Neutralino dark matter and MSSM

Alexandre Arbey

CRAL Lyon (France) & CERN TH

In collaboration with M. Battaglia & F. Mahmoudi

21st International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2013)

Trieste, August 26-31, 2013

Different types of dark matter searches:

- direct production of WIMPs at the LHC
- DM annihilations: $DM + DM \rightarrow SM + SM + ...$
 - indirect detection: protons, gammas, anti-protons, positrons, ...
 - dark matter relic density

Possible enhancements of the annihilation cross-sections through Higgs resonances

DM direct detection: DM + matter → DM + matter
 Neutralino scattering cross-section sensitive to neutral Higgs bosons

Dark matter direct detection experiments probe the Higgs sector of the MSSM!

Present situation:

XENON, arXiv:1207.5988

• DAMA, CoGeNT, CRESST and now CDMS claim for a possible WIMP discovery

SIMPLE, COUPP, ZEPLIN, EDELWEISS and XENON give exclusion limits

 \rightarrow Unclear situation, but the sensitivity is improving!

Present situation:

XENON, arXiv:1207.5988

CDMS, arXiv:1304.4279

DAMA, CoGeNT, CRESST and now CDMS claim for a possible WIMP discovery
 SIMPLE, COUPP, ZEPLIN, EDELWEISS and XENON give exclusion limits

 \rightarrow Unclear situation, but the sensitivity is improving!

We consider the 19-parameter pMSSM with neutralino dark matter

Parameter	Range (in GeV)
$\tan \beta$	[1, 60]
M _A	[0, 2000]
M1	[-2500, 2500]
M ₂	[-2500, 2500]
M ₃	[0, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_u = A_c = A_t$	[-10000, 10000]
$A_{e} = A_{\mu} = A_{\tau}$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[0, 2500]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[0, 2500]
M _{ĩL}	[0, 2500]
Μ _{τ̃}	[0, 2500]
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[0, 2500]
M _{q̃3L}	[0, 2500]
$M_{\tilde{u}_{R}} = M_{\tilde{c}_{R}}$	[0, 2500]
M _{ĩt}	[0, 2500]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[0, 2500]
M _{ĎR}	[0, 2500]

- Calculation of masses, mixings and couplings (SoftSusy, Suspect)
- Computation of low energy observables and Z widths (SuperIso)
- Computation of dark matter observables (SuperIso Relic, Micromegas, DarkSUSY)
- Determination of SUSY and Higgs mass limits (Superlso, HiggsBounds)
- Calculation of Higgs cross-sections and decay rates (HDECAY, Higlu, FeynHiggs, SusHi)
- Calculation of SUSY decay rates (SDECAY)
- Event generation and evaluation of cross-sections (PYTHIA, Prospino, MadGraph)
- Determination of detectability with fast detector simulation (Delphes)
- Test of vacuum stability (Vevacious)

Relic density and pMSSM

Effect of constraints and fraction of accepted points:

AA, M. Battaglia, F. Mahmoudi, Eur.Phys.J. C72 (2012) 1847

pMSSM points and XENON dark matter exclusion limit

AA, M. Battaglia, A. Djouadi, F. Mahmoudi, Phys.Lett. B720 (2013) 153

Black: all valid points

Dark green: points compatible at 90% C.L. with the LHC Higgs search results Light green: points compatible at 68% C.L. with the LHC Higgs search results

Dotted line: 2012 XENON-100 limit at 95% C.L.

28% of the valid points are excluded by XENON-100

Alexandre Arbey

SUSY 2013 - August 27th, 2013

pMSSM points and XENON dark matter exclusion limit

AA, M. Battaglia, F. Mahmoudi, Eur.Phys.J. C72 (2012) 1906

Results and sensitivity similar to those from $B_s \rightarrow \mu^+ \mu^-$ and $A/H \rightarrow \tau^+ \tau^-$, with different couplings/sectors probed.

Can the pMSSM provide solutions compatible with CoGeNT/CRESST/DAMA/CDMS data?

Low mass neutralino of ~ 10 GeV?

Not possible in constrained MSSM...

General scans in pMSSM \longrightarrow Low-mass neutralino scans

Parameter	Range
aneta	[1, 60]
M _A	[50, 2000]
<i>M</i> ₁	[-2500, 2500]
M ₂	[-2500, 2500]
M ₃	[50, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_u = A_c = A_t$	[-10000, 10000]
$A_{e} = A_{\mu} = A_{ au}$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[50, 2500]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[50, 2500]
Μ _{τ̃}	[50, 2500]
M _{~~R}	[50, 2500]
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[50, 2500]
M _{q̃3L}	[50, 2500]
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[50, 2500]
M _ĩ	[50, 2500]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[50, 2500]
M _{ĎR}	[50, 2500]

Parameter	Range
$\tan\beta$	[1, 60]
M _A	[50, 2000]
M1	[-300, 300]
M ₂	[-650, 650]
M ₃	[0, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_u = A_c = A_t$	[-10000, 10000]
$A_e = A_\mu = A_\tau$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[0, 2500]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[0, 2500]
Μ _{τ̃}	[0, 2500]
M _ĩ	[0, 2500]
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[0, 2500]
M _{q̃3L}	[0, 2500]
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[0, 2500]
M _{ĩt}	[0, 2500]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[0, 2500]
M _{Ďp}	[0, 2500]

Constraints

Dark matter

- Loose relic density: $10^{-4} < \Omega_\chi h^2 < 0.163$
- Tight relic density: $0.076 < \Omega_{\chi} h^2 < 0.163$
- Indirect detection: $(\sigma v)_{tot} < 10^{-26} \text{ cm}^3/\text{s with } M_{\tilde{\chi}_1^0} < 50 \text{ GeV}$ and $(\sigma v)_{bbg} < 2 \times 10^{-27} \text{ cm}^3/\text{s with } M_{\tilde{\chi}_1^0} < 50 \text{ GeV}$
- Direct detection: $10^{-7} < \sigma_{p-\chi}^{SI} < 10^{-2}$ pb with $M_{\tilde{\chi}_{1}^{0}} < 50$ GeV (close to the CDMS contour and XENON limit)

Collider searches

- LEP and Tevatron mass limits
- LEP searches for $\tilde{\chi}^+ \tilde{\chi}^- / \tilde{\chi}_2^0 \tilde{\chi}_1^0$
- LHC SUSY searches (sbottom, stop, neutralino/chargino)
- LHC monoX searches ($pp
 ightarrow \chi \chi +$ jets, γ and Z/W)
- Higgs searches (mass and signal strengths)

Constraints

Z decay widths

•
$$\Gamma(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) < 3 \text{ MeV}$$

- $\Gamma(Z o ilde{\chi}_1^0 ilde{\chi}_1^0) + \Gamma(Z o ilde{b}_1 ilde{b}_1) < 5$ MeV
- 0.21497 < R_b < 0.21761

Flavour physics and Precision tests

•
$$2.63 imes 10^{-4} < {\sf BR}(B o X_s \gamma) < 4.23 imes 10^{-4}$$

•
$$1.28 imes 10^{-9} < {\sf BR}(B_s o \mu^+ \mu^-)_{
m untag} < 4.52 imes 10^{-9}$$

•
$$0.40 imes 10^{-4} < {\sf BR}(B_u o au
u) < 1.88 imes 10^{-4}$$

•
$$4.7 \times 10^{-2} < \mathsf{BR}(D_s \to \tau \nu) < 6.1 \times 10^{-2}$$

•
$$2.9 \times 10^{-3} < {\sf BR}(B \to D^0 au
u) < 14.2 \times 10^{-3}$$

- $0.985 < R_{\mu 23} < 1.013$
- Muon anomalous magnetic moment: $-2.4 imes10^{-9} < \delta a_\mu < 4.5 imes10^{-9}$

Other constraints

- Oblique parameters S, T, U
- Vacuum stability: stable or long-lived one-loop scalar potential minimum

Signal strength is defined as:

$$\mu_{XX} = \frac{\sigma(pp \to h) \operatorname{BR}(h \to XX)}{\sigma(pp \to h)_{\operatorname{SM}} \operatorname{BR}(h \to XX)_{\operatorname{SM}}}$$

LHC results:

Parameter	Combined value	Experiment
M_H (GeV)	125.7 ± 0.4	ATLAS+CMS
$\mu_{\gamma\gamma}$	1.20 ± 0.30	ATLAS+CMS
μ_{ZZ}	1.10 ± 0.22	ATLAS+CMS
μ_{WW}	0.77 ± 0.21	ATLAS+CMS
$\mu_{b\bar{b}}$	1.12 ± 0.45	ATLAS+CMS+(CDF+D0)
$\mu_{ au au}$	1.01 ± 0.36	ATLAS+CMS

 χ^2 analysis of the Higgs constraints (mass + signal strengths)

Solutions

Three main classes of points can survive the constraints:

• a slepton with a mass close to LEP limit $(M_{\tilde{\chi}^0} \sim 20 - 40 \text{ GeV})$

Relatively standard scenario, but neutralino mass far from interesting region

• compressed spectrum in the neutralino/chargino sector $(M_{\tilde{\chi}^0} \sim 10 - 40 \text{ GeV}, \sigma \sim 10^{-6} \text{ pb})$

Scenario of interest... Unfortunately $\sigma(e^+e^- \rightarrow \chi_1^0 \chi_2^0)$ in general too large with respect to LEP limits!

• one squark quasi-degenerate with the neutralino $(M_{\tilde{\gamma}^0} \lesssim 10-20 \text{ GeV}, \ \sigma \sim 10^{-5} \text{ pb})$

These spectra can fulfill all the constraints and have simultaneously a neutralino mass below 15 GeV and a large scattering cross-section, if the squark is a **sbottom**!

Solutions

Three main classes of points can survive the constraints:

```
• a slepton with a mass close to LEP limit (M_{\tilde{\chi}^0} \sim 20 - 40 \text{ GeV})
```

Relatively standard scenario, but neutralino mass far from interesting region

• compressed spectrum in the neutralino/chargino sector $(M_{\tilde{v}^0} \sim 10 - 40 \text{ GeV}, \sigma \sim 10^{-6} \text{ pb})$

Scenario of interest... Unfortunately $\sigma(e^+e^- \rightarrow \chi_1^0 \chi_2^0)$ in general too large with respect to LEP limits!

• one squark quasi-degenerate with the neutralino $(M_{\tilde{\chi}^0} \lesssim 10-20 \text{ GeV}, \ \sigma \sim 10^{-5} \text{ pb})$

These spectra can fulfill all the constraints and have simultaneously a neutralino mass below 15 GeV and a large scattering cross-section, if the squark is a **sbottom**!

Solutions

Three main classes of points can survive the constraints:

• a slepton with a mass close to LEP limit $(M_{\tilde{\chi}^0} \sim 20 - 40 \text{ GeV})$

Relatively standard scenario, but neutralino mass far from interesting region

• compressed spectrum in the neutralino/chargino sector $(M_{\tilde{\chi}^0} \sim 10 - 40 \text{ GeV}, \ \sigma \sim 10^{-6} \text{ pb})$

Scenario of interest... Unfortunately $\sigma(e^+e^- \rightarrow \chi_1^0 \chi_2^0)$ in general too large with respect to LEP limits!

• one squark quasi-degenerate with the neutralino $(M_{\tilde{\chi}^0} \lesssim 10 - 20 \text{ GeV}, \sigma \sim 10^{-5} \text{ pb})$

These spectra can fulfill all the constraints and have simultaneously a neutralino mass below 15 GeV and a large scattering cross-section, if the squark is a **sbottom**!

Two issues: $\Gamma(Z \to \tilde{q}\tilde{\tilde{q}})$ is very large and $BR(h^0 \to \tilde{q}\tilde{\tilde{q}})$ is the dominant Higgs BR... for the first and second generations!

Due to the sbottom mixing, $\Gamma(Z o ilde{b}_1 ilde{b}_1)$ can be suppressed and pass the LEP constraint

Also, to pass the LEP $\Gamma(Z \rightarrow \text{invisible})$ constraint, $\Gamma(Z \rightarrow \tilde{\chi}_1 \tilde{\chi}_1)$ needs to be suppressed Main features:

• right-handed $ilde{b}_1$ to respect $\Gamma(Z o ilde{b}_1 ar{ ilde{b}}_1)$ constraints

• bino-like $\tilde{\chi}_1$ to respect $\Gamma(Z \to \tilde{\chi}_1 \tilde{\chi}_1)$ and other LEP constraints

• small mass splitting $(M_{\tilde{b}_1} - M_{\tilde{\chi}_1})$ to get an adequate relic density

Light sbottom scenario

Two issues: $\Gamma(Z \to \tilde{q}\bar{\tilde{q}})$ is very large and $BR(h^0 \to \tilde{q}\bar{\tilde{q}})$ is the dominant Higgs BR... for the first and second generations!

Due to the sbottom mixing, $\Gamma(Z o ilde{b}_1 ar{ ilde{b}}_1)$ can be suppressed and pass the LEP constraint

Also, to pass the LEP $\Gamma(Z \rightarrow \text{invisible})$ constraint, $\Gamma(Z \rightarrow \tilde{\chi}_1 \tilde{\chi}_1)$ needs to be suppressed Main features:

• right-handed $ilde{b}_1$ to respect $\Gamma(Z o ilde{b}_1 ilde{b}_1)$ constraints

• bino-like $\tilde{\chi}_1$ to respect $\Gamma(Z \to \tilde{\chi}_1 \tilde{\chi}_1)$ and other LEP constraints

• small mass splitting $(M_{\tilde{b}_1} - M_{\tilde{\chi}_1})$ to get an adequate relic density

Light sbottom scenario

Two issues: $\Gamma(Z \to \tilde{q}\bar{\tilde{q}})$ is very large and $BR(h^0 \to \tilde{q}\bar{\tilde{q}})$ is the dominant Higgs BR... for the first and second generations!

Due to the sbottom mixing, $\Gamma(Z o ilde{b}_1 ilde{b}_1)$ can be suppressed and pass the LEP constraint

Also, to pass the LEP $\Gamma(Z \rightarrow \text{invisible})$ constraint, $\Gamma(Z \rightarrow \tilde{\chi}_1 \tilde{\chi}_1)$ needs to be suppressed Main features:

• right-handed $ilde{b}_1$ to respect $\Gamma(Z o ilde{b}_1 ar{ ilde{b}}_1)$ constraints

• bino-like $\tilde{\chi}_1$ to respect $\Gamma(Z \to \tilde{\chi}_1 \tilde{\chi}_1)$ and other LEP constraints

• small mass splitting $(M_{\tilde{b}_1} - M_{\tilde{\chi}_1})$ to get an adequate relic density

- $\bullet\,$ Light bino-like neutralino of mass ~ 10 GeV
- $\bullet\,$ Light right-handed sbottom of mass $\sim 15\,\, {\rm GeV}$

AA, M. Battaglia, F. Mahmoudi, arXiv:1308.2153

The masses of the other SUSY particles are irrelevant for this scenario

AA, M. Battaglia, F. Mahmoudi, arXiv:1308.2153

Invisible and sbottom branching fractions restrained to less than 50% at 95% C.L.

Direct detection vs. indirect detection

Largest (direct detection) scattering cross sections correspond to

- largest (indirect detection) annihilation cross sections
- smallest relic density

Dark matter direct detection

Direct detection:

AA, M. Battaglia, F. Mahmoudi, arXiv:1308.2153

Loose relic density constraint $10^{-4} < \Omega_\chi h^2 < 0.163$

Dark matter direct detection

Direct detection:

AA, M. Battaglia, F. Mahmoudi, arXiv:1308.2153

Tight relic density constraint $0.076 < \Omega_\chi h^2 < 0.163$

Dark matter direct detection

Direct detection:

AA, M. Battaglia, F. Mahmoudi, arXiv:1308.2153

Tight relic density constraint $0.076 < \Omega_{\chi} h^2 < 0.163$

Light sbottom scenario satisfies all the present constraints!

- The pMSSM provides viable candidates for dark matter
- Dark matter searches are powerful probes for Supersymmetry
- Direct detection constraints sensitive to the MSSM Higgs sector
- Interplay between dark matter, Higgs and flavour sectors can help closing the windows
- pMSSM very light neutralinos can be compatible with all constraints \rightarrow light neutralino and sbottom scenario

Backup

Constraints

Туре	Constraint
Higgs mass constraint	$M_h \in [121, 129]$ GeV
Higgs signal strengths	ATLAS+CMS
Z decay widths	$\Gamma(Z ightarrow { ilde \chi}_1^0 { ilde \chi}_1^0) < 3 {\sf MeV}$
	$\Gamma(Z o ilde{\chi}_1^0 ilde{\chi}_1^0) + \Gamma(Z o ilde{b}_1 ilde{b}_1) < 5 {\sf MeV}$
	$0.21497 < R_b < 0.21761$
LEP and Tevatron SUSY searches	PDG limits
	+ specific analysis of the $\tilde{\chi}^+ \tilde{\chi}^- / \tilde{\chi}_2^0 \tilde{\chi}_1^0$ channels
Oblique parameters S , T , U	LEP limits
Vacuum stability	stable or long-lived scalar potential minimum
	$2.63 imes10^{-4} < {\sf BR}(B o X_s\gamma) < 4.23 imes10^{-4}$
	$1.28 imes 10^{-9} < {\sf BR}(B_s o \mu^+ \mu^-)_{ m untag} < 4.52 imes 10^{-9}$
Elavour physics	$0.40 imes 10^{-4} < {\sf BR}(B_u o au u) < 1.88 imes 10^{-4}$
Flavour physics	$4.7 imes 10^{-2} < {\sf BR}(D_s o au u) < 6.1 imes 10^{-2}$
	$2.9 imes 10^{-3} < {\sf BR}(B o D^0 au u) < 14.2 imes 10^{-3}$
	$0.985 < R_{\mu 23} < 1.013$
Muon anomalous magnetic moment	$-2.4 imes 10^{-9} < \delta a_{\mu} < 4.5 imes 10^{-9}$
Loose relic density	$10^{-4} < \Omega_\chi h^2 < 0.163$
Tight relic density	$0.076 < \Omega_\chi h^2 < 0.163$
Dark matter annihilation cross-section	$\sigma v_{ m tot} < 10^{-26} m \ cm^3/s$ with $M_{ ilde{\chi}_1^0} < 50 m \ m GeV$
	$\sigma v_{bbg} < 2 imes 10^{-27} ext{ cm}^3/ ext{s with } \hat{M}_{ ilde{\chi}_1^0} < 50 ext{ GeV}$
Dark matter direct detection	$10^{-7} < \sigma_{p-\chi}^{ m SI} < 10^{-2}$ pb with $M_{ ilde{\chi}}$ < 50 GeV
	(close to the CDMS contour and XENON limit)
LHC searches	Higgs searches
	SUSY searches
	$pp ightarrow \chi\chi+$ jets, γ and Z/W searches

Points consistent with all other constraints also consistent with S, T, U

WH events simulated with PYTHIA 8, fast simulation with DELPHES 3

Comparison of $h o b ar{b}$ (open histograms) and $h o ar{b}_1 ar{b}_1$ (shaded histograms)

- Large production cross $pp
 ightarrow { ilde b_1} { ilde b_1}$
- but small jet p_T and low MET ($\epsilon \sim 2 \times 10^{-5}$) (PYTHIA 8 + DELPHES 3)
 - \rightarrow escapes detection in SUSY searches

Based on cuts of ATLAS-CONF-2013-053 compared to kinematics of $pp o ilde{b}_1 ilde{b}_1$ events

MonoX searches

Monojet, monophoton and monoZ/W samples generated with MadGraph 5, PYTHIA 8 and simulated with DELPHES 3

 \rightarrow very low efficiency for these searches too!

Based on ATLAS cuts of arXiv:1209.4625 and ATLAS-CONF-2013-073

FERMI-LAT (gamma) on annihilation cross-sections

FERMI-LAT Collaboration, Phys. Rev.Lett. 107 (2011) 241302

Constraints on gluon-strahlung annihilation cross-sections from PAMELA (antiproton) and FERMI-LAT (gamma)

M. Asano, T. Bringmann, C. Weniger, Phys.Lett. B709 (2012) 128