Top-quark charge asymmetry goes forward: Two new observables for hadron colliders

Stefan Berge Johannes Gutenberg-University Mainz

SUSY 2013 26. - 31. August 2013, Trieste, Italy

- QCD predicts a charge asymmetry for top quark pair production in hadron-hadron scattering
- The corresponding forward-backward asymmetry has been measured at CDF and D0
- Discrepancy to SM prediction remains at $2 3\sigma$ level
- Sign of new Physics?
- Need to measure the charge asymmetry at the LHC

Parton Level	POWHEG	CDF 9.4 fb ⁻¹	exceeding SM prediction
Inclusive	6.6%	16.4 ± 4.5 %	2.2 σ
M _{tt} slope	(3.4 ± 1.2)10 -4 GeV -1	(15.2 ± 5)10 ⁻⁴ GeV ⁻¹	2.3 σ
∆y slope	(10. ± 2.3)10 ⁻² GeV ⁻¹	(28.6 ± 8.5)10 ⁻² GeV ⁻¹	2.Ισ

(CDF, arXiv 1211.1003)

 Problem: predicted SM charge asymmetry in inclusive top pair production at LHC is very small

Motivation

LO: no charge asymmetry

NLO: Charge asymmetry is generated due to virtual corrections (box diagrams) and real gluon emission diagrams (ISR-FSR interference)

Separating contributions with gluon Ecut:

- virtual corrections generate positive asymmetry
- real emission diagrams contribute with negative asymmetry
- □ need to understand the $t\bar{t} + jet$ contribution especially in different phase space regions

tt+jet in QCD

S.B., S. Westhoff, JHEP 07(2013)179 S.B., S. Westhoff, arXiv 1307.6225

Charge asymmetry of $q\bar{q} \rightarrow t\bar{t} + jet$ in QCD

 Differential charge asymmetry at a certain phase space point:

$$d\hat{\sigma}_A = d\hat{\sigma}_{t\bar{t}} - d\hat{\sigma}_{\bar{t}t}$$

• Symmetric differential cross section : $d\hat{\sigma}_S = d\hat{\sigma}_{t\bar{t}} + d\hat{\sigma}_{\bar{t}t}$

Q

Charge asymmetry of $q\bar{q} \rightarrow t\bar{t} + jet$ in QCD

 $N_1^i(E_t, E_{\bar{t}})$ - symmetric in E_t and $E_{\bar{t}}$ $N_2^i(E_t, E_{\bar{t}})$ - antisymmetric in E_t and $E_{\bar{t}}$

 $q\bar{q} \rightarrow t\bar{t} + jet$

• Partonic asymmetries for $q\bar{q} \to t\bar{t}g$ in dependence of the jet scattering angle θ_j , $\sqrt{s} = 1$ TeV, $E_j \ge 20$ GeV.

• Incline Asymmetry $d\hat{\sigma}_A^{\varphi} = d\hat{\sigma}_A(\cos \varphi \ge 0)$

$qg \to t\bar{t} + q$

• Partonic asymmetries for $qg \to t\bar{t}q$ in dependence of the jet scattering angle θ_j , $\sqrt{s} = 1$ TeV, $E_j \ge 20$ GeV.

 $\Box \ d\hat{\sigma}_{EA} = d\hat{\sigma}_A \left(\Delta E \ge 0\right) , \qquad \Delta E = E_t - E_{\bar{t}}$

• Energy asymmetry in $qg \rightarrow t\bar{t}q$: Quark direction does not need to be determined!

Results: LHC @ 14 TeV

- Incline asymmetry $A^{\varphi,q}$ is testing the charge asymmetry of the $q\bar{q}$ -channel
- Energy asymmetry A^E is testing the charge asymmetry of the qg-channel
- LHC Detector cuts have been applied. Furthermore $|\hat{y}_j| < 0.5$
- A lower cut on ΔE implies a larger minimum p_{Tj}
- Dashed lines: Luminosity needed to distinguish the asymmetry with 5σ from the null hypothesis (assumed $t\bar{t} + jet$ reconstruction efficiency 0.05)

tt+jet with massive color-octet bosons

S.B., S. Westhoff, Phys. Rev. D86 (2012) 094036

Lagrangian, contributing diagrams

$$\mathcal{L} = -g_s f_{abc} \left[\left(\partial_\mu G^a_\nu - \partial_\nu G^a_\mu \right) G^{b\mu} g^{c\nu} + G^{a\mu} G^{b\nu} \left(\partial_\mu g^c_\nu \right) \right] + g_s \bar{q}_i \gamma^\mu G^a_\mu T^a \left[g^i_V + \gamma_5 g^i_A \right] q_i$$

- \Box G^a_{μ} massive gluon field
- q_V^i , q_A^i vector, axial-vector couplings of the massive gluons to quarks
- □ All combinations of diagrams can contribute to the cross sections σ_A and σ_S
- Asymmetry depends on the heavy gluon mass M_G , its width Γ_G and products of coupling combinations, e.g. $g_V^q g_V^t$ or $g_A^q g_A^t$

Partonic asymmetries including color-octets

• Partonic normalized asymmetries for $q\bar{q} \to t\bar{t}g$ (left) and $qg \to t\bar{t}q$ (right) in dependence of the jet scattering angle θ_j , $\sqrt{s} = 1$ TeV, $E_j \ge 20$ GeV.

$$M_G = 2 \text{ TeV}, g_V = 0, g_A^q = 0.5, g_A^t = 2$$

 Normalized rapidity and energy asymmetry are non-vanishing for $\theta_j \to 0, \pi$ → no jet cut necessary

Rapidity Asymmetry: LHC @ 8 TeV

$$\Delta A_C^{|y|} = A_C^{|y|,\text{tot}} - A_C^{|y|,\text{SM}}$$

- Large asymmetries are generated due to axial-vector couplings
- Also vector couplings generate additional asymmetry (not in $t\bar{t}$ inclusive at LO)
- Similar results for LHC14, some additional phase space cuts may need to be applied

$M_{t\bar{t}}^{\min} = 1 \mathrm{TeV}$	$\Delta A_C^{ y }$ [%]
V^+, V^-	-0.22, -2.3
A^+, A^-	-6.7, +4.3
VA^{++}	+5.4
$VA^{}$	+8.9
VA^{+-}	-6.9

- The QCD charge asymmetry can be observed at the LHC in $t\bar{t} + jet$ production using two new observables:
 - □ The incline asymmetry tests the charge asymmetry of the qq-channel with asymmetries of up to -4%
 - □ The energy asymmetry tests the charge asymmetry of the qg-channel with asymmetries of up to -11%
- Massive color-octet bosons, that could explain the measured Tevatron charge asymmetry in inclusive $t\bar{t}$ -production, have large effects on the charge asymmetries in $t\bar{t} + jet$ at the LHC.

Vector or axial-vector couplings can be determined by measuring the differential jet distribution.

