Overview of Models for A-terms and the Higgs

David Shih NHETC, Rutgers

SUSY 2013, Trieste

Draper, Meade, Reece & DS (1112.3068) Craig, Knapen, DS & Zhao (1206.4086) Craig, Knapen & DS (1302.2642) Evans & DS (1303.0228)

In the past ~2 years we have learned a lot about the properties of the Higgs.

In the past ~2 years we have learned a lot about the properties of the Higgs.

But there seem to be two very different points of view on these results...

An experimentalist's view of the Higgs?

An experimentalist's view of the Higgs?

For experimentalists, a 125 GeV Higgs is a dream-come-true.

An experimentalist's view of the Higgs?

For experimentalists, a 125 GeV Higgs is a dream-come-true. So many of its decay modes are readily accessible at the LHC!

Many theorists may see the situation differently.

Many theorists may see the situation differently.

The Higgs at 125 GeV, together with the lack of any new physics at the LHC, raises many uncomfortable questions.

Many theorists may see the situation differently.

The Higgs at 125 GeV, together with the lack of any new physics at the LHC, raises many uncomfortable questions.

• I believe it is much too early to panic.

- I believe it is much too early to panic.
 - The LHC has only collected a tiny fraction of its planned integrated luminosity so far. We've really only scratched the surface!

- I believe it is much too early to panic.
 - The LHC has only collected a tiny fraction of its planned integrated luminosity so far. We've really only scratched the surface!
- 125 GeV is actually a very intriguing number for SUSY.

- I believe it is much too early to panic.
 - The LHC has only collected a tiny fraction of its planned integrated luminosity so far. We've really only scratched the surface!
- 125 GeV is actually a very intriguing number for SUSY.
- As is well known, $m_h \le m_Z$ at tree level in the MSSM. But there are many ways to raise the Higgs mass to 125 GeV:

- I believe it is much too early to panic.
 - The LHC has only collected a tiny fraction of its planned integrated luminosity so far. We've really only scratched the surface!
- 125 GeV is actually a very intriguing number for SUSY.
- As is well known, $m_h \le m_Z$ at tree level in the MSSM. But there are many ways to raise the Higgs mass to 125 GeV:
 - large A-terms
 - very heavy stops

minimal SUSY

- I believe it is much too early to panic.
 - The LHC has only collected a tiny fraction of its planned integrated luminosity so far. We've really only scratched the surface!
- 125 GeV is actually a very intriguing number for SUSY.
- As is well known, $m_h \le m_Z$ at tree level in the MSSM. But there are many ways to raise the Higgs mass to 125 GeV:
 - large A-terms
 - very heavy stops
 - NMSSM-type models
- extra vector-like generations
 - non-decoupling D-terms

SUSY

minimal

- non-minimal SUSY
-

- I believe it is much too early to panic.
 - The LHC has only collected a tiny fraction of its planned integrated luminosity so far. We've really only scratched the surface!
- 125 GeV is actually a very intriguing number for SUSY.
- As is well known, m_h≤m_Z at tree level in the MSSM. But there are many ways to raise the Higgs mass to 125 GeV:
- minimal SUSY
- large A-terms

. . . .

- very heavy stops
- NMSSM-type models
- non-minimal SUSY
- extra vector-like generations
- non-decoupling D-terms

In many of these scenarios, given the Higgs at 125 GeV, we shouldn't have seen the superpartners yet! Draper, Meade, Reece, DS Craig, Knapen, DS, Zhao Craig, Knapen, DS Evans & DS Evans, Ibe, Shirai, Yanagida Kang, Li, Liu, Tong, Yang Abdullah, Galon, Shadmi, Shirman Brummer, Kraml, Kulkarni Byakti & Ray Jelinski

Motivating m_h from A_t

- My collaborators and I (and many others) have been working on obtaining the Higgs mass from large A-terms in the MSSM.
- Many motivations for this:
 - Least fine-tuned option with minimal SUSY
 - The alternative is very heavy stops ... orders of magnitude more tuning
 - Surprisingly unexplored territory
 - Before the Higgs discovery, there was not much systematic effort to build models for A-terms. An interesting frontier awaits!
 - Interesting challenges for model building
 - GMSB doesn't do it
 - Requirement of large A-terms is a strong constraint on models
 - Solving the constraints leads to specific models with detailed, testable predictions for the LHC

Higgs Mass Basics

$$m_h^2 = m_Z^2 c_{2\beta}^2 + \frac{3m_t^4}{4\pi^2 v^2} \left(\log\left(\frac{M_S^2}{m_t^2}\right) + \frac{A_t^2}{M_S^2} \left(1 - \frac{A_t^2}{12M_S^2}\right) \right) + \dots$$

M_S is the SUSY scale set by the stop masses.

$$M_S^2 = m_{\tilde{t}_1} m_{\tilde{t}_2}$$

The trilinear "A-term" A_t is responsible for mixing the two stops.

$$m_{\tilde{t}}^2 = \begin{pmatrix} m_{Q_3}^2 & A_t v_u \\ A_t^* v_u & m_{U_3}^2 \end{pmatrix}$$

$$-\mathcal{L}_{soft} \supset m_{Q_3}^2 |\tilde{Q}_3|^2 + m_{U_3}^2 |\tilde{U}_3|^2 + A_t H_u \tilde{Q}_3 \tilde{U}_3 + c.c.$$

Overview of the strategies

- Where can large A-terms come from?
 - A-terms at the Planck scale?
 - Does not solve the SUSY flavor problem...
 - A-terms from MSSM RGs
 - The only option for pure gauge mediation models
 - A-terms at the messenger scale
 - Requires direct messenger-MSSM interactions

A-terms through RG

$$16\pi^2 \frac{dA_t}{dt} \approx 12y_t^2 A_t + \frac{32}{3}g_3^2 M_3$$

Large A-terms through the RG require $M_3 \gtrsim 2.5$ TeV and $M_{mess} \gtrsim 10^8$ GeV.

A-terms through Messengers

 A-terms can also arise through integrating out the messengers of SUSY-breaking.

Gauge interactions not enough! Need direct MSSM-messenger couplings.

• A-terms originate from the effective Kahler potential operators:

$$\mathcal{L} \supset \int d^4\theta \, \frac{1}{M} \left(X Q^{\dagger} Q + X U^{\dagger} U + X H_u^{\dagger} H_u \right)$$

• A-terms originate from the effective Kahler potential operators:

$$\mathcal{L} \supset \int d^4\theta \, \frac{1}{M} \left(X Q^{\dagger} Q + X U^{\dagger} U + X H_u^{\dagger} H_u \right)$$

Substitute SUSY-breaking spurion $\langle X \rangle = \theta^2 F$ Integrate over superspace $Q_i^{\dagger} \to F_{Q_i}^{\dagger}$, etc Use Yukawa couplings

$$F_{Q_i}^{\dagger} = \partial_{Q_i} W_{MSSM} = \lambda_{ik}^u H_u U_k, \text{ etc}$$

• A-terms originate from the effective Kahler potential operators:

$$\mathcal{L} \supset \int d^{4}\theta \; \frac{1}{M} \left(XQ^{\dagger}Q + XU^{\dagger}U + XH_{u}^{\dagger}H_{u} \right)$$
Substitute SUSY-breaking spurion $\langle X \rangle = \theta^{2}F$
Integrate over superspace $Q_{i}^{\dagger} \rightarrow F_{Q_{i}}^{\dagger}$, etc
Use Yukawa couplings
 $F_{Q_{i}}^{\dagger} = \partial_{Q_{i}}W_{MSSM} = \lambda_{ik}^{u}H_{u}U_{k}$, etc

 $\mathcal{L} \supset H_u Q \mathbf{A}_{\mathbf{u}} U$

• A-terms originate from the effective Kahler potential operators:

$$\int d^{4}\theta \frac{1}{M} \left(XQ^{\dagger}Q + XU^{\dagger}U + XH_{u}^{\dagger}H_{u} \right)$$
Substitute SUSY-breaking spurion $\langle X \rangle = \theta^{2}F$
Integrate over superspace $Q_{i}^{\dagger} \rightarrow F_{Q_{i}}^{\dagger}$, etc
Use Yukawa couplings
 $F_{Q_{i}}^{\dagger} = \partial_{Q_{i}}W_{MSSM} = \lambda_{ik}^{u}H_{u}U_{k}$, etc

 $\mathcal{L} \supset H_u Q \mathbf{A}_{\mathbf{u}} U$

• Note:

 $\mathcal{L} \supset$

- The Higgs-type A-terms are automatically MFV (proportional to the Yukawas)
- The squark-type A-terms are not automatically MFV

• Problem: the effective operators for A-terms and for masssquareds are very similar.

$$c_{A_Q} \int d^4\theta \, \frac{X}{M} Q^{\dagger} Q$$
 vs. $c_{m_Q^2} \int d^4\theta \, \frac{X^{\dagger} X}{M^2} Q^{\dagger} Q$

 Problem: the effective operators for A-terms and for masssquareds are very similar.

$$c_{A_Q} \int d^4\theta \, \frac{X}{M} Q^{\dagger} Q$$
 vs. $c_{m_Q^2} \int d^4\theta \, \frac{X^{\dagger} X}{M^2} Q^{\dagger} Q$

• So they tend to be generated at the same loop order:

$$c_{A_Q} \sim c_{m_Q^2} \sim \frac{\alpha}{4\pi} \quad \Rightarrow \quad \frac{m_Q^2}{A_Q^2} \sim \frac{4\pi}{\alpha} \gg 1$$

 Problem: the effective operators for A-terms and for masssquareds are very similar.

$$c_{A_Q} \int d^4\theta \, \frac{X}{M} Q^{\dagger} Q$$
 vs. $c_{m_Q^2} \int d^4\theta \, \frac{X^{\dagger} X}{M^2} Q^{\dagger} Q$

• So they tend to be generated at the same loop order:

$$c_{A_Q} \sim c_{m_Q^2} \sim \frac{\alpha}{4\pi} \quad \Rightarrow \quad \frac{m_Q^2}{A_Q^2} \sim \frac{4\pi}{\alpha} \gg 1$$

• This is disastrous!

"The A/m² problem"

(Craig, Knapen, DS & Zhao)

Analogy with $\mu/B\mu$

- The A/m² problem is completely analogous to the more wellknown μ/Bμ problem.
- The operators for μ and $B\mu$ also only differ by one power of X:

$$c_{\mu} \int d^4\theta \, \frac{X^{\dagger}}{M} H_u H_d \qquad \text{vs.} \qquad c_{B\mu} \int d^4\theta \, \frac{X^{\dagger}X}{M^2} H_u H_d$$

- Before the Higgs was discovered at 125 GeV, we were not forced to confront the A/m² problem.
- Now it is on the same footing as the $\mu/B\mu$ problem!

Analogy with $\mu/B\mu$

- The A/m² problem is completely analogous to the more wellknown μ/Bμ problem.
- The operators for μ and $B\mu$ also only differ by one power of X:

$$c_{\mu} \int d^4\theta \, \frac{X^{\dagger}}{M} H_u H_d \qquad \text{vs.} \qquad c_{B\mu} \int d^4\theta \, \frac{X^{\dagger}X}{M^2} H_u H_d$$

- Before the Higgs was discovered at 125 GeV, we were not forced to confront the A/m² problem.
- Now it is on the same footing as the $\mu/B\mu$ problem!
- Suggests there should be a common solution?

Weakly Coupled Models

Weakly Coupled Models

 Most general renormalizable superpotential with weakly-coupled messengers + spurion SUSY-breaking:

$$W = \kappa_{ij} X \Phi_i \Phi_j + m_{ij} \Phi_i \Phi_j$$

Weakly Coupled Models

 Most general renormalizable superpotential with weakly-coupled messengers + spurion SUSY-breaking:

$$W = \kappa_{ij} X \Phi_i \Phi_j + m_{ij} \Phi_i \Phi_j$$

 Disastrous one-loop m² is avoided only if X is the sole source of mass in the messenger sector. (Giudice, Kim & Rattazzi; Craig, Knapen, DS & Zhao)

$$m_{ij} = 0$$
, $\langle X \rangle = M + \theta^2 F \implies Z_Q^{(1-loop)} = c \log X^{\dagger} X$
 $\Rightarrow (m_Q^2)^{(1-loop)} = \partial_X \partial_{X^{\dagger}} Z_Q^{(1-loop)} = 0$
Weakly Coupled Models

 Most general renormalizable superpotential with weakly-coupled messengers + spurion SUSY-breaking:

$$W = \kappa_{ij} X \Phi_i \Phi_j + m_{ij} \Phi_i \Phi_j$$

 Disastrous one-loop m² is avoided only if X is the sole source of mass in the messenger sector. (Giudice, Kim & Rattazzi; Craig, Knapen, DS & Zhao)

$$m_{ij} = 0 , \ \langle X \rangle = M + \theta^2 F \quad \Rightarrow \quad Z_Q^{(1-loop)} = c \log X^{\dagger} X$$
$$\Rightarrow \quad (m_Q^2)^{(1-loop)} = \partial_X \partial_{X^{\dagger}} Z_Q^{(1-loop)} = 0$$

 The messengers must be those of Minimal Gauge Mediation! (Dine, Nelson, Shadmi & Shirman) Evans & DS see also Byakti & Ray

We recently classified all MSSM-messenger couplings consistent with perturbative SU(5) unification. There are 31 couplings in all.

Turning on one coupling at a time, we surveyed the phenomenology of the models.

All but one of the best-tuned points with mh=125 GeV were out of reach at 7+8 TeV LHC, but could be accessible at 14 TeV LHC (taus+MET, multileptons, stop searches)

Is the fact that we haven't seen superpartners yet actually a consequence of mh=125 GeV?

Suppose X is not a spurion, but is part of a strongly interacting SCFT

- Suppose X is not a spurion, but is part of a strongly interacting SCFT
- Anomalous dimensions could be used to "sequester" Bµ and solve the µ/Bµ problem.
 (Dine et al '04; Murayama, Nomura & Poland '07; Roy & Schmaltz '07)

- Suppose X is not a spurion, but is part of a strongly interacting SCFT
- Anomalous dimensions could be used to "sequester" Bµ and solve the µ/Bµ problem. (Dine et al '04; Murayama, Nomura & Poland '07; Roy & Schmaltz '07)

- Suppose X is not a spurion, but is part of a strongly interacting SCFT
- Anomalous dimensions could be used to "sequester" Bµ and solve the µ/Bµ problem. (Dine et al '04; Murayama, Nomura & Poland '07; Roy & Schmaltz '07)

- Suppose X is not a spurion, but is part of a strongly interacting SCFT
- Anomalous dimensions could be used to "sequester" Bµ and solve the µ/Bµ problem.
 (Dine et al '04; Murayama, Nomura & Poland '07; Roy & Schmaltz '07)
- Our proposal: the same mechanism could simultaneously solve the A/m² problem! (Craig, Knapen & DS)

General Messenger Higgs Mediation

(Craig, Knapen & DS)

- We recently took a fresh look at hidden-sector sequestering using the correlator formalism of General Gauge Mediation.
 - Building off the previous work of Komargodski & Seiberg '08, we derived general formulas for soft parameters valid for any hidden and messenger sector. Sequestering follows as a special case.
- Previous approaches to sequestering were cast in terms of the RG. This is more like a fixed order calculation.
- It allows for more control over the final answer!

• Dimension I parameters:

 $\mu = \lambda_u \lambda_d \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$ $\propto (\sqrt{F})^{\Delta_X + 1}$ $A_{u,d} = |\lambda_{u,d}|^2 \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$

• Dimension I parameters:

$$\mu = \lambda_u \lambda_d \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$
$$\propto (\sqrt{F})^{\Delta_X + 1}$$
$$A_{u,d} = |\lambda_{u,d}|^2 \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$

• Dimension 2 parameters:

$$B\mu = \lambda_u \lambda_d |\kappa|^2 \int d^4 y d^4 y' \left\langle Q^4 \left(X^{\dagger}(y) X(y') \right) \right\rangle_h \left\langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \right\rangle_m$$
$$m_{H_{u,d}}^2 = |\lambda_{u,d}|^2 |\kappa|^2 \int d^4 y d^4 y' \left\langle Q^4 \left(X^{\dagger}(y) X(y') \right) \right\rangle_h \left\langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \right\rangle_m$$

• Dimension I parameters:

$$\mu = \lambda_u \lambda_d \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$
$$\propto (\sqrt{F})^{\Delta_X + 1}$$
$$A_{u,d} = |\lambda_{u,d}|^2 \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$

• Dimension 2 parameters:

$$B\mu = \lambda_u \lambda_d |\kappa|^2 \int d^4 y d^4 y' \left\langle Q^4 \left(X^{\dagger}(y) X(y') \right) \right\rangle_h \left\langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \right\rangle_m$$

$$\propto ??$$

$$m_{H_{u,d}}^2 = |\lambda_{u,d}|^2 |\kappa|^2 \int d^4 y d^4 y' \left\langle Q^4 \left(X^{\dagger}(y) X(y') \right) \right\rangle_h \left\langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \right\rangle_m$$

• Dimension I parameters:

$$\mu = \lambda_u \lambda_d \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$
$$\propto (\sqrt{F})^{\Delta_X + 1}$$
$$A_{u,d} = |\lambda_{u,d}|^2 \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$

• Dimension 2 parameters:

$$B\mu = \lambda_u \lambda_d |\kappa|^2 \int d^4 y d^4 y' \left\langle Q^4 \left(X^{\dagger}(y) X(y') \right) \right\rangle_h \left\langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \right\rangle_m$$

$$\propto ??$$

$$m_{H_{u,d}}^2 = |\lambda_{u,d}|^2 |\kappa|^2 \int d^4 y d^4 y' \left\langle Q^4 \left(X^{\dagger}(y) X(y') \right) \right\rangle_h \left\langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \right\rangle_m$$

Use OPE: $X^{\dagger}(y)X(y') \sim |y-y'|^{-2\Delta_X}\mathbf{1} + \mathcal{C}_{\Delta}|y-y'|^{\gamma}\mathcal{O}_{\Delta}(y') + \dots$

• Dimension I parameters:

$$\mu = \lambda_u \lambda_d \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$
$$\propto (\sqrt{F})^{\Delta_X + 1}$$
$$A_{u,d} = |\lambda_{u,d}|^2 \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$

• Dimension 2 parameters:

Use OPE: $X^{\dagger}(y)X(y') \sim |y-y'|^{-2\Delta_X} \mathbf{1} + \mathcal{C}_{\Delta}|y-y'|^{\gamma}\mathcal{O}_{\Delta}(y') + \dots$

• Dimension I parameters:

$$\mu = \lambda_u \lambda_d \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$
$$\propto (\sqrt{F})^{\Delta_X + 1}$$
$$A_{u,d} = |\lambda_{u,d}|^2 \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$

• Dimension 2 parameters:

$$B\mu = \lambda_u \lambda_d |\kappa|^2 \mathcal{C}_{\Delta} \langle Q^4 \mathcal{O}_{\Delta} \rangle_h \int d^4 y d^4 y' |y - y'|^{\gamma} \langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \rangle_m$$

$$\propto (\sqrt{F})^{\Delta + 2}$$
$$m_{H_{u,d}}^2 + |\mu|^2 = |\lambda_{u,d}|^2 |\kappa|^2 \mathcal{C}_{\Delta} \langle Q^4 \mathcal{O}_{\Delta} \rangle_h \int d^4 y d^4 y' |y - y'|^{\gamma} \langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \rangle_m$$

Use OPE: $X^{\dagger}(y)X(y') \sim |y-y'|^{-2\Delta_X} \mathbf{1} + \mathcal{C}_{\Delta}|y-y'|^{\gamma}\mathcal{O}_{\Delta}(y') + \dots$

• Dimension I parameters:

$$\mu = \lambda_u \lambda_d \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$
$$\propto (\sqrt{F})^{\Delta_X + 1}$$
$$A_{u,d} = |\lambda_{u,d}|^2 \bar{\kappa} \langle \bar{Q}^2 X^{\dagger} \rangle_h \int d^4 y \langle \mathcal{O}_m^{\dagger}(y) \dots \rangle_m$$

• Dimension 2 parameters:

$$B\mu = \lambda_u \lambda_d |\kappa|^2 \mathcal{C}_{\Delta} \langle Q^4 \mathcal{O}_{\Delta} \rangle_h \int d^4 y d^4 y' |y - y'|^{\gamma} \langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \rangle_m \\ \propto (\sqrt{F})^{\Delta + 2}$$
$$m_{H_{u,d}}^2 + |\mu|^2 = |\lambda_{u,d}|^2 |\kappa|^2 \mathcal{C}_{\Delta} \langle Q^4 \mathcal{O}_{\Delta} \rangle_h \int d^4 y d^4 y' |y - y'|^{\gamma} \langle \mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \dots \rangle_m$$

Use OPE: $X^{\dagger}(y)X(y') \sim |y-y'|^{-2\Delta_X}\mathbf{1} + \mathcal{C}_{\Delta}|y-y'|^{\gamma}\mathcal{O}_{\Delta}(y') + \dots$

Sequestering!!

Applications

- We are currently applying our result to study models where the sequestering is not total (Knapen & DS)
 - Total sequestering would be $B\mu = 0$, $m_{H_{u,d}}^2 = -|\mu|^2$. This boundary condition actually has a lot of trouble with achieving EWSB (Perez, Roy, Schmaltz; Asano, Hisano, Okada, Sugiyama)
 - Total sequestering requires long enough running with large enough anomalous dimension γ. However there are strong bounds on γ from the conformal bootstrap that limit this possibility. (Poland, Simmons-Duffins, Vichi)
 - This motivates us to study "partially sequestered" models where Bµ and $m_{Hu,d}^2 + |\mu|^2$ are not completely set to zero.
 - For this the GMHM formulas are absolutely essential!

- Focusing on minimal SUSY, we surveyed the different ways to generate large A-terms from UV models.
 - A-terms from RG
 - need heavy gluinos and high messenger scale
 - A-terms from MSSM/messenger interactions
 - the A/m² problem
 - weakly coupled: messengers must be MGM-type
 - strongly coupled: hidden sector sequestering is a viable option.
 - New framework of GMHM provides a powerful unified framework for describing all models of direct messenger-Higgs couplings.

- Focusing on minimal SUSY, we surveyed the different ways to generate large A-terms from UV models.
 - A-terms from RG
 - need heavy gluinos and high messenger scale
 - A-terms from MSSM/messenger interactions
 - the A/m² problem
 - weakly coupled: messengers must be MGM-type
 - strongly coupled: hidden sector sequestering is a viable option.
 - New framework of GMHM provides a powerful unified framework for describing all models of direct messenger-Higgs couplings.
- In the detailed models we constructed, generally the least-finetuned point was already out of reach at 7-8 TeV LHC.

- Focusing on minimal SUSY, we surveyed the different ways to generate large A-terms from UV models.
 - A-terms from RG
 - need heavy gluinos and high messenger scale
 - A-terms from MSSM/messenger interactions
 - the A/m² problem
 - weakly coupled: messengers must be MGM-type
 - strongly coupled: hidden sector sequestering is a viable option.
 - New framework of GMHM provides a powerful unified framework for describing all models of direct messenger-Higgs couplings.
- In the detailed models we constructed, generally the least-finetuned point was already out of reach at 7-8 TeV LHC.
- Many are in reach of 14 TeV LHC. Exciting times are ahead?!

The End

Very Heavy Stops

- "Mini-split SUSY"
- Highly unnatural EW tuning but simplicity in "model space"
- I00-I000 TeV stops motivated by anomaly mediation, flavor problem, R-symmetry
- Can accommodate unification, dark matter.

Bhattacherjee, Feldstein, Ibe, Matsumoto, Yanagida

Arvanitaki, Craig, Dimopoulous, Villadoro

Arkani-Hamed, Gupta, Kaplan, Weiner, Zorawski

 Add new states to the MSSM which couple to Higgs with O(I) strength and break SUSY => new contributions to Higgs quartic

- Add new states to the MSSM which couple to Higgs with O(I) strength and break SUSY => new contributions to Higgs quartic
- Generally, the focus is on tree-level, since otherwise we're not doing better than the MSSM.

- Add new states to the MSSM which couple to Higgs with O(I) strength and break SUSY => new contributions to Higgs quartic
- Generally, the focus is on tree-level, since otherwise we're not doing better than the MSSM.
 - See however the many works on extra vector-like generations.

- Add new states to the MSSM which couple to Higgs with O(I) strength and break SUSY => new contributions to Higgs quartic
- Generally, the focus is on tree-level, since otherwise we're not doing better than the MSSM.
 - See however the many works on extra vector-like generations.
- Two options:

- Add new states to the MSSM which couple to Higgs with O(I) strength and break SUSY => new contributions to Higgs quartic
- Generally, the focus is on tree-level, since otherwise we're not doing better than the MSSM.
 - See however the many works on extra vector-like generations.
- Two options:
 - "non-decoupling F-terms": new states couple to the Higgs via the superpotential

- Add new states to the MSSM which couple to Higgs with O(I) strength and break SUSY => new contributions to Higgs quartic
- Generally, the focus is on tree-level, since otherwise we're not doing better than the MSSM.
 - See however the many works on extra vector-like generations.
- Two options:
 - "non-decoupling F-terms": new states couple to the Higgs via the superpotential
 - "non-decoupling D-terms": new states couple to the Higgs via the gauge potential

• The NMSSM is a prime example of non-decoupling F-terms:

$$W = \lambda S H_u H_d$$
 $\delta V_h \sim |\frac{\partial W}{\partial S}|^2 \sim \lambda^2 v^4 \sin^2 2\beta$

 $\delta m_h^2 \sim \lambda^2 v^2 \sin^2 2\beta$

• The NMSSM is a prime example of non-decoupling F-terms:

$$W = \lambda S H_u H_d$$
 $\delta V_h \sim \left|\frac{\partial W}{\partial S}\right|^2 \sim \lambda^2 v^4 \sin^2 2\beta$

$$\delta m_h^2 \sim \lambda^2 v^2 \sin^2 2\beta$$

• Well-known problems with fundamental singlets...

• The NMSSM is a prime example of non-decoupling F-terms:

$$W = \lambda S H_u H_d$$
 $\delta V_h \sim \left|\frac{\partial W}{\partial S}\right|^2 \sim \lambda^2 v^4 \sin^2 2\beta$

$$\delta m_h^2 \sim \lambda^2 v^2 \sin^2 2\beta$$

- Well-known problems with fundamental singlets...
- No Landau pole for $\lambda =>$ another upper bound on tree-level Higgs mass. Only a slight improvement over the MSSM tuning.

• The NMSSM is a prime example of non-decoupling F-terms:

$$W = \lambda S H_u H_d$$
 $\delta V_h \sim \left|\frac{\partial W}{\partial S}\right|^2 \sim \lambda^2 v^4 \sin^2 2\beta$

 $\delta m_h^2 \sim \lambda^2 v^2 \sin^2 2\beta$

- Well-known problems with fundamental singlets...
- No Landau pole for $\lambda =>$ another upper bound on tree-level Higgs mass. Only a slight improvement over the MSSM tuning.
- Relaxing Landau pole constraint => motivated by Seiberg duality? aka "λ-SUSY", aka "Fat Higgs"

Barbieri, Hall, Nomura, Rychkov Harnik, Kribs, Larson, Murayama

Hall, Pinner, Ruderman
Batra, Delgado, Kaplan & Tait '03

Non-decoupling D-terms

The basic idea: charge the Higgs under additional gauge group.
 When this gauge symmetry is broken non-supersymmetrically, an additional D-term potential for the Higgs is generated.

- The basic idea: charge the Higgs under additional gauge group.
 When this gauge symmetry is broken non-supersymmetrically, an additional D-term potential for the Higgs is generated.
- A simple U(I)_x toy model: (H_u, H_d, Φ_+ , Φ_-) charges (+1,-1,+1,-1)

$$W = S(\phi_{+}\phi_{-} - w^{2}) \qquad V_{soft} = m^{2}(|\phi_{+}|^{2} + |\phi_{-}|^{2})$$

$$\delta V_D = g_x^2 (|H_u|^2 - |H_d|^2 + |\phi_+|^2 - |\phi_-|^2)^2$$

The basic idea: charge the Higgs under additional gauge group.
 When this gauge symmetry is broken non-supersymmetrically, an additional D-term potential for the Higgs is generated.

• A simple U(I)_x toy model: (H_u, H_d,
$$\Phi_+$$
, Φ_-) charges (+1,-1,+1,-1)

$$W = S(\phi_{+}\phi_{-} - w^{2}) \qquad V_{soft} = m^{2}(|\phi_{+}|^{2} + |\phi_{-}|^{2})$$

$$\delta V_D = g_x^2 (|H_u|^2 - |H_d|^2 + |\phi_+|^2 - |\phi_-|^2)^2$$

• In the presence of V_{soft} , the Higgs quartic gets a new term:

$$\delta V_h = g_x^2 \left(1 + \frac{2m_x^2}{m^2} \right)^{-1} \left(|H_u|^2 - |H_d|^2 \right)^2$$

- Models with nonabelian groups (e.g. SU(2)) were also constructed
- Gauge coupling unification is nontrivial, but can be accommodated with enough complications (Batra, Delgado, Kaplan & Tait; Maloney, Pierce & Wacker; ...)
- Fine tuning ameliorated but not eliminated -- scales like 1/m_X².
 For max 10% tuning consistent with EWPT and direct searches, must have m_X~3-10 TeV (Maloney, Pierce & Wacker)
- These models generically predict enhanced coupling to bb. Could be observable at LHC/ILC, but not necessarily. (Blum, D'Agnolo, Fan; Azatov, Chang, Craig, Galloway)

Turning on one coupling at a time, we surveyed the phenomenology of the resulting models.

#	Coupling	$ \Delta b $	Best Point $\{\frac{\Lambda}{M}, \lambda\}$	$\left A_{t}\right /M_{S}$	$M_{\tilde{g}}$	M_S	$ \mu $	Tuning
I.1	$H_u\phi_{\overline{5},L}\phi_{1,S}$	N_m	$\{0.375, 1.075\}$	1.98	3222	1842	777	3400
I.2	$H_u \phi_{10,Q} \phi_{10,U}$	$3N_m$	$\{0.25, 1.075\}$	1.99	3178	1828	789	2450
I.3	$H_u \phi_{5,\overline{D}} \phi_{\overline{10},\overline{O}}$	4	$\{0.25, 1.3\}$	2.05	2899	1709	668	3200
I.4	$H_u \phi_5 \overline{L} \phi_{\overline{10}} \overline{E}$	4	$\{0.125, 0.95\}$	0.58	11134	8993	2264	4050
I.5	$H_u \phi_{\overline{5},L} \phi_{24,S}$	6	$\{0.225, 1.000\}$	0.54	13290	9785	3408	3850
I.6	$H_u \phi_{\overline{5},L} \phi_{24,W}$	6	$\{0.15, 1.025\}$	0.67	11835	8637	3259	3410
I.7	$H_u \phi_{\overline{5},D} \phi_{24,X}$	6	$\{0.3, 1.425\}$	2.04	3020	1743	576	3500
I.8	$Q\phi_{\overline{10},\overline{O}}\phi_{1,S}$	$3N_m$	$\{0.534, 1.5\}$	2.82	4336	1274	2056	1015
I.9	$Q\phi_{\overline{5},D}\phi_{\overline{5},L}$	N_m	$\{0.353, 0.858\}$	2.67	4247	1342	2058	1015
I.10	$Q\phi_{10,U}\phi_{5,H_{u}}$	4	$\{0.51, 1.788\}$	2.65	4040	1318	2301	1275
I.11	$Q\phi_{10,Q}\phi_{5,\overline{D}}$	4	$\{0.378, 1.245\}$	2.76	4020	1257	2292	1260
I.12	$U\phi_{\overline{10},\overline{U}}\phi_{1,S}$	$3N_m$	$\{0.476, 1.622\}$	2.62	3815	1347	2070	1030
I.13	$U\phi_{\overline{5},D}\phi_{\overline{5},D}$	$2N_m$	$\{0.301, 0.908\}$	2.91	3829	1199	2061	1020
I.14	$U\phi_{10,Q}\phi_{5,H_{u}}$	4	$\{0.37, 1.352\}$	2.81	3575	1220	2312	1285
I.15	$U\phi_{10,E}\phi_{5,\overline{D}}$	4	$\{0.51, 1.972\}$	2.63	3526	1312	2310	1280
II.1	$QU\phi_{5,H_u}$	1	$\{0.55, 1.64\}$	2.02	769	1965	2738	1800
II.2	$UH_u\phi_{10,Q}$	3	$\{0.009, 1.067\}$	2.14	2203	1628	543	850
II.3	$QH_u\phi_{10,U}$	3	$\{0.269, 1.05\}$	2.27	2514	1458	439	1500
II.4	$QD\phi_{\overline{5},H_d}$	1	$\{0.37, 1.2\}$	1.78	2597	1829	3553	3020
II.5	$QH_d\phi_{\overline{5},D}$	1	$\{0.15, 1.19\}$	1.45	2497	2108	3773	6050
II.6	$QQ\phi_{5,\overline{D}}$	1	$\{0.45, 0.1\}$	0.22	7943	9870	3610	5000
II.7	$UD\phi_{\overline{5},D}$	1	$\{0.21, 1.26\}$	2.34	1374	1334	2998	2150
II.8	$QL\phi_{\overline{5},D}$	1	$\{0.14, 1.2\}$	1.51	1501	1204	2203	3700
II.9	$UE\phi_{5,\overline{D}}$	1	$\{0.445, 1.46\}$	1.89	2004	1750	3373	2730
II.10	$H_u D \phi_{24,X}$	5	$\{0.42, 1.45\}$	2.13	2943	1649	282	3500
II.11	$H_u L \phi_{1,S}$	1*	$\{0.15, 0.675\}$	0.54	7103	8166	3714	4930
II.12	$H_u L \phi_{24,S}$	5	$\{0.296, 0.96\}$	0.53	12629	9660	3333	3780
II.13	$H_u L \phi_{24,W}$	5	$\{0.212, 0.96\}$	0.65	11487	8710	3687	3380
II.14	$H_u H_d \phi_{1,S}$	1*	$\{0.125, 0.675\}$	0.55	7049	8051	3255	5000
II.15	$H_u H_d \phi_{24,S}$	5	$\{0.20, 1.00\}$	0.57	12047	9213	1628	4220
II.16	$H_u H_d \phi_{24,W}$	5	$\{0.2, 0.946\}$	0.64	11571	8789	3665	3460

Turning on one coupling at a time, we surveyed the phenomenology of the resulting models.

MSSMmessengermessenger "Type I"

#	Coupling	$ \Delta b $	Best Point $\{\frac{\Lambda}{M}, \lambda\}$	$ A_t /M_S$	$M_{\tilde{g}}$	M_S	$ \mu $	Tuning
I.1	$H_u \phi_{\overline{5},L} \phi_{1,S}$	N_m	$\{0.375, 1.075\}$	1.98	3222	1842	777	3400
I.2	$H_u \phi_{10,Q} \phi_{10,U}$	$3N_m$	$\{0.25, 1.075\}$	1.99	3178	1828	789	2450
I.3	$H_u \phi_{5,\overline{D}} \phi_{\overline{10},\overline{O}}$	4	$\{0.25, 1.3\}$	2.05	2899	1709	668	3200
I.4	$H_u \phi_{5,\overline{L}} \phi_{\overline{10},\overline{E}}$	4	$\{0.125, 0.95\}$	0.58	11134	8993	2264	4050
I.5	$H_u \phi_{\overline{5},L} \phi_{24,S}$	6	$\{0.225, 1.000\}$	0.54	13290	9785	3408	3850
I.6	$H_u \phi_{\overline{5},L} \phi_{24,W}$	6	$\{0.15, 1.025\}$	0.67	11835	8637	3259	3410
I.7	$H_u \phi_{\overline{5},D} \phi_{24,X}$	6	$\{0.3, 1.425\}$	2.04	3020	1743	576	3500
I.8	$Q\phi_{\overline{10},\overline{O}}\phi_{1,S}$	$3N_m$	$\{0.534, 1.5\}$	2.82	4336	1274	2056	1015
I.9	$Q\phi_{\overline{5},D}\phi_{\overline{5},L}$	N_m	$\{0.353, 0.858\}$	2.67	4247	1342	2058	1015
I.10	$Q\phi_{10,U}\phi_{5,H_{u}}$	4	$\{0.51, 1.788\}$	2.65	4040	1318	2301	1275
I.11	$Q\phi_{10,Q}\phi_{5,\overline{D}}$	4	$\{0.378, 1.245\}$	2.76	4020	1257	2292	1260
I.12	$U\phi_{\overline{10},\overline{U}}\phi_{1,S}$	$3N_m$	$\{0.476, 1.622\}$	2.62	3815	1347	2070	1030
I.13	$U\phi_{\overline{5},D}\phi_{\overline{5},D}$	$2N_m$	$\{0.301, 0.908\}$	2.91	3829	1199	2061	1020
I.14	$U\phi_{10,Q}\phi_{5,H_{u}}$	4	$\{0.37, 1.352\}$	2.81	3575	1220	2312	1285
I.15	$U\phi_{10,E}\phi_{5,\overline{D}}$	4	$\{0.51, 1.972\}$	2.63	3526	1312	2310	1280
II.1	$QU\phi_{5,H_u}$	1	$\{0.55, 1.64\}$	2.02	769	1965	2738	1800
II.2	$UH_u\phi_{10,Q}$	3	$\{0.009, 1.067\}$	2.14	2203	1628	543	850
II.3	$QH_u\phi_{10,U}$	3	$\{0.269, 1.05\}$	2.27	2514	1458	439	1500
II.4	$QD\phi_{\overline{5},H_d}$	1	$\{0.37, 1.2\}$	1.78	2597	1829	3553	3020
II.5	$QH_d\phi_{\overline{5},D}$	1	$\{0.15, 1.19\}$	1.45	2497	2108	3773	6050
II.6	$QQ\phi_{5,\overline{D}}$	1	$\{0.45, 0.1\}$	0.22	7943	9870	3610	5000
II.7	$UD\phi_{\overline{5},D}$	1	$\{0.21, 1.26\}$	2.34	1374	1334	2998	2150
II.8	$QL\phi_{\overline{5},D}$	1	$\{0.14, 1.2\}$	1.51	1501	1204	2203	3700
II.9	$UE\phi_{5,\overline{D}}$	1	$\{0.445, 1.46\}$	1.89	2004	1750	3373	2730
II.10	$H_u D \phi_{24,X}$	5	$\{0.42, 1.45\}$	2.13	2943	1649	282	3500
II.11	$H_u L \phi_{1,S}$	1*	$\{0.15, 0.675\}$	0.54	7103	8166	3714	4930
II.12	$H_u L \phi_{24,S}$	5	$\{0.296, 0.96\}$	0.53	12629	9660	3333	3780
II.13	$H_u L \phi_{24,W}$	5	$\{0.212, 0.96\}$	0.65	11487	8710	3687	3380
II.14	$H_u H_d \phi_{1,S}$	1*	$\{0.125, 0.675\}$	0.55	7049	8051	3255	5000
II.15	$H_u H_d \phi_{24,S}$	5	$\{0.20, 1.00\}$	0.57	12047	9213	1628	4220
II.16	$H_u H_d \phi_{24,W}$	5	$\{0.2, 0.946\}$	0.64	11571	8789	3665	3460

Turning on one coupling at a time, we surveyed the phenomenology of the resulting models.

MSSMmessengermessenger "Type I"

#	Coupling	$ \Delta b $	Best Point $\{\frac{\Lambda}{M}, \lambda\}$	$ A_t /M_S$	$M_{\tilde{g}}$	M_S	$ \mu $	Tuning
I.1	$H_u\phi_{\overline{5},L}\phi_{1,S}$	N_m	$\{0.375, 1.075\}$	1.98	3222	1842	777	3400
I.2	$H_u \phi_{10,Q} \phi_{10,U}$	$3N_m$	$\{0.25, 1.075\}$	1.99	3178	1828	789	2450
I.3	$H_u \phi_{5,\overline{D}} \phi_{\overline{10},\overline{O}}$	4	$\{0.25, 1.3\}$	2.05	2899	1709	668	3200
I.4	$H_u \phi_{5,\overline{L}} \phi_{\overline{10},\overline{E}}$	4	$\{0.125, 0.95\}$	0.58	11134	8993	2264	4050
I.5	$H_u \phi_{\overline{5},L} \phi_{24,S}$	6	$\{0.225, 1.000\}$	0.54	13290	9785	3408	3850
I.6	$H_u \phi_{\overline{5},L} \phi_{24,W}$	6	$\{0.15, 1.025\}$	0.67	11835	8637	3259	3410
I.7	$H_u \phi_{\overline{5},D} \phi_{24,X}$	6	$\{0.3, 1.425\}$	2.04	3020	1743	576	3500
I.8	$Q\phi_{\overline{10},\overline{O}}\phi_{1,S}$	$3N_m$	$\{0.534, 1.5\}$	2.82	4336	1274	2056	1015
I.9	$Q\phi_{\overline{5},D}\phi_{\overline{5},L}$	N_m	$\{0.353, 0.858\}$	2.67	4247	1342	2058	1015
I.10	$Q\phi_{10,U}\phi_{5,H_{u}}$	4	$\{0.51, 1.788\}$	2.65	4040	1318	2301	1275
I.11	$Q\phi_{10,Q}\phi_{5,\overline{D}}$	4	$\{0.378, 1.245\}$	2.76	4020	1257	2292	1260
I.12	$U\phi_{\overline{10},\overline{U}}\phi_{1,S}$	$3N_m$	$\{0.476, 1.622\}$	2.62	3815	1347	2070	1030
I.13	$U\phi_{\overline{5},D}\phi_{\overline{5},D}$	$2N_m$	$\{0.301, 0.908\}$	2.91	3829	1199	2061	1020
I.14	$U\phi_{10,Q}\phi_{5,H_{u}}$	4	$\{0.37, 1.352\}$	2.81	3575	1220	2312	1285
I.15	$U\phi_{10,E}\phi_{5,\overline{D}}$	4	$\{0.51, 1.972\}$	2.63	3526	1312	2310	1280
II.1	$QU\phi_{5,H_u}$	1	$\{0.55, 1.64\}$	2.02	769	1965	2738	1800
II.2	$UH_u\phi_{10,Q}$	3	$\{0.009, 1.067\}$	2.14	2203	1628	543	850
II.3	$QH_u\phi_{10,U}$	3	$\{0.269, 1.05\}$	2.27	2514	1458	439	1500
II.4	$QD\phi_{\overline{5},H_d}$	1	$\{0.37, 1.2\}$	1.78	2597	1829	3553	3020
II.5	$QH_d\phi_{\overline{5},D}$	1	$\{0.15, 1.19\}$	1.45	2497	2108	3773	6050
II.6	$QQ\phi_{5,\overline{D}}$	1	$\{0.45, 0.1\}$	0.22	7943	9870	3610	5000
II.7	$UD\phi_{\overline{5},D}$	1	$\{0.21, 1.26\}$	2.34	1374	1334	2998	2150
II.8	$QL\phi_{\overline{5},D}$	1	$\{0.14, 1.2\}$	1.51	1501	1204	2203	3700
II.9	$UE\phi_5 \overline{D}$	1	$\{0.445, 1.46\}$	1.89	2004	1750	3373	2730
II.10	$H_u D\phi_{24,X}$	5	$\{0.42, 1.45\}$	2.13	2943	1649	282	3500
II.11	$H_u L \phi_{1,S}$	1*	$\{0.15, 0.675\}$	0.54	7103	8166	3714	4930
II.12	$H_u L \phi_{24,S}$	5	$\{0.296, 0.96\}$	0.53	12629	9660	3333	3780
II.13	$H_u L \phi_{24,W}$	5	$\{0.212, 0.96\}$	0.65	11487	8710	3687	3380
II.14	$H_u H_d \phi_{1,S}$	1*	$\{0.125, 0.675\}$	0.55	7049	8051	3255	5000
II.15	$H_u H_d \phi_{24,S}$	5	$\{0.20, 1.00\}$	0.57	12047	9213	1628	4220
II.16	$H_u H_d \phi_{24,W}$	5	$\{0.2, 0.946\}$	0.64	11571	8789	3665	3460

MSSM-MSSMmessenger "Type II"

Turning on one coupling at a time, we surveyed the phenomenology of the resulting models.

	#	#	Coupling	$ \Delta b $	Best Point $\{\frac{\Lambda}{M}, \lambda\}$	$ A_t /M_S$	$M_{\tilde{g}}$	M_S	$ \mu $	Tuning	
	<u> </u>	1	$H_u \phi_{\overline{5},L} \phi_{1,S}$	N_m	$\{0.375, 1.075\}$	1.98	3222	1842	777	3400	
	I.	2	$H_u \phi_{10,Q} \phi_{10,U}$	$3N_m$	$\{0.25, 1.075\}$	1.99	3178	1828	789	2450	
	I.	.3	$H_u \phi_{5,\overline{D}} \phi_{\overline{10},\overline{Q}}$	4	$\{0.25, 1.3\}$	2.05	2899	1709	668	3200	
_M22M	I.	.4	$H_u \phi_{5,\overline{L}} \phi_{\overline{10},\overline{E}}$	4	$\{0.125, 0.95\}$	0.58	11134	8993	2264	4050	
115511-	I.	5	$H_u \phi_{\overline{5},L} \phi_{24,S}$	6	$\{0.225, 1.000\}$	0.54	13290	9785	3408	3850	
messenger-	I.	.6	$H_u \phi_{\overline{5},L} \phi_{24,W}$	6	$\{0.15, 1.025\}$	0.67	11835	8637	3259	3410	
messenger	I.	.7	$H_u \phi_{\overline{5},D} \phi_{24,X}$	6	$\{0.3, 1.425\}$	2.04	3020	1743	576	3500	
	I.	.8	$Q\phi_{\overline{10},\overline{Q}}\phi_{1,S}$	$3N_m$	$\{0.534, 1.5\}$	2.82	4336	1274	2056	1015	
"Type I"	I.	.9	$Q\phi_{\overline{5},D}\phi_{\overline{5},L}$	N_m	$\{0.353, 0.858\}$	2.67	4247	1342	2058	1015	
	I.1	10	$Q\phi_{10,U}\phi_{5,H_u}$	4	$\{0.51, 1.788\}$	2.65	4040	1318	2301	1275	
	I.1	11	$Q\phi_{10,Q}\phi_{5,\overline{D}}$	4	$\{0.378, 1.245\}$	2.76	4020	1257	2292	1260	
	I.1	12	$U\phi_{\overline{10},\overline{U}}\phi_{1,S}$	$3N_m$	$\{0.476, 1.622\}$	2.62	3815	1347	2070	1030	
	I.1	13	$U\phi_{\overline{5},D}\phi_{\overline{5},D}$	$ 2N_m$	$\{0.301, 0.908\}$	2.91	3829	1199	2061	1020	
	I.1	14	$U\phi_{10,Q}\phi_{5,H_u}$	4	$\{0.37, 1.352\}$	2.81	3575	1220	2312	1285	
	I.1	15	$U\phi_{10,E}\phi_{5,\overline{D}}$	4	$\{0.51, 1.972\}$	2.63	3526	1312	2310	1280	
	II	.1	$QU\phi_{5,H_u}$	1	$\{0.55, 1.64\}$	2.02	769	1965	2738	1800	
	II	.2	$UH_u\phi_{10,Q}$	3	$\{0.009, 1.067\}$	2.14	2203	1628	543	850	
	II	.3	$QH_u\phi_{10,U}$	3	$\{0.269, 1.05\}$	2.27	2514	1458	439	1500	
	II	.4	$QD\phi_{\overline{5},H_d}$	1	$\{0.37, 1.2\}$	1.78	2597	1829	3553	3020	
	II	.5	$QH_d\phi_{\overline{5},D}$	1	$\{0.15, 1.19\}$	1.45	2497	2108	3773	6050	
	II	.6	$QQ\phi_{5,\overline{D}}$	1	$\{0.45, 0.1\}$	0.22	7943	9870	3610	5000	
1 1551 1-1 1551 1-	II	.7	$UD\phi_{\overline{5},D}$	1	$\{0.21, 1.26\}$	2.34	1374	1334	2998	2150	
messenger	II	.8	$QL\phi_{\overline{5},D}$	1	$\{0.14, 1.2\}$	1.51	1501	1204	2203	3700	W
"Type II"	II	.9	$UE\phi_{5,\overline{D}}$	1	$\{0.445, 1.46\}$	1.89	2004	1750	3373	2730	inv
1700 11	II.	10	$H_u D\phi_{24,X}$	5	$\{0.42, 1.45\}$	2.13	2943	1649	282	3500	
	II.	11	$H_u L \phi_{1,S}$	1*	$\{0.15, 0.675\}$	0.54	7103	8166	3714	4930	co
	II.	12	$H_u L \phi_{24,S}$	5	$\{0.296, 0.96\}$	0.53	12629	9660	3333	3780	fla
	II.	13	$H_u L \phi_{24,W}$	5	$\{0.212, 0.96\}$	0.65	11487	8710	3687	3380	th
		14	$H_u H_d \phi_{1,S}$		$\{0.125, 0.675\}$		7049	8051	3255	5000	
		15	$H_u H_d \phi_{24,S}$		$\{0.20, 1.00\}$		12047	9213	1628	4220	(Eי
	L 11.	10	$H_u H_d \phi_{24,W}$	6	{0.2, 0.946}	0.64	11571	8789	3065	3460	DS

The models with the best tuning are the type I squark models and the top-Yukawa-like type II models

Work in progress: investigating the constraints from flavor violation on these models.... (Evans, Thalapallil & DS)

