Adapted from 1974 drawings by K. Dobrowolski illustrating a popular article on particle physics by G. Białkowski

Gravitino dark matter with constraints from Higgs mass and sneutrino decays Krzyszłof Turzyński (Faculty of Physics, University of Warsaw)

with: L. Roszkowski, S. Trojanowski & K. Jedamzik, 1212.5587, JHEP 1303 (2013) 013; earlier with: L. Covi, Z. Lalak, M. Olechowski, S. Pokorski, J. Wells 2008-11, JHEP 0810 (2008) 016, 0912 (2009) 026, 1101 (2011) 033

WIMP

O(100) GeV weakly interacting massive particle

- (the lightest) <u>neutralino</u>:
- neutral fermionic partner of a gauge/higgs boson in MSSM
- very constraining in (already) constrained models

EWIMP

an extremely weakly interacting massive particle

 gravitino: spin 3/2 neutral fermion prese in supergravity embedding of supersymmetric theories

(incl. WIMP DM)

Ineutral (no bound-state enhancement of ⁶Li production; mostly neutral decay products)

Ineutral (no bound-state enhancement of ⁶Li production; mostly neutral decay products)

Colorless (little colored particles among decay products suppresses hadrodissociation)

Ineutral (no bound-state enhancement of ⁶Li production; mostly neutral decay products)

Colorless (little colored particles among decay products suppresses hadrodissociation)

■low freeze-out abundance (few energetic particles from decays)

Ineutral (no bound-state enhancement of ⁶Li production; mostly neutral decay products)

Colorless (little colored particles among decay products suppresses hadrodissociation)

■low freeze-out abundance (few energetic particles from decays)

realistic (found in known models
of supersymmetry breaking)

Ineutral (no bound-state enhancement of ⁶Li production; mostly neutral decay products)

Colorless (little colored particles among decay products suppresses hadrodissociation)

■low freeze-out abundance (few energetic particles from decays)

listic (found in known models
of supersymmetry breaking)

sneutrino!

S. Trojanowski,

Ideal candidate for NLSP companion of EWIMP dark matter?

MSc Thesis, 2011 G \tilde{l}^{----} l'qFull computation of this

and 3 similar diagrams.

Full computation of sneutrino relic density

Calculations within Non-Universal Higgs Model and General Gauge Mediation Ineutral (no bound-state enhancement of ⁶Li production; mostly neutral decay products)

Colorless (little colored particles among decay products suppresses hadrodissociation)

■low freeze-out abundance (few

energetic particles from decays) Covi, Olechowski, Pokorski, KT, Wells, 2011 **Trealistic** (found in known models of supersymmetry breaking) Jeliński, Pawełczyk, KT, 2012 (F theory) Sneutrino!

SUSY masses: NUHM

LOSP: Lightest Supersymmetric Ordinary Particle, i.e. not gravitino DM

 gluino heavier than ~2TeV, squarks also heavy, LHC limits
 low-energy constraints

Parameter scaling:

 $\begin{aligned} \Omega_{\tilde{\nu}} h^2 &\propto m_{\tilde{\nu}}^2 \\ \tau_{\tilde{\nu}} &\propto m_{3/2}^2 / m_{\tilde{\nu}}^5 \\ \Omega_{\rm DM} h^2 &\propto T_R m_{\tilde{\nu}}^2 / m_{3/2} \end{aligned}$

Parameter scaling: $\Omega_{\tilde{\nu}}h^2 \propto m_{\tilde{\nu}}^2$ $\tau_{\tilde{\nu}} \propto m_{3/2}^2/m_{\tilde{\nu}}^5$ $\Omega_{\rm DM}h^2 \propto T_R m_{\tilde{\nu}}^2/m_{3/2}^2$

BBN safe, but too low reheating temperature

Parameter scaling: $\Omega_{\tilde{\nu}}h^2 \propto m_{\tilde{\nu}}^2$ $\tau_{\tilde{\nu}} \propto m_{3/2}^2/m_{\tilde{\nu}}^5$ $\Omega_{\rm DM}h^2 \propto T_R m_{\tilde{\nu}}^2/m_{3/2}^2$

BBN safe, but too low reheating temperature

gravitino/sneutrino approx. mass degeneracy, sneutrino lifetime phase-space suppressed, max. reheating temp.

Parameter scaling: $\Omega_{\tilde{\nu}}h^2 \propto m_{\tilde{\nu}}^2$ $\tau_{\tilde{\nu}} \propto m_{3/2}^2/m_{\tilde{\nu}}^5$ $\Omega_{\rm DM}h^2 \propto T_R m_{\tilde{\nu}}^2/m_{3/2}^2$

BBN safe, but too low reheating temperature

gravitino/sneutrino approx. mass degeneracy, sneutrino lifetime phase-space suppressed, max. reheating temp.

but late-time injection of **warm dark matter** (Jedamzik, Lemoine, Moultaka '05)

MLSP: BBN vs LSS bounds

but late-time injection of **warm dark matter**

(Jedamzik, Lemoine, Moultaka '05)

$\tilde{\nu}$ NLSP: BBN and 4-body phase space

 \tilde{l} \tilde{l} \tilde{l} \tilde{q} \tilde{q} (A) $q\bar{q}$ pair carries 1/3 of available energy

(B) Full computation of this and 3 similar diagrams.

$\widetilde{ u}$ NLSP: BBN, LSS and Higgs mass bounds

$\widetilde{ u}$ NLSP: BBN, LSS and Higgs mass bounds

$\widetilde{ u}$ NLSP: BBN, LSS and Higgs mass bounds

Conclusions

Gravitino DM with sneutrino LOSP least constrained the gravitino problem:

nucleosythesis:

- short LOSP lifetimes
- small gravitino masses
- Iow reheating temperatures

leptogenesis:

- high reheating temperatures
- large gravitino masses
- ♦ long LOSP lifetimes

but with the 126 GeV Higgs boson discovery, such a scenario looks disfavored.