

SUSY in Hadronic Final States at CMS

Joshua Thompson, Cornell University 26 Aug 2013 SUSY2013 Conference Trieste, Italy

SUSY production at the LHC

- Gluino and squark production processes have the highest cross-sections at the LHC
- Searches for these processes thus have the greatest mass reach
- Searches for the highest mass particles got the biggest boost from the 7→8 TeV increase
 - For 1400 GeV gluinos:
 - ~1 produced in 5 fb⁻¹ @ 7 TeV
 - ~17 produced in 20 fb⁻¹ @ 8 TeV

Hadronic SUSY signatures

> Heavy parent particles decay, often via a cascade, into energetic quarks and the lightest SUSY particle ($\tilde{\chi}_1^0$)

- Classic SUSY signature:
 - Large total jet energy
 - Large missing energy from pair of undetected $\tilde{\chi}_1^0$
- Inspired by natural SUSY, gluino pairproduction with decavs:

$$\tilde{g} \to b\tilde{b}_1 \to b\bar{b}\tilde{\chi}_1^0$$

$$\tilde{g} \rightarrow t \tilde{t}_1 \rightarrow t \bar{t} \tilde{\chi}_1^0$$

- 4 b jets
- Large jet multiplicity from W→qq'

Major backgrounds

- Signature: jets+missing transverse energy
 - And optionally, b-tags

- Z+jets, where $Z \rightarrow vv$
 - $\blacktriangleright \quad \text{MET from undetected } \nu$
 - "Irreducible" although production much smaller for Z+bb or Z+many jets

- ► W+jets, where $W \rightarrow I_V$
 - $\blacktriangleright \quad \text{MET from } \nu$
 - Reduced by rejecting events with I
 - W+bb, W+many jets production much smaller

- QCD multijet
 - Huge production cross-section
 - MET arises from mismeasured jets or semileptonic b decays

Search in Jets+MHT

- Generic search in the Jets+Missing energy signature
- Search performed in bins of 3 variables that discriminate between SM background and SUSY:
 - Missing transverse energy: MHT = $|\Sigma_{jets} p_T|$
 - Scalar sum of jet energy: $H_T = \Sigma_{jets} |p_T|$
 - Jet multiplicity (for jets with $p_T > 50$ GeV)
 - Search bins: n_{jets} = [3-5], [6-7], [>=8]
- Binned approach provides sensitivity to a variety of signal topologies and mass splittings
- Other selection details:
 - $\Delta \phi$ (jet, MHT) > 0.5, 0.5, 0.3 for lead 3 jets
 - Rejects QCD events with fake MHT from mismeasured jets
 - Reject events with an isolated e or μ (p_T>10 GeV)
 - Reject W+jets and ttbar backgrounds

⊭_T [GeV]

Background estimation overview

- General philosophy:
 - Avoid reliance on Monte Carlo simulation
 - Instead derive background estimates from data control samples
- Challenges:
 - Limited control sample data at high H_T, MHT, and jet multiplicity
- Backgrounds and control samples:
 - > $Z \rightarrow vv: \gamma$ +jets control sample
 - W+jets/ttbar: μ+jets control sample
 - QCD multijets: low MHT events

$Z \rightarrow vv$ background estimation

- Use similarity between high $p_T \gamma$ +jets events and Z+jets events to predict Z $\rightarrow vv$ background
- Treat photon as if it was undetected, recalculate MHT
 - Correct for:
 - Photon acceptance and efficiency
 - Cross-section ratio: $\sigma(Z+jets) / \sigma(\gamma+jets)$
 - Ratio measured as a function of H_T, MHT, n jets in MC
 - N jets dependence corrected using a $Z \rightarrow \mu\mu$ data control sample

jets

Ζ/γ

8

W/ttbar background estimation

Use μ data control samples to model event kinematics and hadronic activity

Prediction of lost e/µ background

- Use MC to derive factors for lepton acceptance, reconstruction, and isolation efficiencies
 - Efficiencies checked in $Z \rightarrow \mu\mu$ data sample
- Using these factors and control sample, get prediction of $W \rightarrow I_V$, where $I=e,\mu,\tau \rightarrow e,\mu$

• Observed data compatible with background predictions CMS Preliminary, L = 19.5 fb⁻¹, \sqrt{s} = 8 TeV

Interpretation of Jets+MHT search

- Interpret results in terms of Simplified Models, which include only one decay possibility
- To simplify things further, for gluino decays via a squark, we (often) model the decay as a direct $\tilde{g} \to q \bar{q} \tilde{\chi}_1^0$ decay, placing the squark off-shell
 - Reduces the number of model parameters to 2!

Squark-production interpretation

Simplified model with squark pair production

- Limit of ~800 GeV for light LSP in the case of production of degenerate q̃_L + q̃_R (ũ, d̃, š, č)
- Limit of ~500 GeV for the one flavor case with $\tilde{q}_L + \tilde{q}_R$

See F. Golf's talk for pMSSM interpretation

J. Thompson, Cornell 26 Aug 2013

10⁻¹

Search in Jets+MET+b-tag

CMS, $L = 19.4 \text{ fb}^{-1}$, $\sqrt{s} = 8 \text{ TeV}$

 $pp \to \widetilde{g}\widetilde{g}, \ \widetilde{g} \to b \ \overline{b} \ \widetilde{\chi}^0_{_{+}} \ \text{NLO+NLL exclusion}$

- Gluino search in jets+MET+b-tag signature
 - Analysis binned in H_T, MET, number of b-tags
 - Includes \geq 3b bin, which cuts down on ttbar background
- Backgrounds determined in a 3-d binned fit to control samples and search sample
 - Background shapes derived from data control samples

 \blacksquare Observed ± 1 σ_{theory}

Expected ± $1\sigma_{experiment}$

Data consistent with background predictions

800

600

400

200

400

600

800

1000

1200

 $m_{\tilde{a}}$ (GeV)

1400

19.4 fb⁻¹: Published as PLB 725, 243 (2013)

See F. Golf's talk

for pMSSM

interpretation

• "Razor" kinematic variables: ^{C. Rogan, arXiv:1006.2727} $M_R \equiv \sqrt{(p_{j_1} + p_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$ and $R \equiv \frac{M_T^R}{M_R}$ where $M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}}$

- Variables are defined in terms of a dijet topology
 - For higher jet multiplicity, cluster jets into two "megajets"

Razor analysis background estimate

Backgrounds are parameterized using 2-d exponential:

 $f_{SM}(M_R, R^2) = [b(M_R - M_R^0)^{1/n} (R^2 - R_0^2)^{1/n} - 1]e^{-bn(M_R - M_R^0)^{1/n} (R^2 - R_0^2)^{1/n}}$

- Each "box" is analyzed independently
 - Simultaneous fit across b-tag multiplicity within a "box"
 - ▶ =2b and \geq 3b bins constrained to share the same background shape

• Two types of fits:

- Sideband fit to red/blue regions, with extrapolation to white region
 - Better for theorist reinterpretation
- Full fit to whole plane
 - used in setting CL_s limits

17

Example fit results

Projections of the sideband fit, extrapolated to the full analysis region, for the multijet box

Data in agreement with predicted background

 P-values quantifying agreement of background model and data, translated into number of sigma

J. Thompson, Cornell 26 Aug 2013

- Broad family of hadronic SUSY searches, most with the full LHC dataset
 - Multiple kinematic variables (MET/MHT, Razor, α_T)
 - Multiple background techniques with different systematics
 - Targeted at natural SUSY as well as more generic Jets+MET scenarios
- Observations are consistent with Standard Model background predictions
 - Limits on simplified topologies past 1.3 TeV for gluinos
- Other CMS parallel talks:
 - ► This session: Marco Andrea Buchmann (1-2 leptons), Andrea Gozzelino (≥3 leptons)
 - Tomorrow: David Morse (photons), Frank Golf (further details on interpretation)
 - Thursday: Mariarosaria D'Alfonso (3rd generation squarks), Ben Hooberman (EWKino)
 - Friday: Matthew Walker (RPV)

All results available from <u>https://twiki.cern.ch/twiki/bin/view</u>

/CMSPublic/PhysicsResultsSUS

Full results table for jets+MHT search

Predicted event yields compared to observation

	Selection		$Z \rightarrow \nu \bar{\nu}$	tt/W	tī/W	OCD	Total	Obs.
Niote	Нт	Ит	from γ +jets	$\rightarrow e, u+X$	$\rightarrow \tau_{\rm b} + X$	2	background	data
3-5	500-800	200-300	1821.3 ± 326.5	2210.7 ± 447.8	1683.7 ± 171.4	307.4 ± 219.4	6023.1 ± 620.2	6159
3-5	500-800	300-450	993.6±177.9	660.1±133.3	591.9 ± 62.5	34.5 ± 23.8	2280.0 ± 232.1	2305
3-5	500-800	450-600	273.2 ± 51.1	77.3 ± 17.9	67.6 ± 9.5	1.3 ± 1.5	419.5 ± 55.0	454
3-5	500-800	> 600	42.0 ± 8.7	9.5 ± 4.0	6.0 ± 1.9	0.1 ± 0.3	57.6 ± 9.7	62
3-5	800-1000	200-300	215.8 ± 40.0	277.5 ± 62.4	191.6 ± 23.2	91.7 ± 65.5	776.7±101.6	808
3-5	800-1000	300-450	124.1 ± 23.7	112.8 ± 26.9	83.3 ± 11.2	9.9 ± 7.4	330.1 ± 38.3	305
3-5	800-1000	450-600	46.9 ± 9.8	36.1 ± 9.9	23.6 ± 3.9	0.8 ± 1.3	107.5 ± 14.5	124
3-5	800-1000	> 600	35.3 ± 7.5	9.0 ± 3.7	11.4 ± 3.2	0.1 ± 0.4	55.8 ± 9.0	52
3-5	1000-1250	200-300	76.3 ± 14.8	103.5 ± 25.9	66.8 ± 10.0	59.0 ± 24.7	305.6 ± 40.1	335
3-5	1000-1250	300-450	39.3 ± 8.2	52.4 ± 13.6	35.7 ± 6.2	5.1 ± 2.7	132.6 ± 17.3	129
3-5	1000-1250	450-600	18.1 ± 4.4	6.9 ± 3.2	6.6 ± 2.1	0.5 ± 0.7	32.1 ± 5.9	34
3-5	1000-1250	> 600	17.8 ± 4.3	2.4 ± 1.8	2.5 ± 1.0	0.1 ± 0.3	22.8 ± 4.7	32
3-5	1250-1500	200-300	25.3 ± 5.5	31.0 ± 9.5	22.2 ± 3.9	31.2 ± 13.1	109.7 ± 17.5	98
3-5	1250-1500	300-450	16.7 ± 4.0	10.1 ± 4.4	11.1 ± 3.6	2.3 ± 1.6	40.2 ± 7.1	38
3-5	1250-1500	> 450	12.3 ± 3.2	2.3 ± 1.7	2.8 ± 1.5	0.2 ± 0.5	17.6 ± 4.0	23
3-5	>1500	200-300	10.5 ± 2.8	16.7 ± 6.2	15.2 ± 3.4	35.1 ± 14.1	77.6 ± 16.1	94
3-5	>1500	> 300	10.9 ± 2.9	9.7 ± 4.3	6.5 ± 2.0	2.4 ± 2.0	29.6 ± 5.8	39
6-7	500-800	200-300	22.7 ± 6.1	132.5 ± 58.6	127.1 ± 21.5	18.2 ± 9.2	300.5 ± 63.4	266
6-7	500-800	300-450	9.9 ± 3.1	22.0 ± 10.8	18.6 ± 4.3	1.9 ± 1.7	52.3 ± 12.1	62
6-7	500-800	> 450	0.7 ± 0.6	0.0 ± 1.6	0.1 ± 0.3	0.0 ± 0.1	0.8 ± 1.7	9
6-7	800-1000	200-300	9.1 ± 2.8	55.8 ± 25.4	44.6 ± 8.2	13.1 ± 6.6	122.6 ± 27.7	111
6-7	800-1000	300-450	4.2 ± 1.6	10.4 ± 5.5	12.8 ± 3.1	1.9 ± 1.4	29.3 ± 6.6	35
6-7	800-1000	> 450	1.8 ± 1.0	2.9 ± 2.5	1.3 ± 0.5	0.1 ± 0.4	6.1 ± 2.7	4
6-7	1000-1250	200-300	4.4 ± 1.6	24.1 ± 12.0	24.0 ± 5.5	11.9 ± 6.0	64.4 ± 14.6	67
6-7	1000-1250	300-450	3.5 ± 1.4	8.0 ± 4.7	9.6 ± 2.5	1.5 ± 1.5	22.6 ± 5.7	20
6-7	1000-1250	> 450	1.4 ± 0.8	0.0 ± 1.8	0.8 ± 0.5	0.1 ± 0.3	2.3 ± 2.1	4
6-7	1250-1500	200-300	3.3 ± 1.3	11.5 ± 6.5	6.1 ± 2.5	6.8 ± 3.9	27.7 ± 8.1	24
6-7	1250-1500	300-450	1.4 ± 0.8	3.5 ± 2.6	2.9 ± 1.5	0.9 ± 1.3	8.8 ± 3.4	5
6-7	1250-1500	> 450	0.4 ± 0.4	0.0 ± 1.2	0.1 ± 0.2	0.1 ± 0.3	0.5 ± 1.3	2
6-7	>1500	200-300	1.3 ± 0.8	10.0 ± 6.9	2.3 ± 1.3	7.8 ± 4.0	21.5 ± 8.1	18
6-7	>1500	> 300	1.1 ± 0.7	3.2 ± 2.8	2.9 ± 1.2	0.8 ± 1.1	8.0 ± 3.3	3
≥ 8	500-800	> 200	0.0 ± 0.6	1.9 ± 1.5	2.8 ± 1.3	0.1 ± 0.4	4.8 ± 2.1	8
≥ 8	800-1000	> 200	0.6 ± 0.5	4.8 ± 2.9	2.7 ± 1.1	0.5 ± 0.9	8.7 ± 3.3	9
≥ 8	1000-1250	> 200	0.6 ± 0.5	1.4 ± 1.5	3.1 ± 1.2	0.7 ± 0.9	5.8 ± 2.2	8
≥ 8	1250-1500	> 200	0.0 ± 0.7	5.1 ± 3.5	1.3 ± 0.8	0.5 ± 0.9	6.9 ± 3.7	5
≥ 8	1500-	> 200	0.0 ± 0.6	0.0 ± 2.1	1.5 ± 1.0	0.9 ± 1.3	2.4 ± 2.8	2

J. Thompson, Cornell 26 Aug 2013

QCD background estimation

- CCMS request Hore Sector
- Established "Rebalance and Smear" technique in which low MHT data events are smeared, using measured jet resolutions, to emulate the high MHT tail from mismeasured jets

Additional $Z \rightarrow vv$ plots

• HT and MHT dependence of Z/γ

Razor: data/background agreement

Quantification of compatibility between data and background model

Razor: more fit projections

Fit projections for electron boxes

Razor: more fit projections

Fit projections for muon boxes

Razor: more fit projections

> 2b-jet box

Test of fit model using standard model simulation

- Projections of a sideband fit using the Razor PDF to simulated SM events in the Multijet box, extrapolated to search region
- The effect of varying the n parameter by +/- 1 sigma is shown by the shaded blue region

J. Thompson, Cornell 26 Aug 2013

Jets+MET+b-tags: background methods

- Data-driven approach with no extrapolations in kinematics
- Backgrounds and control samples:
 - ttbar/W/single-top
 - $1 e/\mu$ control sample
 - $Z \rightarrow vv$
 - $Z \rightarrow II$ control sample with loosened b-tagging ►
 - Extrapolation in b-tagging estimated with a data control sample
 - QCD

Events / 12 GeV

10

Data/MC

Inverted cut on jet-MET angle

T1bbbb

T1bbbb

Single top

QCD

Z+jets

Diboson

E_T^{miss} (GeV)

600, 500) GeV

(1225, 150) GeV

Jets+MET+b-tags: Fit setup

Analysis is done in bins of:

H_T, MET, number of b-tags

- Simultaneous fit to the control samples and search samples
- For QCD and ttbar, each search bin has a corresponding control bin
 - For $Z \rightarrow vv$, there is an extrapolation in b-tagging
- In the fit:
 - Shapes of search sample are constrained by the data control samples
 - With corrections from MC, in the case of ttbar
 - Normalization of backgrounds in search sample is allowed to float

Observations consistent with background predictions

Fit performed in all search bins This plot shows the most sensitive bins CL_s Limits set using this method

CMS SUS-13-011, submitted to EPJC

Signal Simulation

- Signal Monte Carlo samples generated with Madgraph with up to 2 additional partons
 - Studies done using Z+jets and ttbar+jets control samples to quantify agreement of ISR radiation in data and MC
- Correction to/uncertainty on p_T spectrum of gen-level SUSY system derived from these comparisons
 - Correction from 0-20%
 - Uncertainty from 0-20%
- This (conservative) procedure allows us to interpret our results even in regimes where the boost of the SUSY system from ISR is important

J. Thompson, Cornell 26 Aug 2013

Credit: J. Richman's talk on Wednesday

A note on the Jets+MHT results

Statistical interlude

- Consider the bin with
 - N(observed) = 9 events
 - N(background) = 0.8 ± 1.7 events

```
See CMS PAS SUS-13-012,
Table 1, p. 10
Njets: 6-7
HT: 500-800 GeV
MHT>450 GeV
```

- First, let's ignore the uncertainty on the background. What is the probability for a Poisson with μ=0.8 to fluctuate to at least 9 events?
 - Prob(n≥9 | μ =0.8) = 1.8 × 10⁻⁷

Have we discovered new physics?

• NO! The uncertainty is crucial!

− Prob(n≥9 | μ = 0.8 ± 1.7) ≈ 0.15

 This example highlights the importance of <u>quantifying the</u> <u>uncertainties on the SM backgrounds.</u>