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Vanilla Inflation

Inflation Is a period of accelerated
expansion driven by a single scalar
field with very flaf potential
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They are approximately scale invariant n, ~1

They approximately Gaussian fy, ~0
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Planck Inflation 2013
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ns= spectral index

r = tensor 2 scalar
ratio (small field)

Non-Gaussianity
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Fundamental origin of inflaton®e

 Due to high value of potential energy natural to consider
iInflation in more fundamental frameworks such as

supergravity (sugra) and string theory

 Not obvious that sugra and string th. models are necessary
simple. Generically the opposite is true!l

o Usually at least two fields around (fields come in pairs). They
can naturally acquire Hubble masses.

e Can we embed Planck inflation (slow roll single small field)
models info sugra and string theory frameworkse



N =1 supergravity

e Matter content
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e Theory is tully specified by

K&hler potential K (®, ®)
Holomorphic superpotfential, W (®)

K;;09'097

e The scalar pofential is thus given by:

V = e | K D:W D;W — 3WW

D;W = oW + ;KW

scalars organise
themselves info a
complex manifold



A geometric bound on F-term inflation

e During inflation SUSY D.W # 0. A spectrum of
scalar masses below and above Hubble scale
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o e sGoldstini directfions in moduli B
scalar partners o e .
Goldstino that are eaten up space are singled out as SUSY —1 H”
v hE ., directions. (Useful to determine
i} : ey
v A SCO'Or InSTOblllTIeS.) [GOmez-Reino et al. ’06-’08]
— .
e In F-term sugra (vector fields subdominant), under
CISSumpTIOﬂS [Borghese, Roest, 1Z, ’12]

1) gravitino mass well below inflationary scale

(m?)/2 ~ 1TeV)

II) non-negligible overlap between inflaton and sGoldstini

directions

* Single field inflation
only ’f;vo Cifldgfigfls * Slow roll inflation
can be Ssarisnea: *SmO” fleld
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The n—problem

Consider the F-term scalar potential in sugra:

V = e | KYD:WD;W — 3WW

Canonical Kahler potential:

Symmetry protected Kahler: shift symmetry

Inflaton:
i K:—% (<I>—<T>)2 —  Re(P)
(Im(®) = 0)
| L Inflaton:
L?IK:§(<I>+<I>) —  Im(P)
(Re(®) = 0)
K=00 < K:-%(@-@)Q s K

K = o0

V//
v

[Copeland et al. '94]

Y

[Kawasaki et al. ’00]

¢ = Re(®) + ¢ Im(P)

Kahler transformations '

V-V
K%K—I—g(@)—l—g(@)t
W — e 9w
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The n—problem

Consider the F-term scalar potential in sugra:

- __ __ | V4
V = e | KYD:WD;W — 3WW =
Canonical K&hler potential: K =®® [Copeland et al. '94]
Symmetry protected Kahler: shift symmeftry [Kawasaki et al. 0]
Logarithmic Kahler potential: [Roest, Scalisi, 12 13
Inflaton!

g K=—-aln(®+®) — Re(d), Im(P) =0

Arises in string theory tfor geometric modul



sGoldstino inflation [Alvarez-Gaumé et al. "10-11]

[Achucarro et al. '12]

For a single superfield: inflaton < sGoldstino

Geometric bound applies

Taking K:—%(cb—cb)Q, W = f(P)

The potential becomes

V= 3£(6)> + 1'()’ Re(®) = ¢

Small single field slow roll inflation severely consfrained



Orthogonal inflation

To overcome geometric bound, infroduce o “is
second supertield, orthogonal to sG: inflaton

NS

Single field inflation with an arbifrary scalar potential
can be implemented un sugra under assumptions:

Kahler and superpotential are of the form [Kallosh-Linde-Rube "10]

K=K ((®—-®)*55,5°,5%), W=Sf(®)

shift symmetry < inflaton direction

V(g) = f(¢)° {Im(I) — 0

Re® = ¢ S =



Orthogonal inflation in sugra and string theory

[Roest, Scalisi, 1Z '13]

Relax Z2 symmetry in Kdhler potential, with same W

K=K (®+®,55,6%,5%), W=Sf(®)

can truncate consistently to single field inflation with
general scalar potfential, but now:
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Orthogonal inflation in sugra and string theory

[Roest, Scalisi, 1Z '13]

Relax Z2 symmetry in Kdhler potential, with same W

K=K (®+®,55,6%,5%), W=Sf(®)

can truncate consistently to single field inflation with
general scalar potfential, but now:

shift symmetry £ inflaton direction!

V(p) = X K5 f()? {Im@ _ 0
Re® = ¢ 5 =



In sfring theory a combination of S, ® which appears
INn several models is:

x ~ Heisenberg symmetry
X=0+P— e I
T 55 @%@+ia+b$—l—§|b\2

S—S+b

acR, beC

P & geometric modulus, S < matter field

Focus on interesting Kahler potential:

K = —aln(X)

the general scalar potential becomes (@ im® =0, S = 0)

_X'f(0)

8}

v



Two interesting models

For a linear superpotential of the form: [Cecott, 87

W =3MS(®—1)

M o« =3, corresponds to Starobinsky’s modell [Fallosh-Linde, 11

[Buchmiller et al., ’13]
[Farakos et al., ’13]

but mass spectrum: m* = (0,4H%, —2H?)

need to add S-stabilising terms to K(S) H?=V/3 "

P

M X — 17 nOW mGSS SpeCTrum [Ellis, Nanopoulos, Olive, '13]
[Roest, Scalisi, 1Z ’13]
m* = (0,24H?*,6H?)

no need to add S-stabilising terms to K!

Inflationary predictions:

N=50: n,=0.961, r=0.0015
N=60: n,=0.967, r=0.0011



Summary

4+ Discussed Kahler potentials which allow truncation to o
single scalar, identified with the inflaton, in F-term sugra

4+ To evade n-problem shift symmetry or logarithm function
can be used.

4+ To circumvent geometric bound, a second field needs to
be introduced, orthogonal to sGoldstino: inflation

4+ For Heisenberg invariant K, general potential can be
generated in sugra and string theory

4+ Forlinear W, two choices of a allow for small single field
slow roll inflation, compatible with Planck



