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+Composite Higgs: +

W,Z, h

m∗g∗≡g(m∗)

ΛSg(ΛS) = 4π strong scale

Energy cartoon:

coupling strength grows with energy and saturates at  
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L = λL q̄LOR + λR ūROL + h.c.

Linear couplings

 Hypothesis: each SM fermion couples to a composite fermionic operator 
with the same SU(3)cxSU(2)LxU(1)Y quantum numbers
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    parametrizes the degree of 
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 Fermionic operators can excite 
composite fermions at low energy:

Partial compositeness

�0|Jµ|ρ� = �r
µ fρ mρsame as for a conserved current:

 Linear couplings imply mass mixings:

vector-like composite fermion

rotating to mass eigenbasis:

|SM� = cosϕ |ψ�+ sinϕ |χ�

|heavy� = − sinϕ |ψ�+ cosϕ |χ�

D.B. Kaplan  NPB 365 (1991) 259
...
RS with bulk fermions



Higgs mass
Can a 125GeV Higgs be composite ? 
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 To get EWSB (             ) at least two SO(4) 
structures are needed plus some tuning
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see however arXiv:1211.7290 for SUSY 
completion with extra spurion suppression

Talk by A. Parolini
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Figure 7. Left: Probability distribution for the coupling a. Center: Indirect determinations of

the coupling a, excluding the observables MW , ΓZ , P
pol
τ , A

0
l and A

0,b
FB, except for the one specified

in each row. The vertical blue band represents the one obtained from the the fit with all the

observables. Right: Probability regions in the a–Λ plane. In all plots, the large-mt expansion is

adopted to the two-loop fermionic EW corrections to ρfZ .

3.5 General bounds on the New Physics scale

Before concluding, let us take a more general approach and consider the contributions to

the EW fit of arbitrary dimension-six NP-induced operators [11, 20, 112]:
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where OH violates the custodial symmetry, since it gives a correction to the mass of the

Z boson, but not to that of the W boson. The next two operators yield non-oblique
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fit from:  GFitter coll. Eur. Phys. J. C 72 (2012) 2205
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Before concluding, let us take a more general approach and consider the contributions to

the EW fit of arbitrary dimension-six NP-induced operators [11, 20, 112]:

Leff = LSM +

�

i

Ci

Λ2
Oi . (3.22)

For concreteness, let us use the same operator basis of ref. [11]:

OWB = (H
†τaH)W
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µνB
µν
, OH = |H

†
DµH|

2
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OLL =
1

2
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a
L)

2
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a
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O
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†
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a
H)(QγµτaQ) , OHL = i(H

†
DµH)(LγµL) ,

OHQ = i(H
†
DµH)(QγµQ) , OHE = i(H

†
DµH)(EγµE) ,

OHU = i(H
†
DµH)(UγµU) , OHD = i(H

†
DµH)(DγµD) , (3.23)

where we add the contribution of the Hermitian conjugate for operators O�
HL

to OHD.

The Higgs field gets a vev �H� = (0, v/
√
2)

T
. For fermions, we do not consider generation

mixing, and assume lepton-flavour universality: C
�
HL

= C
�
HLi

, CHL = CHLi and CHE =

CHEi for i = 1, 2, 3.

The first two operators contribute to the oblique parameters S and T :

S =
4sW cW CWB

α(M2
Z
)

�
v

Λ

�2
, (3.24)

T = − CH

2α(M2
Z
)

�
v

Λ

�2
, (3.25)

where OH violates the custodial symmetry, since it gives a correction to the mass of the

Z boson, but not to that of the W boson. The next two operators yield non-oblique

– 20 –

W,Z

cV

Λ = 4πv/
�

|1− c2V |

fit from:  GFitter coll. Eur. Phys. J. C 72 (2012) 2205

Barbieri et al. PRD 76 (2007) 115008 See talk by S. Mishima on Thursday
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3.5 General bounds on the New Physics scale

Before concluding, let us take a more general approach and consider the contributions to

the EW fit of arbitrary dimension-six NP-induced operators [11, 20, 112]:
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†
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OHU = i(H
†
DµH)(UγµU) , OHD = i(H

†
DµH)(DγµD) , (3.23)

where we add the contribution of the Hermitian conjugate for operators O�
HL

to OHD.

The Higgs field gets a vev �H� = (0, v/
√
2)

T
. For fermions, we do not consider generation

mixing, and assume lepton-flavour universality: C
�
HL

= C
�
HLi

, CHL = CHLi and CHE =

CHEi for i = 1, 2, 3.

The first two operators contribute to the oblique parameters S and T :
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where OH violates the custodial symmetry, since it gives a correction to the mass of the

Z boson, but not to that of the W boson. The next two operators yield non-oblique
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fit from:  GFitter coll. Eur. Phys. J. C 72 (2012) 2205

Precision on cV at the level of ~5% !

Contribution from resonances 
REQUIRED to relax the bound

See talk by S. Mishima on Thursday
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ŜUV ∼ g2

v2

f2

�
1

g2∗
+NcNF

1

16π2
log

�
Λ

m∗

�
+ . . .

�

20

S parameter
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Figure 5: Schematic structure of a fermion loop diagram contributing to the �T parameter at leading

order in the y expansion.

the mixings yL4,1 of the qL elementary doublet with the composite fermions.

The main correction due to the hypercharge coupling breaking comes from the IR contribution

associated to the Goldstone nature of the Higgs. This effect is analogous to the one we already

discussed for the �S parameter. The leading logarithmically enhanced contribution is given by [22]

∆ �T = − 3g�2

64π2
ξ log

�
m2

∗
m2

h

�
� −3.8 · 10−3 ξ . (3.7)

Differently from the analogous contribution to �S which was negligible due to accidental suppression

factors, the contribution in eq. (3.7) gives a sizable correction to �T . In particular, if we assume

that this is the dominant correction to �T and that the shift in �S is non negative, a very stringent

bound on ξ is obtained, ξ � 0.1 (see fig. 2).
8

The second correction comes from fermion loops. As already noticed, in order to induce a con-

tribution to �T the corresponding diagrams must contain some insertions of the symmetry breaking

couplings yL4,1. Under SU(2)L × SU(2)R the yL4,1 mixings transform in the (1,2) representation,

thus at least 4 insertions are needed to generate a shift in �T [11]. This minimal number of insertions

guarantees that the fermion one-loop corrections to �T are finite. A typical diagram contributing at

leading order in the y expansion is shown in fig. 5.

It is straightforward to estimate the corrections to �T at leading order in the elementary–

composite mixing [11]:

∆ �T � Nc

16π2

y4Lf
2

m2
ξ , (3.8)

where we denoted by m the mass scale of the lightest top partners in our effective Lagrangian. To

get a quantitative estimate we can extract the value of the yL mixing from the top mass. If we

assume that the elementary–composite mixings have comparable sizes, yL4 � yL1 � yR4 � yR1 � y,
the top Yukawa can be estimated as yt � y2f/m. By using this expression we get the estimate

∆ �T � Nc

16π2
y2t ξ � 2 · 10−2 ξ . (3.9)

Notice that this contribution is usually dominant with respect to the one given in eq. (3.7). More-

over, as we will see in the next section with an explicit calculation, the sign of the fermion contri-

bution can be positive, so that it can compensate the negative shift in eq. (3.7). Notice that, if �S
8
A similar bound has been derived in Ref. [24], where the phenomenological impact of the IR corrections to �S and

�T on the fit of the Higgs couplings has been analyzed.
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ψ4 = (2, 2)2/3 tR

L = q̄Li �D qL + t̄Ri �D tR + ψ̄4(i �∇ −m4)ψ4

+ iζ ψ̄i
4γ

µdiµtR + yLtf q̄LU(π)tR + yL4f q̄LU(π)ψ4 + h.c.

ζ

∆T̂ > 0
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Example:  model with                     +      composite

Grojean, Matsedonskyi, Panico   
arXiv:1306.4655
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Figure 15: Corrections to the �T parameter as a function of the yL4 mixing and of ct. The result
corresponds to the scenario with a totally composite tR with only a light 4-plet with mass m4 =
1 TeV. The compositeness scale has been fixed to ξ = 0.2 in the left panel and ξ = 0.1 in the right
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The above formula contains only the corrections coming from the lowest order terms in the effective
Lagrangian without the contributions from 4-fermion operators. As can be seen from the numerical
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of the corrections to the ZbLbL vertex is however typically one order of magnitude smaller than the
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Figure 4: In red dashed: the cross sections of pair production. In green and blue the single production of
the �T (in association with a b) and of the X5/3(in association with a t), respectively in model M15 and M45.
The point chosen in the parameter space is ξ = 0.2, c1 = 1 and y = 1. The value of c2 is fixed, at each value
of MΨ, in order to reproduce the top quark mass.

It total, all the single-production processes are parameterized in terms of 5 universal coefficient

functions σW±t, σZt and σW±b. Notice that a possible σZb vanishes because flavor-changing neutral

couplings are forbidden in the charge −1/3 sector as explained in the previous section. As such,

the single production of the B in association with a bottom quark does not take place. We have

computed the coefficient functions σW±t and σW±b, including the QCD corrections up to NLO,

using the MCFM code [33]. To illustrate the results, we report in Table 3 the single production

cross-section with coupling set to unity, for different values of the heavy fermion mass, and for the 7

and 8 TeV LHC. The values in the table correspond to the sum of the cross sections for producing

the heavy fermion and its antiparticle, on the left side we show the results for tB production, on

the right one we consider the case of b �T . In our parametrization of eq.s (3.3) and (3.4) the cross-

sections in the table correspond respectively to σW+t + σW−t and to σW+b + σW−b. We see that the

production with the b is one order of magnitude larger than the one with the t, this is not surprising

because the t production has a higher kinematical threshold and therefore it is suppressed by the

steep fall of the partonic luminosities. The values in the table do not yet correspond to the physical

single-production cross-sections, they must still be multiplied by the appropriate couplings.

The last coefficient function σZt cannot be computed in MCFM and therefore to extract it

we used a LO cross section computed with MadGraph 5 [34] using the model files produced

with FeynRules package [35]. To account for QCD corrections in this case we used the k-factors

computed with MCFM for the tB production process.

In order to quantify the importance of single production we plot in figure 4 the cross-sections for

the various production mechanisms in our models as a function of the mass of the partners and for

a typical choice of parameters. We see that the single production rate can be very sizeable and that

it dominates over the QCD pair production already at moderately high mass. This is again due to

the more favorable lower kinematical threshold, as carefully discussed in Ref. [20].

Let us finally discuss the decays of the top partners. The main channels are two-body decays

to vector bosons and third-family quarks, mediated by the couplings in eq. (3.2). For the partners

of charge 2/3 and −1/3 also the decay to the Higgs boson is allowed, and competitive with the

others in some cases. This originates from the interactions of the partners with the Higgs reported
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of MΨ, in order to reproduce the top quark mass.
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single-production cross-sections, they must still be multiplied by the appropriate couplings.

The last coefficient function σZt cannot be computed in MCFM and therefore to extract it
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 Two-body decay modes:

 Current experimental status in a nutshell

1. Almost all decays looked for 

2. Analyses optimized on pair production
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 Two-body decay modes:

 Current experimental status in a nutshell

1. Almost all decays looked for 

2. Analyses optimized on pair production
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W , Z, h branching fractions to the required final state. The efficiencies listed in the first column of

the table can be directly compared with the ones of Ref. [42], we have checked that the discrepancy

is around 25% which corresponds to approximately 1.5σ of the signal uncertainty obtained in the

Ref. [42].

We see in Table 8 that the efficiency for the single production with the b is extremely low, below

1 �. This is because the single production signal (see Figure 3) is characterized by three leptons

plus one hard (b) jet from the top decay, plus one forward jet from the virtual W emission and a b

from the gluon splitting. But the gluon splitting is enhanced in the collinear region, therefore the

b-jet emitted from the gluon is also preferentially forward and with low pT . In order for the event

to pass the selection cut, that requires at least two jets with pT > 25 GeV and |η| < 2.4, at least

one of the two preferentially forward jets must be central and hard enough, implying a significant

reduction of the cross-section. However this is not yet the dominant effect, the main reduction of the

signal is due to the cut RT > 80 GeV discussed before. Indeed RT is computed without including

the two hardest leptons and the two hardest jets, which in our case means, since we have only 3

leptons and typically only 2 jets, that the momentum of the softest lepton must be above 80 GeV.

Therefore in the end the signal is completely killed. The situation is better for the single production

with the t since one typically has more particles produced in this case and therefore the efficiencies

are comparable with the ones of pair production.

The situation is better for the single production with the t, the efficiencies are comparable with

the ones of pair production (see Table 8). However, we have seen in section 3.3 (see fig. 7) that

the rate of pair production is typically larger than the one of single production with the top, in the

relevant mass range. Since the efficiencies are comparable we do not expect a sizable contribution
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W , Z, h branching fractions to the required final state. The efficiencies listed in the first column of

the table can be directly compared with the ones of Ref. [42], we have checked that the discrepancy

is around 25% which corresponds to approximately 1.5σ of the signal uncertainty obtained in the

Ref. [42].

We see in Table 8 that the efficiency for the single production with the b is extremely low, below

1 �. This is because the single production signal (see Figure 3) is characterized by three leptons

plus one hard (b) jet from the top decay, plus one forward jet from the virtual W emission and a b

from the gluon splitting. But the gluon splitting is enhanced in the collinear region, therefore the

b-jet emitted from the gluon is also preferentially forward and with low pT . In order for the event

to pass the selection cut, that requires at least two jets with pT > 25 GeV and |η| < 2.4, at least

one of the two preferentially forward jets must be central and hard enough, implying a significant

reduction of the cross-section. However this is not yet the dominant effect, the main reduction of the

signal is due to the cut RT > 80 GeV discussed before. Indeed RT is computed without including

the two hardest leptons and the two hardest jets, which in our case means, since we have only 3

leptons and typically only 2 jets, that the momentum of the softest lepton must be above 80 GeV.

Therefore in the end the signal is completely killed. The situation is better for the single production

with the t since one typically has more particles produced in this case and therefore the efficiencies

are comparable with the ones of pair production.

The situation is better for the single production with the t, the efficiencies are comparable with

the ones of pair production (see Table 8). However, we have seen in section 3.3 (see fig. 7) that

the rate of pair production is typically larger than the one of single production with the top, in the

relevant mass range. Since the efficiencies are comparable we do not expect a sizable contribution
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W , Z, h branching fractions to the required final state. The efficiencies listed in the first column of

the table can be directly compared with the ones of Ref. [42], we have checked that the discrepancy

is around 25% which corresponds to approximately 1.5σ of the signal uncertainty obtained in the

Ref. [42].

We see in Table 8 that the efficiency for the single production with the b is extremely low, below

1 �. This is because the single production signal (see Figure 3) is characterized by three leptons

plus one hard (b) jet from the top decay, plus one forward jet from the virtual W emission and a b

from the gluon splitting. But the gluon splitting is enhanced in the collinear region, therefore the

b-jet emitted from the gluon is also preferentially forward and with low pT . In order for the event

to pass the selection cut, that requires at least two jets with pT > 25 GeV and |η| < 2.4, at least

one of the two preferentially forward jets must be central and hard enough, implying a significant

reduction of the cross-section. However this is not yet the dominant effect, the main reduction of the

signal is due to the cut RT > 80 GeV discussed before. Indeed RT is computed without including

the two hardest leptons and the two hardest jets, which in our case means, since we have only 3

leptons and typically only 2 jets, that the momentum of the softest lepton must be above 80 GeV.

Therefore in the end the signal is completely killed. The situation is better for the single production

with the t since one typically has more particles produced in this case and therefore the efficiencies

are comparable with the ones of pair production.

The situation is better for the single production with the t, the efficiencies are comparable with

the ones of pair production (see Table 8). However, we have seen in section 3.3 (see fig. 7) that

the rate of pair production is typically larger than the one of single production with the top, in the

relevant mass range. Since the efficiencies are comparable we do not expect a sizable contribution
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5 Conclusions

In this paper we described an approach to systematically construct the low-energy effective la-

grangian for the lighest colored fermion multiplet related to the UV completion of the top quark

sector: the top partner. Our construction is based on robust assumptions, as concerns symmetries,

and on plausible assumptions, as concerns the dynamics. Our basic dynamical assumption, following

Ref. [4], is that the electroweak symmetry breaking sector, or at least the fermionic sector, is broadly

decribed by a coupling g∗ and a mass scale m∗. This assumption implies a well definite power count-

ing rule. In particular the derivative expansion is controlled by inverse powers of m∗. In the technical

limit where the top partner multiplet Ψ, is parametrically much lighter than the rest of the spectrum

(MΨ � m∗), our power counting provides a weakly coupled effective lagrangian description of the

phenomenology of Ψ. The basic idea is that, in this case, the effects of the bulk of the unknown

spectrum at the scale m∗ can be systematically described by an expansion in powers of MΨ/m∗. The

lagrangian obtained in this limit defines our simplified description of the top parters. One should

however keep in mind that the most likely physical situation is one where m∗ −MΨ ∼ MΨ, where

an effective lagrangian is formally inappropriate. In practice, however, we expect it to be more

than adequate for a first semi-quantitative description of the phenomenology and certainly to assess

experimental constraints. The comparison with explicit constructions supports this expectation.

As concerns the symmetries of the strong sector, we considered the minimal composite Higgs

based on the SO(5)/SO(4) coset. Furthermore we focussed on the simplest possibility where the

right-handed top quark tR is itself a composite fermion. The leading source of breaking of SO(5) is

thus identified with top quark Yukawa coupling yt. In our construction, we have fully exploited the

selection rules obtained by treating yt as a small spurion with definite transformation properties. For

instance the structure of the mass spectrum and the couplings are greatly constrained by symmetry

and selection rules. In particular the pNGB nature of the Higgs doublet implies the couplings

originating from the strong sector are purely derivative: at high energy, or for heavy on-shell fermions,

these couplings are effectively quite sizeable and yet they do not affect the spectrum even accounting

for �H� �= 0. If the Higgs were not treated as a pNGB a large trilinear would be associated with a

large Yukawa coupling and the spectrum would necessarily be affected when �H� �= 0.
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W , Z, h branching fractions to the required final state. The efficiencies listed in the first column of

the table can be directly compared with the ones of Ref. [42], we have checked that the discrepancy

is around 25% which corresponds to approximately 1.5σ of the signal uncertainty obtained in the

Ref. [42].

We see in Table 8 that the efficiency for the single production with the b is extremely low, below

1 �. This is because the single production signal (see Figure 3) is characterized by three leptons

plus one hard (b) jet from the top decay, plus one forward jet from the virtual W emission and a b

from the gluon splitting. But the gluon splitting is enhanced in the collinear region, therefore the

b-jet emitted from the gluon is also preferentially forward and with low pT . In order for the event

to pass the selection cut, that requires at least two jets with pT > 25 GeV and |η| < 2.4, at least

one of the two preferentially forward jets must be central and hard enough, implying a significant

reduction of the cross-section. However this is not yet the dominant effect, the main reduction of the

signal is due to the cut RT > 80 GeV discussed before. Indeed RT is computed without including

the two hardest leptons and the two hardest jets, which in our case means, since we have only 3

leptons and typically only 2 jets, that the momentum of the softest lepton must be above 80 GeV.

Therefore in the end the signal is completely killed. The situation is better for the single production

with the t since one typically has more particles produced in this case and therefore the efficiencies

are comparable with the ones of pair production.

The situation is better for the single production with the t, the efficiencies are comparable with

the ones of pair production (see Table 8). However, we have seen in section 3.3 (see fig. 7) that

the rate of pair production is typically larger than the one of single production with the top, in the

relevant mass range. Since the efficiencies are comparable we do not expect a sizable contribution
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5 Conclusions

In this paper we described an approach to systematically construct the low-energy effective la-

grangian for the lighest colored fermion multiplet related to the UV completion of the top quark

sector: the top partner. Our construction is based on robust assumptions, as concerns symmetries,

and on plausible assumptions, as concerns the dynamics. Our basic dynamical assumption, following

Ref. [4], is that the electroweak symmetry breaking sector, or at least the fermionic sector, is broadly

decribed by a coupling g∗ and a mass scale m∗. This assumption implies a well definite power count-

ing rule. In particular the derivative expansion is controlled by inverse powers of m∗. In the technical

limit where the top partner multiplet Ψ, is parametrically much lighter than the rest of the spectrum

(MΨ � m∗), our power counting provides a weakly coupled effective lagrangian description of the

phenomenology of Ψ. The basic idea is that, in this case, the effects of the bulk of the unknown

spectrum at the scale m∗ can be systematically described by an expansion in powers of MΨ/m∗. The

lagrangian obtained in this limit defines our simplified description of the top parters. One should

however keep in mind that the most likely physical situation is one where m∗ −MΨ ∼ MΨ, where

an effective lagrangian is formally inappropriate. In practice, however, we expect it to be more

than adequate for a first semi-quantitative description of the phenomenology and certainly to assess

experimental constraints. The comparison with explicit constructions supports this expectation.

As concerns the symmetries of the strong sector, we considered the minimal composite Higgs

based on the SO(5)/SO(4) coset. Furthermore we focussed on the simplest possibility where the

right-handed top quark tR is itself a composite fermion. The leading source of breaking of SO(5) is

thus identified with top quark Yukawa coupling yt. In our construction, we have fully exploited the

selection rules obtained by treating yt as a small spurion with definite transformation properties. For

instance the structure of the mass spectrum and the couplings are greatly constrained by symmetry

and selection rules. In particular the pNGB nature of the Higgs doublet implies the couplings

originating from the strong sector are purely derivative: at high energy, or for heavy on-shell fermions,

these couplings are effectively quite sizeable and yet they do not affect the spectrum even accounting

for �H� �= 0. If the Higgs were not treated as a pNGB a large trilinear would be associated with a

large Yukawa coupling and the spectrum would necessarily be affected when �H� �= 0.
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Summary:  CH vs SUSY

 Higgs mass term (FT)

Finite in CH

Log divergent in SUSY

 Higgs quartic coupling

CH:     tends to be too large

SUSY:  tends to be too small
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Summary:  CH vs SUSY

 Largest effects in Higgs sector expected in:

SUSY:       coupling to bottom (cb);  γγ and gg rates; production of Heavy Higgses 

CH:           tree-level couplings;  h→Zγ  rate; double Higgs production (gg→hh)

 Bounds on “top partners” from direct searches

SUSY:       stops

CH:           heavy tops/bottoms

 Corrections to EW precision observables

SUSY:       bound on Higgs compositeness / tree-level UV

CH:          large shifts in Higgs couplings allowed / loop-level UV


