Top-quark charge asymmetry goes forward: Two new observables for hadron colliders

Stefan Berge
Johannes Gutenberg-University Mainz

SUSY 2013
26. - 31. August 2013, Trieste, Italy

Motivation

- QCD predicts a charge asymmetry for top quark pair production in hadron-hadron scattering
- The corresponding forward-backward asymmetry has been measured at CDF and D0
- Discrepancy to SM prediction remains at $2-3 \sigma$ level
- Sign of new Physics?
- Need to measure the charge asymmetry at the LHC

Parton Level	POWHEG	CDF 9.4 fb^{-1}	exceeding SM prediction
Inclusive	6.6%	$16.4 \pm 4.5 \%$	2.2σ
Mtt slope	$(3.4 \pm 1.2) 10^{-4}$ GeV		
$\|\Delta y\|$ slope	$(10 . \pm 2.3) 10^{-2}$ GeV		
$(15.2 \pm 5) 10^{-4}$ GeV^{-1}	$(28.6 \pm 8.5) 10^{-2}$ GeV^{-1}	$2.3 \sigma \sigma$	

(CDF, arXiv 1211.1003)

- Problem: predicted SM charge asymmetry in inclusive top pair production at LHC is very small

Motivation

LO: no charge asymmetry

NLO: Charge asymmetry is generated due to virtual corrections (box diagrams) and real gluon emission diagrams (ISR-FSR interference)

Separating contributions with gluon Ecut:

- virtual corrections generate positive asymmetry
- real emission diagrams contribute with negative asymmetry
- need to understand the $t \bar{t}+j e t$ contribution especially in different phase space regions

$t \bar{t}+j e t$ in QCD

S.B., S. Westhoff, JHEP 07(2013)179
S.B., S. Westhoff, arXiv 1307.6225

Charge asymmetry of $q \bar{q} \rightarrow t \bar{t}+j e t$ in QCD

- Differential charge asymmetry at a certain phase space point:

$$
d \hat{\sigma}_{A}=d \hat{\sigma}_{t \bar{t}}-d \hat{\sigma}_{t t}
$$

 $d \hat{\sigma}_{a} \dot{\sim} d_{a b c}^{2}$. antisymmetric under $t \leftrightarrow \bar{t}$ (Furry theorem)

- Symmetric differential cross section : $d \hat{\sigma}_{S}=d \hat{\sigma}_{t \bar{t}}+d \hat{\sigma}_{t t}$

Charge asymmetry of $q \bar{q} \rightarrow t \bar{t}+j e t$ in QCD

Differential charge asymmetry:
$d \hat{\sigma}_{A}=d \hat{\sigma}_{t \bar{t}}-d \hat{\sigma}_{\bar{t} t}$

$\frac{\mathrm{d} \hat{\sigma}_{A}(q \bar{q} \rightarrow t \bar{t} j)}{\mathrm{d} \varphi \mathrm{d} \theta_{j} \mathrm{~d} E_{t} \mathrm{~d} E_{\bar{t}}}=-\left[N_{1}+\sin ^{2} \theta_{j}\left(N_{1}^{j}+\cos ^{2} \varphi N_{1}^{\varphi}\right)\right] \underline{\cos \varphi}$ Incline Asymmetry $\left.+\underline{\left[\underline{N_{2}}\right.}+\cos ^{2} \varphi \underline{N_{2}^{\varphi}}\right] \sin \theta_{j} \cos \theta_{j} \quad$ Energy Asymmetry
$N_{1}^{i}\left(E_{t}, E_{\bar{t}}\right)$ - symmetric in E_{t} and $E_{\bar{t}}$
$N_{2}^{i}\left(E_{t}, E_{\bar{t}}\right)$ - antisymmetric in E_{t} and $E_{\bar{t}}$

- Partonic asymmetries for $q \bar{q} \rightarrow t \bar{t} g$ in dependence of the jet scattering angle $\theta_{j}, \sqrt{s}=1 \mathrm{TeV}, E_{j} \geq 20 \mathrm{GeV}$.
- Incline Asymmetry $\quad d \hat{\sigma}_{A}^{\varphi}=d \hat{\sigma}_{A}(\cos \varphi \geq 0)$

Rapidity Asymmetry $d \hat{\sigma}_{A}^{\theta_{t}}=d \hat{\sigma}_{A}\left(\cos \theta_{t} \geq 0\right)$
Energy Asymmetry $\quad d \hat{\sigma}_{A}^{E}=d \hat{\sigma}_{A}\left(\Delta E \geq 0, \cos \theta_{j} \geq 0\right)-d \hat{\sigma}_{A}\left(\Delta E \geq 0, \cos \theta_{j} \leq 0\right)$
$\cos \theta_{t}=\sin \theta_{j} \cos \varphi \sin \xi+\cos \theta_{j} \cos \xi, \quad \cos \xi=f\left(E_{t}, E_{\bar{t}}\right), \quad \Delta E=E_{t}-E_{\bar{t}}$

$q g \rightarrow t \bar{t}+q$

- Partonic asymmetries for $q g \rightarrow t \bar{q} q$ in dependence of the jet scattering angle $\theta_{j}, \sqrt{s}=1 \mathrm{TeV}, E_{j} \geq 20 \mathrm{GeV}$.
- $d \hat{\sigma}_{E A}=d \hat{\sigma}_{A}(\Delta E \geq 0), \quad \Delta E=E_{t}-E_{\bar{t}}$
- Energy asymmetry in $q g \rightarrow t \bar{t} q$: Quark direction does not need to be determined!

Results: LHC @ 14 TeV

- Incline asymmetry $A^{\varphi, q}$ is testing the charge asymmetry of the $q \bar{q}$-channel
- Energy asymmetry A^{E} is testing the charge asymmetry of the $q g$-channel
- LHC Detector cuts have been applied. Furthermore $\left|\hat{y}_{j}\right|<0.5$
- A lower cut on ΔE implies a larger minimum $p_{T j}$
- Dashed lines: Luminosity needed to distinguish the asymmetry with 5σ from the null hypothesis (assumed $t \bar{t}+j e t$ reconstruction efficiency 0.05)

$t \bar{t}+j e t$ with massive color-octet bosons

S.B., S. Westhoff, Phys. Rev. D86 (2012) 094036

Lagrangian, contributing diagrams

$$
\mathcal{L}=-g_{s} f_{a b c}\left[\left(\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}\right) G^{b \mu} g^{c \nu}+G^{a \mu} G^{b \nu}\left(\partial_{\mu} g_{\nu}^{c}\right)\right]
$$

$$
+g_{s} \bar{q}_{i} \gamma^{\mu} G_{\mu}^{a} T^{a}\left[g_{V}^{i}+\gamma_{5} g_{A}^{i}\right] q_{i}
$$

- G_{μ}^{a} - massive gluon field

- q_{V}^{i}, q_{A}^{i} - vector, axial-vector couplings of the massive gluons to quarks
- All combinations of diagrams can contribute to the cross sections σ_{A} and σ_{S}

- Asymmetry depends on the heavy gluon mass M_{G}, its width Γ_{G} and products of coupling combinations, e.g. $g_{V}^{q} g_{V}^{t}$ or $g_{A}^{q} g_{A}^{t}$

Partonic asymmetries including color-octets

- Partonic normalized asymmetries for $q \bar{q} \rightarrow t \bar{t} g$ (left) and $q g \rightarrow t \bar{t} q$ (right) in dependence of the jet scattering angle $\theta_{j}, \sqrt{s}=1 \mathrm{TeV}$, $E_{j} \geq 20 \mathrm{GeV}$.
- $M_{G}=2 \mathrm{TeV}, g_{V}=0, g_{A}^{q}=0.5, g_{A}^{t}=2$
- Normalized rapidity and energy asymmetry are non-vanishing for $\theta_{j} \rightarrow 0, \pi$ \rightarrow no jet cut necessary

Rapidity Asymmetry: LHC @ 8 TeV

$\Delta A_{C}^{|y|}=A_{C}^{|y|, \text { tot }}-A_{C}^{|y|, S M}$

- Large asymmetries are generated due to axial-vector couplings
- Also vector couplings generate additional asymmetry (not in $t \bar{t}$ inclusive at LO)
- Similar results for LHC14, some additional
 phase space cuts may need to be applied

Concluding Remarks

- The QCD charge asymmetry can be observed at the LHC in $t \bar{t}+j e t$ production using two new observables:
- The incline asymmetry tests the charge asymmetry of the $q q$-channel with asymmetries of up to -4%
- The energy asymmetry tests the charge asymmetry of the $q g$-channel with asymmetries of up to -11%
- Massive color-octet bosons, that could explain the measured Tevatron charge asymmetry in inclusive $t \bar{t}$-production, have large effects on the charge asymmetries in $t \bar{t}+j e t$ at the LHC.
Vector or axial-vector couplings can be determined by measuring the differential jet distribution.

