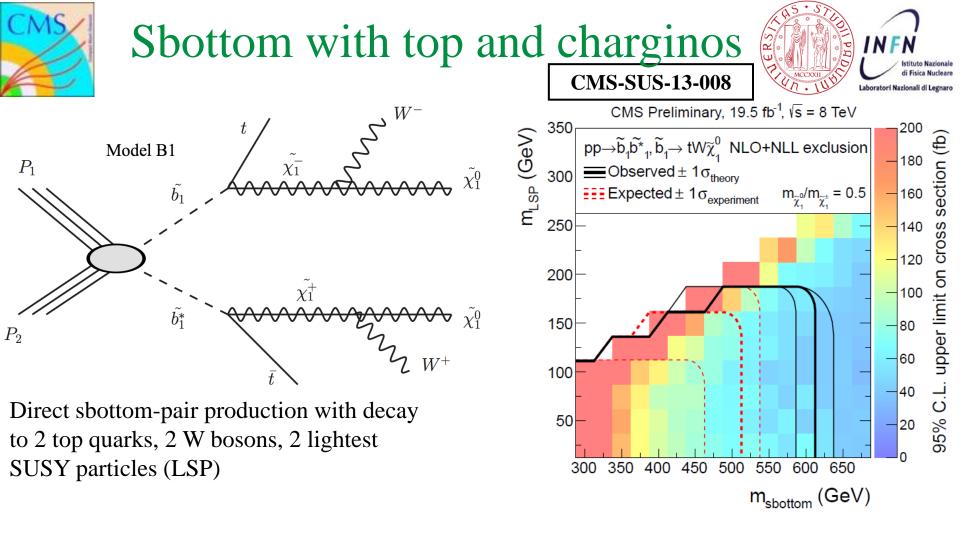
Lower limit on gluino mass = 975 GeV if LSP mass range [0,500] GeV

Lower limit on gluino mass = 1000 GeV if stop mass range [250,800] GeV; LSP mass fixed = 50 GeV

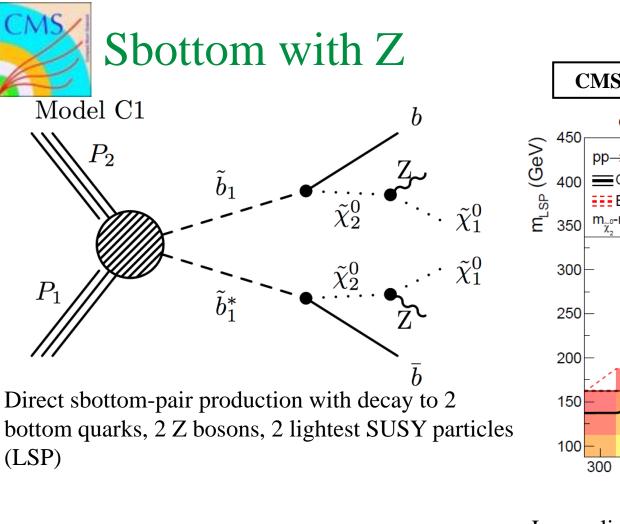
Lower limit on gluino mass = 1000 GeV in sbottom mass range [400,950] GeV; chargino mass fixed = 150 GeV LSP mass fixed = 50 GeV

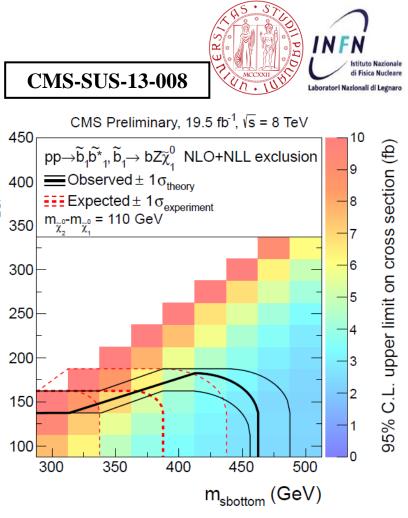
1000

1100


1200

 $m_{gluino} (GeV)$


1300


800

900

Lower limit on sbottom mass = 575 GeV in LSP mass range [25,150] GeV; ratio between neutralino and chargino mass fixed =0.5

Lower limit on sbottom mass = 450 GeV in LSP mass range [100,125] GeV; mass difference between LSP and neutralino fixed = 110 GeV



Conclusions

- Results in multilepton events coming from full 2012 dataset are shown and two model-indipendent searches are presented.
- No significant excess has been found.
- Intepretations in several chosen SUSY models are proposed.
- More new results coming...stay tuned!

Gluinos decay to top pairs excluded for masses up to 975 GeV Neutralinos decay to virtual stop excluded for masses up to 900 GeV Gluinos decay to stops excluded for masses up to 1 TeV Gluinos decay to sbottoms excluded for masses up to 1 TeV Sbottom excluded for masses up to 450 GeV, if it goes to bottom Sbottom excluded for masses up to 575 GeV, if it goes to top

Thank you !!!

CMS references

Search for supersymmetry in pp collisions at 8 TeV in events with three leptons and at least one b-tagged jet SUS-13-008 PAS-only-PUB Notes: AN-2012/433 CDS Record: 1547560

A search for anomalous production of events with three or more leptons in 19.5 /fb of 8 TeV LHC data SUS-13-002 PAS PUB Notes: AN-2012/343, AN-2012/342, AN-2012/257

Back up slides

A search for anomalous production of events with three or more leptons

CMS-SUS-13-002

Results I

CMS-SUS-13-002

Selection		$E_{\rm T}^{\rm miss}$		N(τ_h)=0, N _{b-jets} =0		N(τ_h)=1, N _{b-jets} =0		=0, $N_{b-jets} \ge 1$	N(τ_h)=1, $N_{b-jets} \ge 1$	
4 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T > 200$	NA	(100,∞)	0	0.01 ± 0.03	0	0.01 ± 0.06	0	0.02 ± 0.04	0	0.11 ± 0.08
OSSF0 $H_T > 200$	NA	(50,100)	0	0 ± 0.02	0	0.01 ± 0.06	0	0 ± 0.03	0	0.12 ± 0.07
OSSF0 $H_T > 200$	NA	(0,50)	0	$1e-05\pm0.02$	0	0.07 ± 0.1	0	0 ± 0.02	0	0.02 ± 0.02
OSSF1 $H_T > 200$	off-Z	(100,∞)	0	0.005 ± 0.02	1	0.25 ± 0.11	0	0.13 ± 0.08	0	0.12 ± 0.12
OSSF1 $H_T > 200$	on-Z	(100,∞)	1	0.1 ± 0.06	0	0.5 ± 0.27	0	0.42 ± 0.22	0	0.42 ± 0.19
OSSF1 $H_T > 200$	off-Z	(50,100)	0	0.07 ± 0.06	1	0.29 ± 0.13	0	0.04 ± 0.04	0	0.23 ± 0.13
OSSF1 $H_T > 200$	on-Z	(50,100)	0	0.23 ± 0.11	1	0.7 ± 0.31	0	0.23 ± 0.13	1	0.34 ± 0.16
OSSF1 $H_T > 200$	off-Z	(0,50)	0	0.02 ± 0.03	0	0.27 ± 0.12	0	0.03 ± 0.04	0	0.31 ± 0.15
OSSF1 $H_T > 200$	on-Z	(0,50)	0	0.2 ± 0.08	0	1.3 ± 0.47	0	0.06 ± 0.04	1	0.49 ± 0.19
OSSF2 $H_T > 200$	off-Z	(100,∞)	0	0.01 ± 0.02	0	0 ± 0	0	0.01 ± 0.06	0	0 ± 0
OSSF2 $H_T > 200$	on-Z	(100,∞)	1	0.15 ± 0.16	0	0 ± 0	0	0.34 ± 0.18	0	0 ± 0
OSSF2 $H_T > 200$	off-Z	(50,100)	0	0.03 ± 0.02	0	0 ± 0	0	0.13 ± 0.09	0	0 ± 0
OSSF2 $H_T > 200$	on-Z	(50,100)	0	0.8 ± 0.4	0	0 ± 0	0	0.36 ± 0.19	0	0 ± 0
OSSF2 $H_T > 200$	off-Z	(0,50)	1	0.27 ± 0.13	0	0 ± 0	0	0.08 ± 0.05	0	0 ± 0
OSSF2 $H_T > 200$	on-Z	(0,50)	5	7.4 ± 3.5	0	0 ± 0	2	0.8 ± 0.4	0	0 ± 0

Table 1: Results from 19.5 fb⁻¹ of 2012 data. The labels going down the side refer to whether or not there are OSSF pairs, whether or not $Z \rightarrow \ell^+ \ell^-$ was excluded (below-Z means $m_{ll} <$ 75 GeV, above-Z means $m_{ll} > 105$ GeV, on-Z means m_{ll} between 75 and 105 GeV), and the H_T and E_T^{miss} requirements. Labels along the top of the table give the number of τ_h candidates, 0 or 1 and the number of b-jets which is 0 or ≥ 1 . All channels are exclusive. The channels shown in the table are for displaying purposes only. Finer E_T^{miss} channels are used for the fitting procedure and for setting the limits.

CMS-SUS-13-002

Selection	$E_{\mathrm{T}}^{\mathrm{miss}}$		N(τ_h)=0, N _{b-jets} =0		N($\tau_{\rm h}$)=1, N _{b-jets} =0		N($\tau_{\rm h}$)=0, $N_{\rm b-jets} \ge 1$		N($\tau_{\rm h}$)=1, N _{b-jets} \geq 1	
4 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T < 200$	NA	(100,∞)	0	0.11 ± 0.08	0	0.17 ± 0.1	0	0.03 ± 0.04	0	0.04 ± 0.04
OSSF0 $H_T < 200$	NA	(50,100)	0	0.01 ± 0.03	2	0.7 ± 0.33	0	0 ± 0.02	0	0.28 ± 0.16
OSSF0 $H_T < 200$	NA	(0,50)	0	0.01 ± 0.02	1	0.7 ± 0.3	0	0.001 ± 0.02	0	0.13 ± 0.08
OSSF1 $H_T < 200$	off-Z	(100,∞)	0	0.06 ± 0.04	3	0.6 ± 0.24	0	0.02 ± 0.04	0	0.32 ± 0.2
OSSF1 $H_T < 200$	on-Z	(100,∞)	1	0.5 ± 0.18	2	2.5 ± 0.5	1	0.38 ± 0.2	0	0.21 ± 0.1
$OSSF1 H_T < 200$	off-Z	(50,100)	0	0.18 ± 0.06	4	2.1 ± 0.5	0	0.16 ± 0.08	1	0.45 ± 0.24
OSSF1 $H_T < 200$	on-Z	(50,100)	2	1.2 ± 0.34	9	9.6 ± 1.6	2	0.42 ± 0.23	0	0.5 ± 0.16
$OSSF1 H_T < 200$	off-Z	(0,50)	2	0.46 ± 0.18	15	7.5 ± 2	0	0.09 ± 0.06	0	0.7 ± 0.31
OSSF1 $H_T < 200$	on-Z	(0,50)	4	3 ± 0.8	41	40 ± 10	1	0.31 ± 0.15	2	1.5 ± 0.47
$OSSF2 H_T < 200$	off-Z	(100,∞)	0	0.04 ± 0.03	0	0 ± 0	0	0.05 ± 0.04	0	0 ± 0
$OSSF2 H_T < 200$	on-Z	(100,∞)	0	0.34 ± 0.15	0	0 ± 0	0	0.46 ± 0.25	0	0 ± 0
$OSSF2 H_T < 200$	off-Z	(50,100)	2	0.18 ± 0.13	0	0 ± 0	0	0.02 ± 0.03	0	0 ± 0
$OSSF2 H_T < 200$	on-Z	(50,100)	4	3.9 ± 2.5	0	0 ± 0	0	0.5 ± 0.21	0	0 ± 0
$OSSF2 H_T < 200$	off-Z	(0,50)	7	8.9 ± 2.4	0	0 ± 0	1	0.23 ± 0.09	0	0 ± 0
OSSF2 $H_T < 200$	on-Z	(0,50)	*156	159 ± 34	0	0 ± 0	4	2.9 ± 0.8	0	0 ± 0

Table 2: Results from 19.5 fb⁻¹ of 2012 data. The labels going down the side refer to whether or not there are OSSF pairs, whether or not $Z \rightarrow \ell^+ \ell^-$ was excluded (below-Z means $m_{ll} <$ 75 GeV, above-Z means $m_{ll} > 105$ GeV, on-Z means m_{ll} between 75 and 105 GeV), and the H_T and E_T^{miss} requirements. Labels along the top of the table give the number of τ_h candidates, 0 or 1 and the number of b-jets which is 0 or ≥ 1 . All channels are exclusive. The channels shown in the table are for displaying purposes only. Finer E_T^{miss} channels are used for the fitting procedure and for setting the limits.

Results III

Selection		$E_{\mathrm{T}}^{\mathrm{miss}}$	$N(\tau_h)$ =	=0, N _{b-jets} =0	$N(\tau_h)$	=1, N _{b-jets} =0	$N(\tau_h)$	=0, $N_{b-jets} \ge 1$	$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
3 Lepton Results		-	obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T > 200$	NA	(100,∞)	5	3.7 ± 1.6	35	33 ± 14	1	5.5 ± 2.2	47	61 ± 30
OSSF0 $H_T > 200$	NA	(50, 100)	3	3.5 ± 1.4	34	36 ± 16	8	7.7 ± 2.7	82	91 ± 46
OSSF0 $H_T > 200$	NA	(0,50)	4	2.1 ± 0.8	25	25 ± 9.7	1	3.6 ± 1.5	52	59 ± 29
OSSF1 $H_T > 200$	above-Z	(100,∞)	5	3.6 ± 1.2	2	10 ± 4.8	3	4.7 ± 1.6	19	22 ± 11
OSSF1 $H_T > 200$	below-Z	(100,∞)	7	9.7 ± 3.3	18	14 ± 6.4	8	9.1 ± 3.4	21	23 ± 11
OSSF1 $H_T > 200$	on-Z	(100,∞)	39	61 ± 23	17	15 ± 4.9	9	14 ± 4.4	10	12 ± 5.8
OSSF1 $H_T > 200$	above-Z	(50,100)	4	5 ± 1.6	14	11 ± 5.2	6	6.8 ± 2.4	32	30 ± 15
OSSF1 $H_T > 200$	below-Z	(50,100)	10	11 ± 3.8	24	19 ± 6.4	10	9.9 ± 3.7	25	32 ± 16
OSSF1 $H_T > 200$	on-Z	(50,100)	78	80 ± 32	70	50 ± 11	22	22 ± 6.3	36	24 ± 9.8
OSSF1 $H_T > 200$	above-Z	(0,50)	3	7.3 ± 2	41	33 ± 8.7	4	5.3 ± 1.5	15	23 ± 11
OSSF1 $H_T > 200$	below-Z	(0,50)	26	25 ± 6.8	110	86 ± 23	5	10 ± 2.5	24	26 ± 11
OSSF1 $H_T > 200$	on-Z	(0,50)	*135	127 ± 41	542	543 ± 159	31	32 ± 6.5	86	75 ± 19

Table 3: Results from 19.5 fb⁻¹ of 2012 data. The labels going down the side refer to whether or not there are OSSF pairs, whether or not $Z \rightarrow \ell^+ \ell^-$ was excluded (below-Z means $m_{ll} <$ 75 GeV, above-Z means $m_{ll} > 105$ GeV, on-Z means m_{ll} between 75 and 105 GeV), and the H_T and E_T^{miss} requirements. Labels along the top of the table give the number of τ_h candidates, 0 or 1 and the number of b-jets which is 0 or ≥ 1 . All channels are exclusive. The channels shown in the table are for displaying purposes only. Finer E_T^{miss} channels are used for the fitting procedure and for setting the limits.

Results IV

CMS-SUS-13-002

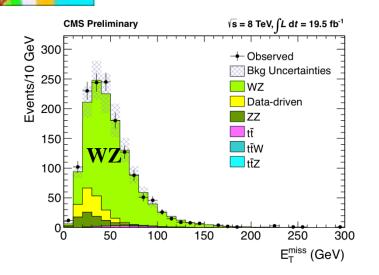
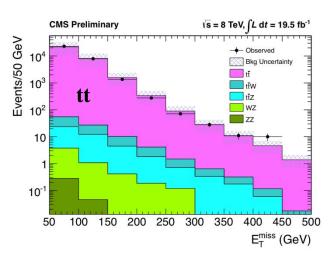
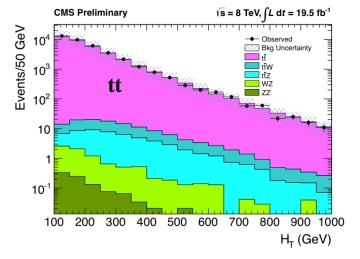
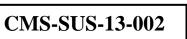

Selection		$E_{\rm T}^{\rm miss}$	$N(\tau_h)=$	=0, N _{b-jets} =0	$N(\tau_h)$	$=1, N_{b-jets}=0$	$N(\tau_h)=$	$0, N_{b-jets} \ge 1$	$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
3 Lepton Results		-	obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T < 200$	NA	(100,∞)	7	11 ± 4.9	101	111 ± 54	13	10 ± 5.3	87	119 ± 61
OSSF0 $H_T < 200$	NA	(50,100)	35	38 ± 15	406	402 ± 152	29	26 ± 13	269	298 ± 151
OSSF0 $H_T < 200$	NA	(0,50)	53	51 ± 11	910	1035 ± 255	29	23 ± 10	237	240 ± 113
OSSF1 $H_T < 200$	above-Z	(100,∞)	18	13 ± 3.5	25	38 ± 18	10	6.5 ± 2.9	24	35 ± 18
OSSF1 $H_T < 200$	below-Z	(100,∞)	21	24 ± 9	41	50 ± 25	14	20 ± 10	42	54 ± 28
OSSF1 $H_T < 200$	on-Z	(100,∞)l	150	152 ± 26	39	48 ± 13	15	14 ± 4.8	19	23 ± 11
OSSF1 $H_T < 200$	above-Z	(50,100)	50	46 ± 9.7	169	139 ± 48	20	18 ± 8	85	93 ± 47
OSSF1 $H_T < 200$	below-Z	(50,100)	142	125 ± 27	353	355 ± 92	48	48 ± 23	140	133 ± 68
OSSF1 $H_T < 200$	on-Z	(50,100)	*773	777 ± 116	1276	1154 ± 306	56	47 ± 13	81	75 ± 32
OSSF1 $H_T < 200$	above-Z	(0,50)	178	196 ± 35	1676	1882 ± 540	17	18 ± 6.7	115	94 ± 42
OSSF1 $H_T < 200$	below-Z	(0,50)	510	547 ± 87	9939	8980 ± 2660	34	42 ± 11	226	228 ± 63
OSSF1 $H_T < 200$	on-Z	(0,50)	*3869	4105 ± 666	*50188	50162 ± 14984	*148	156 ± 24	906	925 ± 263

Table 4: Results from 19.5 fb⁻¹ of 2012 data. The labels going down the side refer to whether or not there are OSSF pairs, whether or not $Z \rightarrow \ell^+ \ell^-$ was excluded (below-Z means $m_{ll} < 75 \text{ GeV}$, above-Z means $m_{ll} > 105 \text{ GeV}$, on-Z means m_{ll} between 75 and 105 GeV), and the H_T and E_T^{miss} requirements. Labels along the top of the table give the number of τ_h candidates, 0 or 1 and the number of b-jets which is 0 or ≥ 1 . All channels are exclusive. The channels shown in the table are for displaying purposes only. Finer E_T^{miss} channels are used for the fitting procedure and for setting the limits.


Control region distributions


CMS-SUS-13-002


WZ control region MET distribution

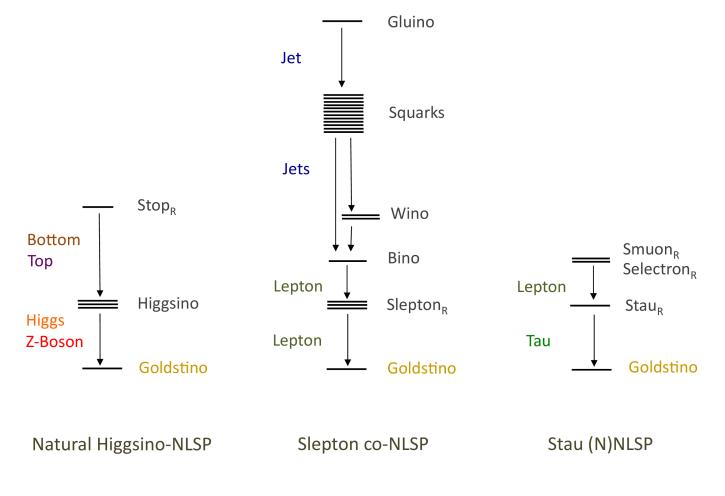
tt(bar) control region MET and HT distributions

Source of Uncertainty	Uncertainty
Luminosity	4.4%
PDF	14%
Renormalization Scale	10%
$E_{\rm T}^{\rm miss}$ Resolution/Smearing: 0 – 50 GeV, 50 – 100 GeV, > 100 GeV	(-3%, +4%, +4%)
Jet Energy Scale $W^{\pm}Z$	0.5% (WZ)
B-Tag Veto	0.1% (WZ), 6% $(t\bar{t})$
Muon ID/Isolation at 10 (100) GeV	11% (0.2%)
Electron ID/Isolation at 10 (100) GeV	14 % (0.6%)
Tau ID/isolation at 10 (100) GeV	2%(1.1%)
$t\bar{t}$ cross-section/fake rate	50%
WZ normalization	6%
ZZ normalization	12%
Internal conversion fake rate	100%

Statistics dominated uncertainties

The results are used to place upper limits at 95% confidence level (CL) on the signal rate calculated using the modified frequentist CL method.

Trieste, August 26th 2013

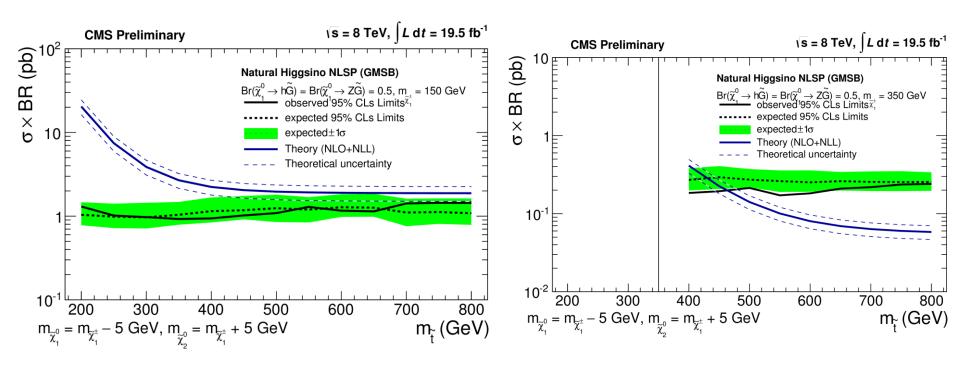


GMSB = Gauge Mediated Supersymmetry Breaking

GMSB scenarios

Mass spectra in 3 models

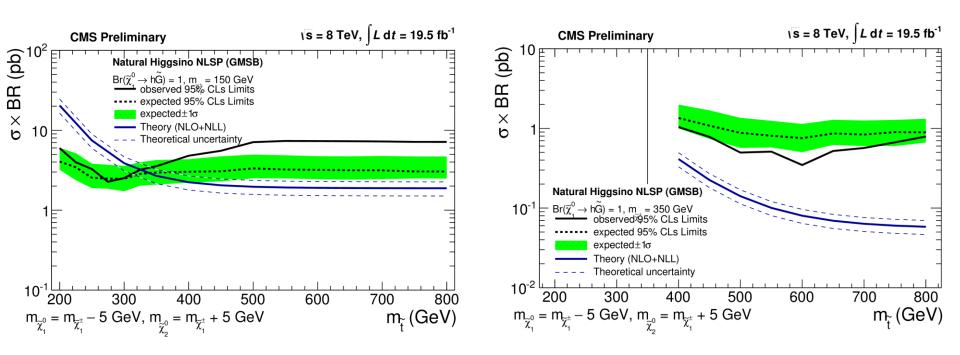
Gravitino is the lightest SUSY particle (LSP).



Natural Higgsino NLSP scenario

Gauge Mediated Supersymmetry Breaking (GMSB) model

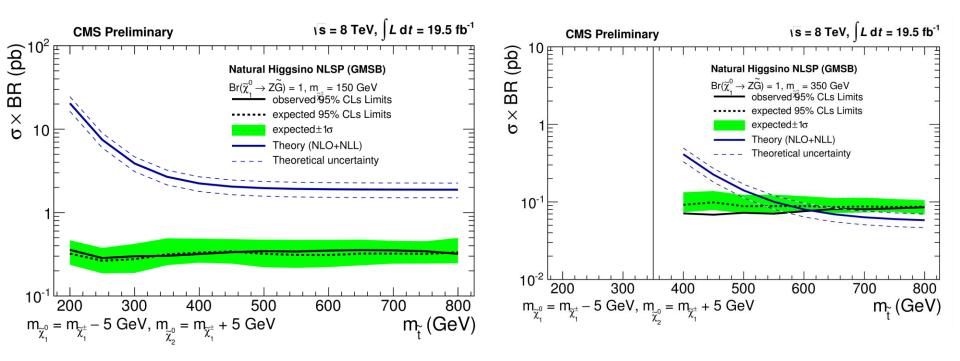
CMS-SUS-13-002

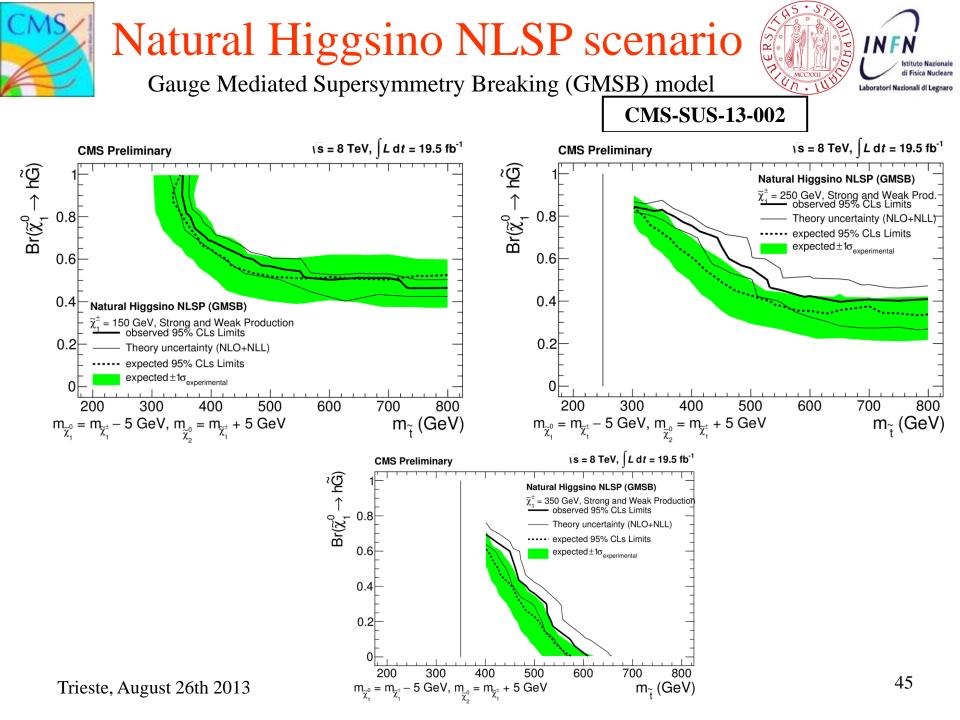


Natural Higgsino NLSP scenario

Gauge Mediated Supersymmetry Breaking (GMSB) model

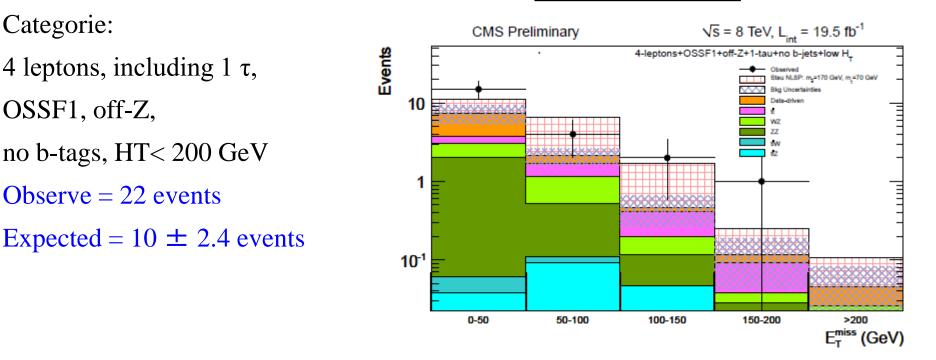
CMS-SUS-13-002




Natural Higgsino NLSP scenario

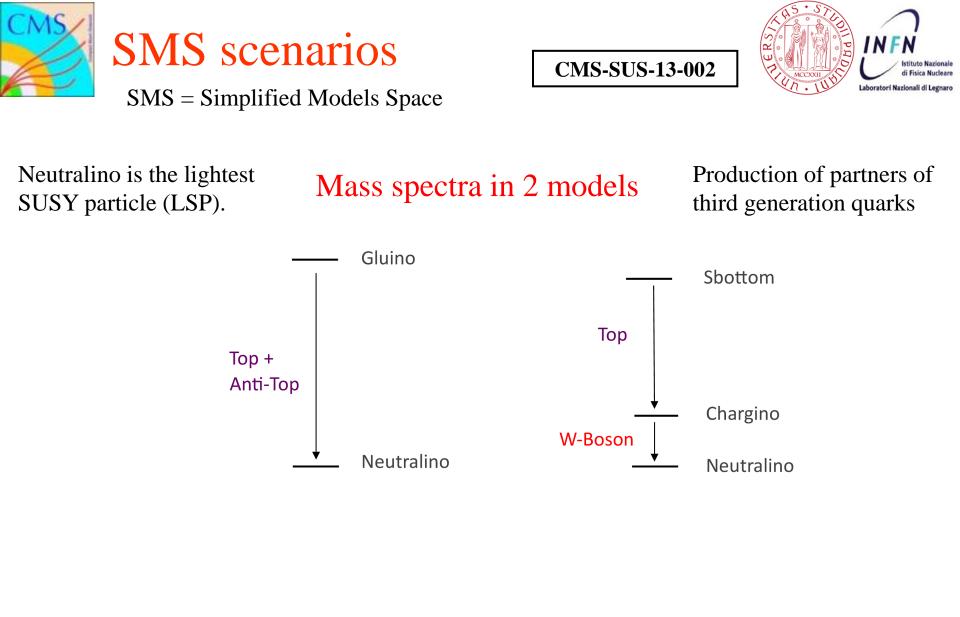
Gauge Mediated Supersymmetry Breaking (GMSB) model

CMS-SUS-13-002



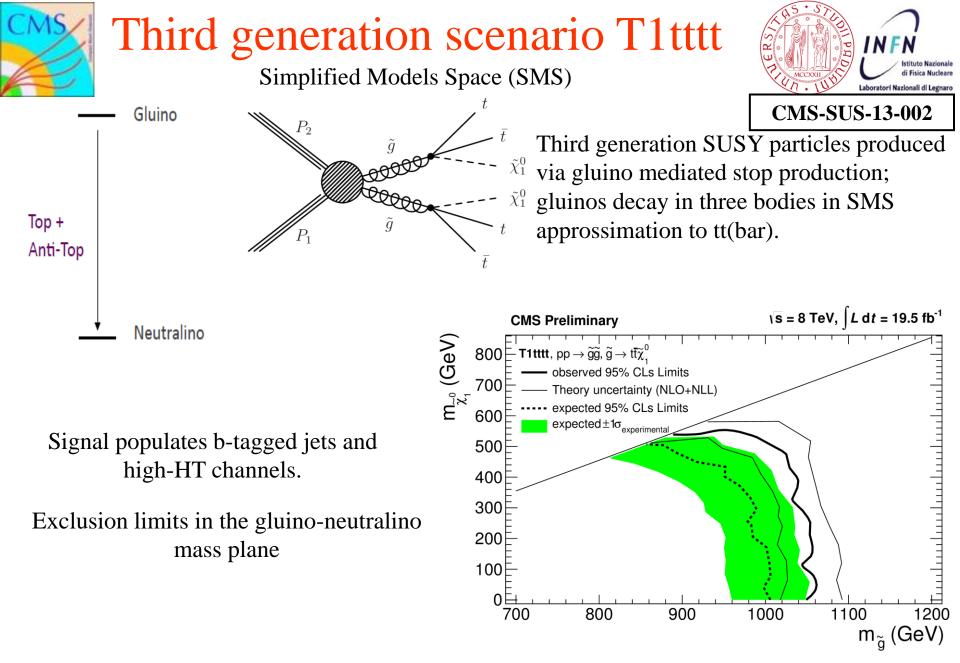
Categorie:

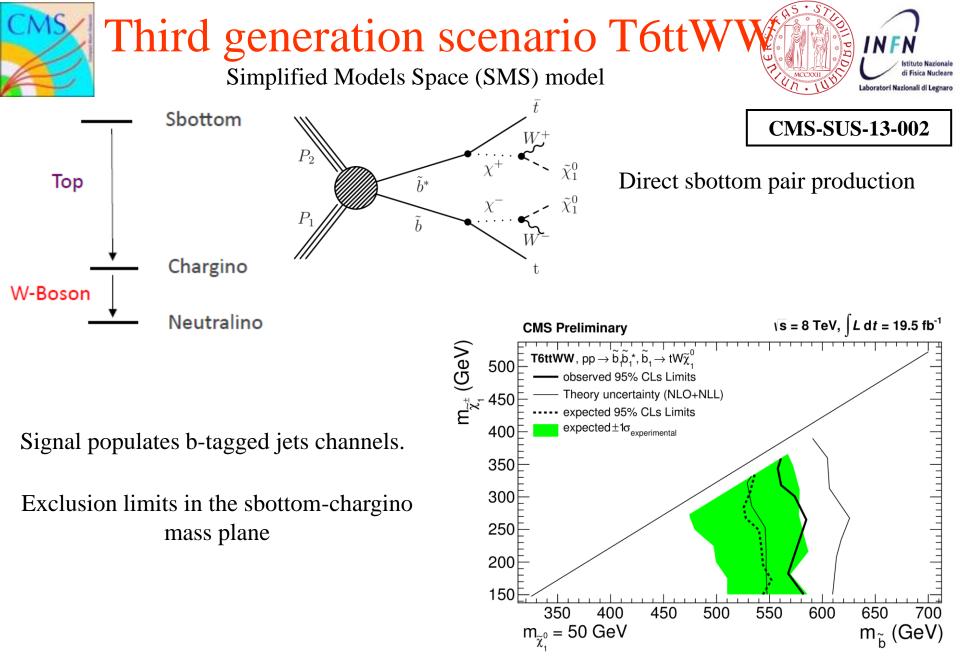
Discrepancy studies



CMS-SUS-13-002

Probability for 1 out of 64 categories to have as large a fluctuation $\approx 50 \%$ Probability for all bins in 1 out of 64 categories to have as large a fluctuation $\approx 5 \%$

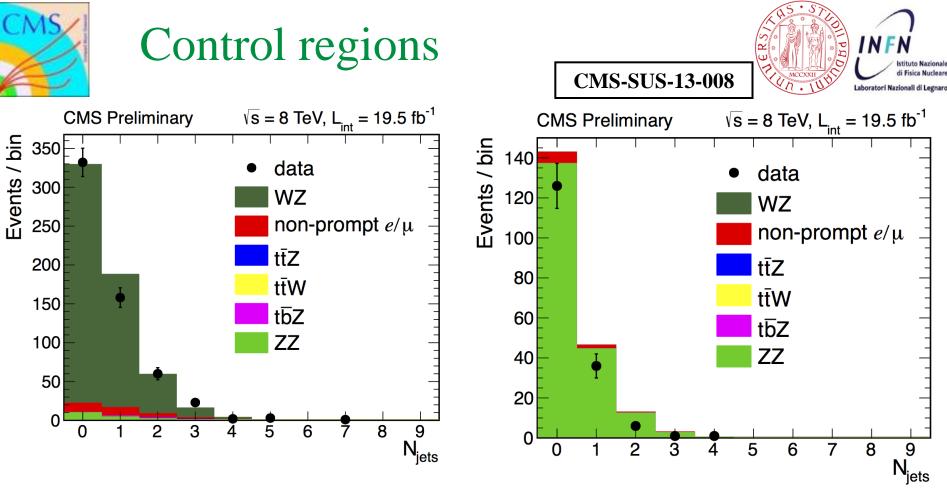

Given that we search for new physics in 64 different categories of multi-lepton events, it is not surprising that we find one category with a large deviation between observed yield and expected SM background.

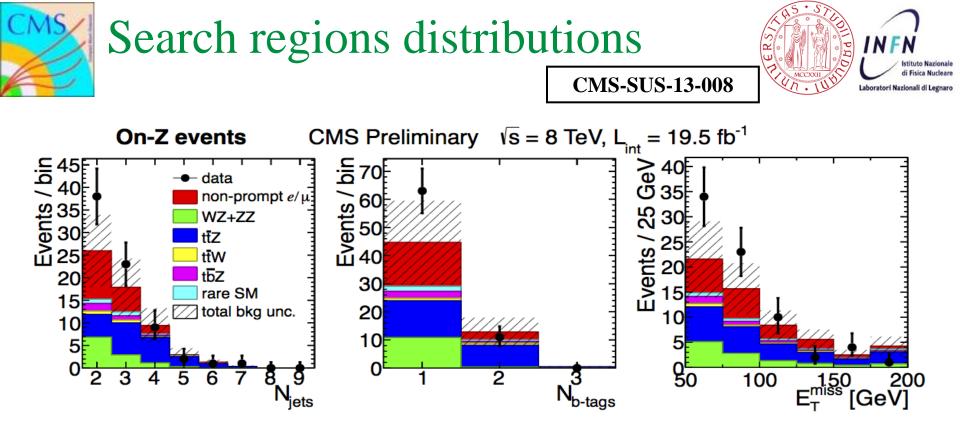


T6ttWW

Andrea Gozzelino - CMS

Andrea Gozzelino - CMS




Search for supersymmetry in pp collisions at 8 TeV in events with three leptons and at least one b-tagged jet

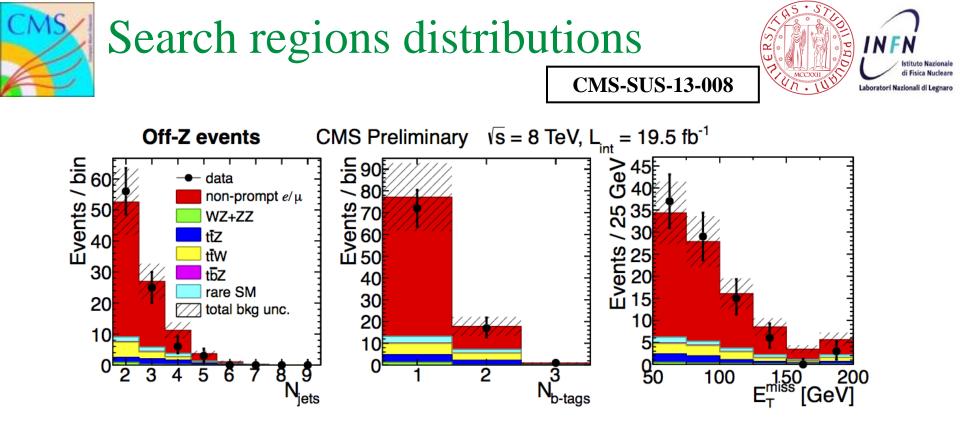
CMS-SUS-13-008

Jet multiplicity distributions for diboson events in WZ control regions in data and simulated event samples

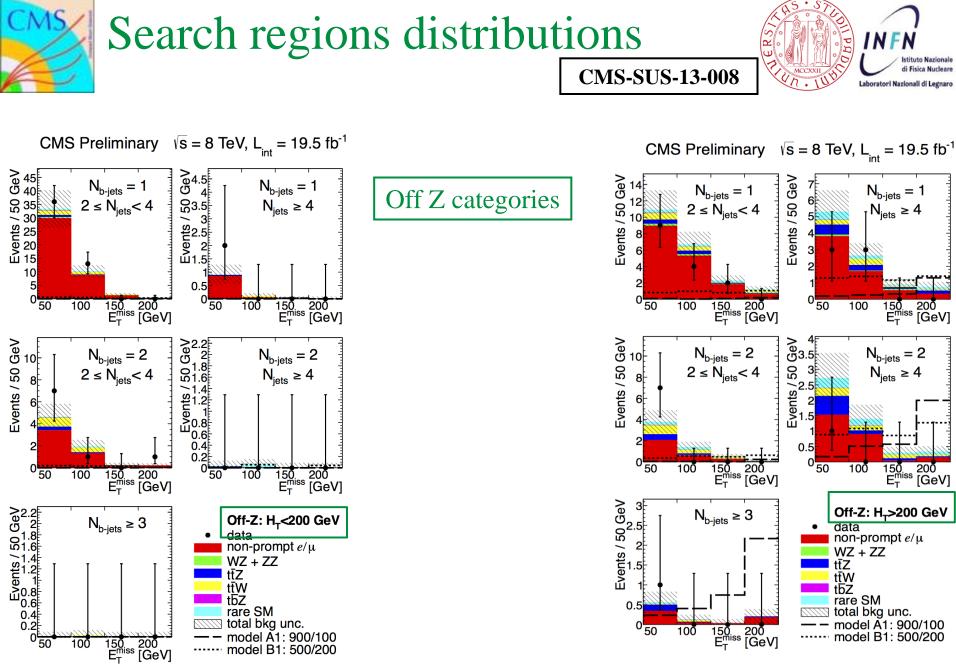
Jet multiplicity distributions for diboson events in ZZ control regions in data and simulated event samples

Fair agreement between SM predicted backgrounds and data

Results in off Z regions



CMS-SUS-13-008


Searching results in differen	t signal regions	for events without	a Z candidate ((Off-Z)
	0			· /

N ₁ N ₂ Emiss ($E_{\rm T}^{\rm miss}$ (GeV)	$H_{\rm T} < 200 {\rm ~GeV}$		$H_{\rm T}>200~{\rm GeV}$	
N_{b-tags}	N_{jets}	$E_{\rm T}$ (GeV)	Expected	Observed	Expected	Observed
1	2–3	50 - 100	33.3 ± 7.0	36	10.9 ± 2.4	9
		100 - 200	11.8 ± 2.6	13	9.0 ± 2.0	6
		≥ 200	0.33 ± 0.21	0	1.2 ± 0.4	0
	≥ 4	50 - 100	0.92 ± 0.36	2	5.3 ± 1.3	3
		100 - 200	0.10 ± 0.12	0	3.5 ± 1.0	3
		≥ 200	< 0.09	0	0.74 ± 0.31	0
2	2–3	50 - 100	4.7 ± 1.9	7	3.8 ± 1.1	7
		100 - 200	2.2 ± 0.7	1	1.9 ± 0.7	0
		≥ 200	0.22 ± 0.19	1	0.14 ± 0.13	0
	≥ 4	50 - 100	< 0.13	0	2.7 ± 0.8	1
		100 - 200	< 0.16	0	1.7 ± 0.6	0
		≥ 200	< 0.09	0	0.33 ± 0.18	0
≥ 3		50 - 100	< 0.09	0	0.56 ± 0.27	1
		100 - 200	< 0.12	0	0.17 ± 0.13	0
		≥ 200	< 0.09	0	0.20 ± 0.19	0

Fair agreement between data and SM predicted backgrounds

Fair agreement between SM predicted backgrounds and data

Trieste, August 26th 2013

Uncertainties

Source	Uncertainty, %
Luminosity	4.4
Modeling of lepton reconstruction, ID, $I_{\rm rel}$ based on Z-events	12
Jet energy scale	$5\!\!-\!\!15$
Unclustered energy and lepton effects on $E_{\rm T}^{\rm miss}$	5
Modeling of b-jet multiplicity	5 - 20
Trigger	5
Total systematic uncertainty	15-30

Statistics dominated uncertainties

The results are used to place upper limits at 95% confidence level (CL) on the signal rate calculated using the modified frequentist CL method.