Dark Radiation from Particle Decay

Jörn Kersten

University of Hamburg

Based on Jasper Hasenkamp, JK, JCAP 08 (2013), 024 [arXiv:1212.4160]

Constraints for Model Building

2) Dark Radiation from Late Decays

Constraints for Model Building

Dark Radiation

- Radiation = relativistic particles
- Dark radiation: relativistic particles $\neq \gamma, \nu^{SM}$
- Energy density (after e^+e^- annihilation at $T\sim 0.5$ MeV)

$$\rho_{\rm rad} \equiv \left[1 + \frac{N_{\rm eff}}{8} \left(\frac{T_{\nu}}{T}\right)^4\right] \rho_{\gamma}$$

•
$$T \equiv T_{\gamma}$$

- $\rho_{\gamma} = \frac{\pi^2}{15} T^4$
- N_{eff}: effective number of neutrino species
- Standard Model: N_{eff} = 3.046
- Existence of dark radiation $\Leftrightarrow \Delta N_{eff} \equiv N_{eff} 3.046 > 0$

$$ho_{\rm DR} = 0.13 \, \Delta N_{\rm eff} \,
ho_{\rm rad}^{\rm SM}$$

Observable Effects

Big Bang Nucleosynthesis (BBN)

- *ρ*_{rad} ↑ → faster expansion
 → more *n* available for D fusion
 → more ⁴He
- $N_{\rm eff} = 3.8^{+0.8}_{-0.7}$ at 95% CL

Izotov, Thuan, arXiv:1001.4440

• $\Delta N_{\rm eff} \leq$ 1 at 95% CL

Mangano, Serpico, arXiv:1103.1261

Observable Effects

Big Bang Nucleosynthesis (BBN)

- *ρ*_{rad} ↑ → faster expansion
 → more *n* available for D fusion
 → more ⁴He
- N_{eff} = 3.8^{+0.8}_{-0.7} at 95% CL Izotov, Thuan, arXiv:1001.4440
- $\Delta N_{\rm eff} \leq$ 1 at 95% CL

Mangano, Serpico, arXiv:1103.1261

Cosmic Microwave Background (CMB)

Increased Silk damping
 ~ reduced power on small scales

Hou et al., arXiv:1104.2333

$$\begin{split} \Delta N_{\rm eff} &= 1.51 \pm 0.75 \text{ at } 68\% \text{ CL ACT, arXiv:1009.0866} \\ \Delta N_{\rm eff} &= 0.81 \pm 0.42 \text{ at } 68\% \text{ CL SPT, arXiv:1105.3182} \\ \Delta N_{\rm eff} &= 0.31^{+0.68}_{-0.64} \text{ at } 95\% \text{ CL Planck, arXiv:1303.5076} \\ \Delta N_{\rm eff} &= 0.47^{+0.48}_{-0.45} \text{ at } 95\% \text{ CL using } H_0 \text{ from HST Planck, arXiv:1303.5076} \\ \Delta N_{\rm eff} &< 0.71 \text{ at } 95\% \text{ CL Hojjati et al., arXiv:1304.3724} \\ \Delta N_{\rm eff} &= 0.61 \pm 0.30 \text{ at } 68\% \text{ CL Hamann, Hasenkamp, arXiv:1308.3255} \end{split}$$

2 Dark Radiation from Late Decays

Constraints for Model Building

New Physics in the Later Early Universe

- Late decays: after BBN, before recombination ~→ affect only CMB
- Mother \rightarrow 2 light, weakly interacting daughters
- Masses *m*, *m*₁ < *m*₂

$$\delta \equiv \frac{m - m_2}{m_2}$$

- Daughters form dark radiation while relativistic
- Heavier daughter could form dark matter

New Physics in the Later Early Universe

- Late decays: after BBN, before recombination ~→ affect only CMB
- Mother \rightarrow 2 light, weakly interacting daughters
- Masses *m*, *m*₁ < *m*₂

$$\delta \equiv \frac{m - m_2}{m_2}$$

- Daughters form dark radiation while relativistic
- Heavier daughter could form dark matter
- Examples:
 - Gravitino ightarrow axion + axino ($\Gamma \sim m_{3/2}^3/M_{
 m Pl}^2$)
 - Sneutrino \rightarrow gravitino + neutrino
 - Modulino \rightarrow sneutrino + neutrino, axion + axino, ...

Connecting $\Delta N_{\rm eff}$ and Particle Physics

 ΔN_{eff} measured \rightsquigarrow know

$$ho_{\mathsf{DR}} = \mathsf{0.13}\,\Delta \textit{N}_{\mathsf{eff}}\,
ho_{\mathsf{rad}}^{\mathsf{SM}}$$

Goal: Constrain model parameters

- Ω: Energy density of the mother
- Lifetime τ (equivalently, temperature at decay T_d)
- δ : Mass hierarchy between mother and heavier daughter

Connecting $\Delta N_{\rm eff}$ and Particle Physics

 ΔN_{eff} measured \rightsquigarrow know

$$ho_{\mathsf{DR}} = \mathsf{0.13}\,\Delta \textit{N}_{\mathsf{eff}}\,
ho_{\mathsf{rad}}^{\mathsf{SM}}$$

Goal: Constrain model parameters

- Ω: Energy density of the mother
- Lifetime τ (equivalently, temperature at decay T_d)
- δ: Mass hierarchy between mother and heavier daughter

Two-body decay kinematics for $m_1 \ll m_2$:

$$\rho_{\mathsf{DR}}(\mathsf{T}_{\mathsf{d}}) = \frac{\mathsf{N}_{\mathsf{DR}}}{2} \, \frac{(\delta+1)^2 - 1}{(\delta+1)^2} \, \rho(\mathsf{T}_{\mathsf{d}}) \, \rightsquigarrow \, \Omega = \Omega(\Delta \mathsf{N}_{\mathsf{eff}}, \tau, \delta)$$

 $N_{\rm DR} = 1,2$: number of relativistic dark particles during CMB times \rightsquigarrow Free parameters in the following: τ , δ Today's density of heavier daughter $\Omega_2 \leq \Omega_{DM} \rightsquigarrow$ lower limits

• Decay before matter-radiation equality at *t*_{eq}:

$$\delta \gtrsim 0.3 \Delta N_{\text{eff}} \left(rac{t_{\text{eq}}}{ au}
ight)^{rac{1}{2}}$$

• Decay after matter-radiation equality (now also $\Omega < \Omega_{\text{DM}}$):

$$\delta \gtrsim 0.15 \Delta N_{
m eff} \left(rac{t_{
m eq}}{ au}
ight)^{rac{2}{3}}$$

Constraints from Dark Matter Density

 $(t_2^{\rm nr})_{\rm min}$ 107 lea tcmb 10^{5} . dpl 10^{3} $\delta_{
m min}$ 10^{1} 10^{-1} t end tbbn 10-3 10³ 10⁹ 1011 1013 1015 1017 10^{-1} 10^{1} 10⁵ 10^{7} $\tau[s]$

 $\delta_{\min}(\tau)$ from different requirements

Heavier daughter emitted with finite velocity ~ washes out structure on scales smaller than free-streaming scale

$$\lambda_2^{\rm fs} = \int_{\tau}^{t_0} \frac{v_2}{a} dt$$

Limit from Lyman- α forest:

 $\lambda_2^{
m fs} \lesssim 1~
m Mpc$

Abazajian, arXiv:astro-ph/0512631; Viel et al., arXiv:0709.0131; Boyarsky et al., arXiv:0812.0010 Heavier daughter emitted with finite velocity ~ washes out structure on scales smaller than free-streaming scale

$$\lambda_2^{\rm fs} = \int_{\tau}^{t_0} \frac{v_2}{a} dt$$

Limit from Lyman- α forest:

 $\lambda_2^{
m fs} \lesssim 1~
m Mpc$

Abazajian, arXiv:astro-ph/0512631; Viel et al., arXiv:0709.0131; Boyarsky et al., arXiv:0812.0010

 \rightsquigarrow Heavier daughter too hot to form dark matter (or $\Delta N_{\rm eff} \ll 1$)

Maximum amount of hot dark matter $\Omega_2 \lesssim 0.04 \Omega_{DM}$ (corresponding to $\sum m_{\nu} < 0.44 \text{ eV}$ Hamann et al., arXiv:1003.3999) \rightsquigarrow lower limits on δ rise by factor 25

• Decay before matter-radiation equality at *t*_{eq}:

$$\delta \gtrsim 7 \, \Delta N_{\mathrm{eff}} \left(rac{t_{\mathrm{eq}}}{\tau}
ight)^{rac{1}{2}}$$

• Decay after matter-radiation equality:

$$\delta \gtrsim 3.5 \, \Delta N_{
m eff} \left(rac{t_{
m eq}}{ au}
ight)^{rac{2}{3}}$$

Hot Dark Matter Constraint

 $\delta_{\min}(\tau)$ from different requirements

Imagine conflict between future measurements:

- Cosmology $\rightsquigarrow (\sum m_{\nu})_{\mathsf{cosmo}} > \mathsf{0}$ observed
- Laboratory \rightsquigarrow upper limit $< (\sum m_{\nu})_{cosmo}$

 \rightsquigarrow Indication for hot dark matter $\neq \nu$ from decay

Heavier daughter may become non-relativistic during CMB times ~ observable consequences for CMB likely

- Mother $\rightarrow \phi + \phi$, branching ratio B_1
- 2 Mother $\rightarrow \psi + \psi$, branching ratio B_2
 - Daughter masses $m_1 < m_2$

•
$$x_2 \equiv \frac{m_2}{m}$$

• Lighter daughter forms dark radiation

- Mother $\rightarrow \phi + \phi$, branching ratio B_1
- 2 Mother $\rightarrow \psi + \psi$, branching ratio B_2
 - Daughter masses $m_1 < m_2$

•
$$x_2 \equiv \frac{m_2}{m}$$

- Lighter daughter forms dark radiation
- Examples:
 - $\bullet~$ Saxion \rightarrow axion + axion, axino + axino
 - $\bullet~\mbox{Modulus} \rightarrow \mbox{gravitino} + \mbox{gravitino}, \mbox{axion} + \mbox{axion}$

 B_2 allows to adjust $\Omega_2 \rightsquigarrow$ no dark matter density constraint on $x_2 \rightsquigarrow \lambda_2^{fs}$ arbitrary

$$\begin{split} x_2 &\simeq 0.1 \left(\frac{0.4 \text{ Mpc}}{\lambda_2^{\text{fs}}}\right)^{1.2} \left(\frac{\tau}{10^5 \text{ s}}\right)^{0.5} \\ B_2 &\simeq 5.6 \cdot 10^{-3} \left(\frac{\lambda_2^{\text{fs}}}{0.4 \text{ Mpc}}\right) \Delta N_{\text{eff}}^{-1} \left(\frac{\Omega_{\text{DM}} h^2}{0.1286}\right) \end{split}$$

 \rightsquigarrow Heavier daughter may form dark matter \rightsquigarrow Can be cold or warm

Adjustable Free Streaming

- Simulations of structure formation
 ~> more galactic satellites than observed
- Problem may well be solved by astrophysics
- ... or by warm dark matter with 0.2 Mpc $\lesssim \lambda^{\rm fs} \lesssim$ 1 Mpc

Colín et al., arXiv:astro-ph/0004115; Lin et al., arXiv:astro-ph/0009003

→ possible in two-decay-mode scenario

2) Dark Radiation from Late Decays

Constraints for Model Building

$Br(Mother \rightarrow SM + SM) \neq 0$

- → Change of primordial abundances from BBN Jedamzik, arXiv:hep-ph/0604251
- → Spectral distortions of the CMB
 Hu, Silk, PRL 70 (1993); Chluba, Sunyaev, arXiv:1109.6552
- → Change of ionization history Slatyer, arXiv:1211.0283
- → strict upper limits on branching ratio

Constraints on Decays into Standard Model Particles

Constraints on Decays into Standard Model Particles

$Br(\text{Mother} \rightarrow \frac{SM}{SM} + \frac{SM}{SM}) \neq 0$

→ Change of primordial abundances from BBN Jedamzik, arXiv:hep-ph/0604251

→ Spectral distortions of the CMB Hu, Silk, PRL 70 (1993); Chluba, Sunyaev, arXiv:1109.6552

→ Change of ionization history Slatyer, arXiv:1211.0283

→ strict upper limits on branching ratio

... even if only suppressed decay possible (loop, 3- or 4-body decay)

Constraints on Decays into Standard Model Particles

- Dark universe may contain dark radiation
- Production in late decays ~> different impact on BBN and CMB
- Energy density of mother determined by $\Delta N_{\text{eff}}, \tau, \delta$
- Single dark decay mode: heavier daughter too hot for dark matter
- Two dark decay modes: heavier daughter may form dark matter and solve missing satellites problem
- Severe constraints on branching ratio into Standard Model particles ~> input for construction of concrete models

Effects on the Cosmic Microwave Background (CMB)

- *ρ*_{rad} ↑ → later matter-radiation equality
- 1st/3rd peak ratio → no change
 → ρ_m ↑ → t_{eq} unchanged
- $\rho_{\rm rad}$ \uparrow \rightsquigarrow sound horizon $r_s \propto 1/H \downarrow$
- Peak positions → no change of angular size θ_s = ^{r_s}/_{D_A} → D_A ∝ 1/H ↓ (by ρ_Λ ↑)
- Remaining effect: increased Silk damping
 → reduced power on small scales

Hou et al., arXiv:1104.2333

