SUSY 2013, 26-31 August 2013, Trieste

Top quark production in the ATLAS detector of the LHC

Javier Montejo Berlingen, in behalf of the ATLAS collaboration

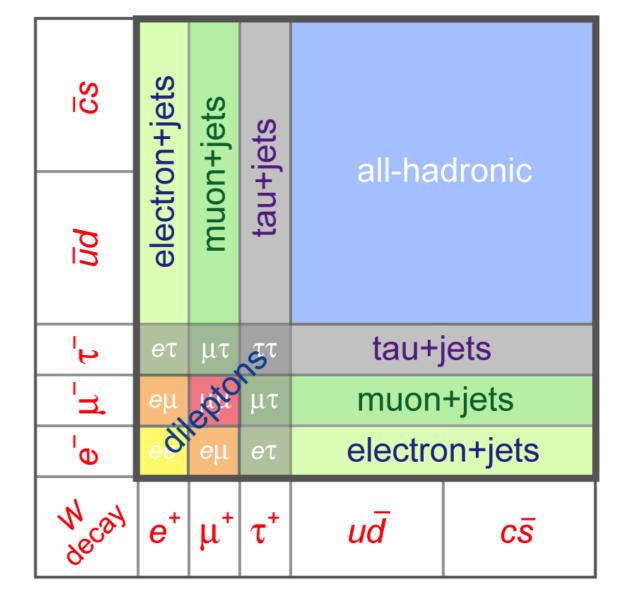
Instituto de física de altas energías, IFAE

Introduction

- Top has a large production cross section. Including associated production because of the large phase space.
- Complex final state, top pair production is background for a number of SUSY searches
 - 0 leptons + 2 b-jets + Etmiss 0 leptons + >=7-10 jets + Etmiss 2 leptons + (b)jets + Etmiss 1-2 leptons + 3-6 jets + Etmiss 0-1 leptons + >=3 b-jets + Etmiss 1 lepton + 4(1 b-)jets + Etmiss 0 lepton + 6 (2 b-)jets + Etmiss 1-2 taus + jets + Etmiss

- [Sbottom/stop] [Incl. strong production] [Medium stop] [Incl. strong production, mUED] [3rd gen. Squarks] [Medium / heavy stop] [Heavy stop] [GMSB]
- arxiv:1308.2631 arxiv:1308.1841 ATLAS-CONF-2013-065 ATLAS-CONF-2013-062 ATLAS-CONF-2013-061 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-026

- The LHC has produced a large dataset of tops to analyze
 - This allows for differential measurements, observation of difficult decay channels, associated production, etc
- Precision measurements allow for a better understanding and reduced systematics
- I will show results from six ATLAS results, showing inclusive and differential measurements


Introduction

- Top quark is the heaviest SM particle,
 - decays ~100% of the times to Wb
- Analyses are defined by decay of W boson

Single lepton (e/ μ) + jets	34.3%
Dilepton (ee/eμ/μμ)	6.4%
All hadronic	45.7%
Tau + jets	9.8%
Tau + lepton	3.7%

• 2 b-quarks per event, usage of b-tagging to increase ttbar contribution

Top Pair Decay Channels

Analyses covered in this talk

Total inclusive cross section

- Measurement of the top quark pair production cross section in the single-lepton channel with ATLAS in proton-proton collisions at 8 TeV using kinematic fits with b-tagging: Link
- Measurement of the ttbar production cross section in the tau+jets channel using the ATLAS detector: Link

Differential cross section

- Measurement of ttbar production with a veto on additional central jet activity in pp collisions at vs = 7 TeV using the ATLAS detector: Link
- Measurement of the jet multiplicity in top-anti-top final states produced in 7 TeV protonproton collisions with the ATLAS detector: Link
- Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at vs = 7 TeV: Link

Associated production

 A study of heavy flavor quarks produced in association with top quark pairs at Vs = 7 TeV using the ATLAS detector: Link

NNLO+NNLL: $\sigma_{t\bar{t}}^{NNLO} = 253^{+13}_{-15} \text{ pb}$

Top pair cross section in lepton+jets

ATLAS Preliminary

Data

e+≥3 jets

o16000

ន្នា 14000

12000

10000

8000

6000

4000

2000

.5

Data / Expectation

- Dataset: 5.8 fb⁻¹ @8TeV
- 1 lepton (e/μ, p_T>40GeV), 3 or more jets (p_T>25GeV), 1 or more b-tags (70% efficiency), large E_{τ}^{miss} and $m_{\tau}(W)$
- Likelihood discriminant based on transformed aplanarity^[*] and lepton pseudorapidity
- Fit the discriminant for ttbar and ulletW+jets normalization \rightarrow extract ttbar cross section

ti A 16000 W+Jets Multijet W+Jets Multijet Z+Jets Single Top Dibosons Z+Jets Single Top Dibosons 14000 12000 10000 8000 6000 4000 2000 Data / Expectation 1.4 1.2 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Likelihood Likelihood

o.

ົ_ທ18000

 $Ldt = 5.8 \text{ fb}^{-1}$

√s = 8 TeV

ATLAS Preliminary

Data

ա**+≥3 iets**

ATLAS-CONF-2012-149

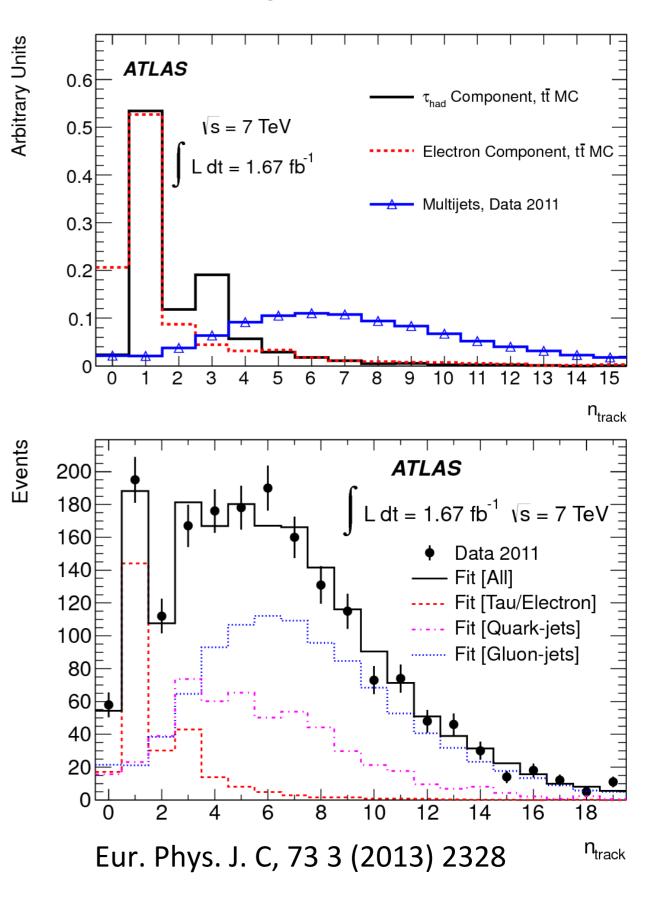
[*] A' = exp($-3/4 \lambda_3$)

 λ_3 being the smallest eigenvalue of the normalized momentum tensor

• Result: $\sigma_{t\bar{t}} = 241 \pm 2(\text{stat}) \pm 31(\text{syst}) \pm 9(\text{lumi}) \text{ pb}$

 $Ldt = 5.8 \text{ fb}^{-1}$

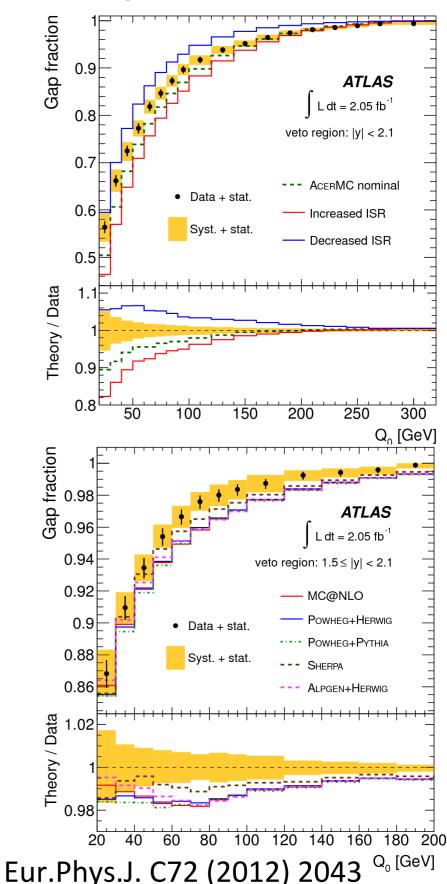
√s = 8 TeV



6

Top pair cross section in tau+jets

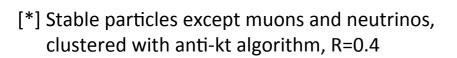
- Dataset: 1.67 fb⁻¹ @7TeV
- 5 or more jets (p_T >20GeV), 2 or more b-tags (60% efficiency), high E_T^{miss} significance
- Top candidate is built from 1 tagged + 2 untagged jets with highest p_T sum.
 Remaining non b-tagged jet is τ candidate
- Likelihood fit to <u>number of tracks</u> distribution with three templates: τ/electron, gluon-jet (from multi-jet), quark-jet (from tt and W+jets)
- Result: $\sigma_{t\bar{t}} = 194 \pm 18(\text{stat}) \pm 46(\text{syst}) \text{ pb}$ NNLO+NNLL: $\sigma_{t\bar{t}}^{\text{NNLO}} = 177^{+10}_{-11} \text{ pb}$
- Why tau+jets?
 - Probe flavor-dependent effects, test lepton universality
 - Background for BSM scenarios such as charged Higgs


Top pair production with additional jet veto

- Dataset: 2.05 fb⁻¹ @7TeV, dilepton channel
- Very precise measurement. Is able to constrain modeling uncertainties and reduce their impact on other top quark measurements
- Select dilepton events with 2 b-tags, very high purity
- Define gap fraction: $\mathbf{f}(\mathbf{Q_0}) = \frac{\mathbf{n}(\mathbf{Q_0})}{\mathbf{N}}$

N is the number of selected events, $n(Q_0)$ is the subset that do **not** contain an additional central jet with $p_T > Q_0$

- Compare NLO generators (MC@NLO, POWHEG), multileg LO generators (ALPGEN, SHERPA) and initial state radiation systematics (ISR) with AcerMC, and constrain the allowed range for the variations.
- All generators predict too much forward activity. MC@NLO predicts too little activity in central region


in ttbar events, test perturbative QCD

• Dataset: 4.7 fb⁻¹ @7TeV, lepton+jets channel

Differential measurement in Njets for jet p_T thresholds at 25, 40, 60, 80 GeV

Motivation: constrain models of additional QCD radiation

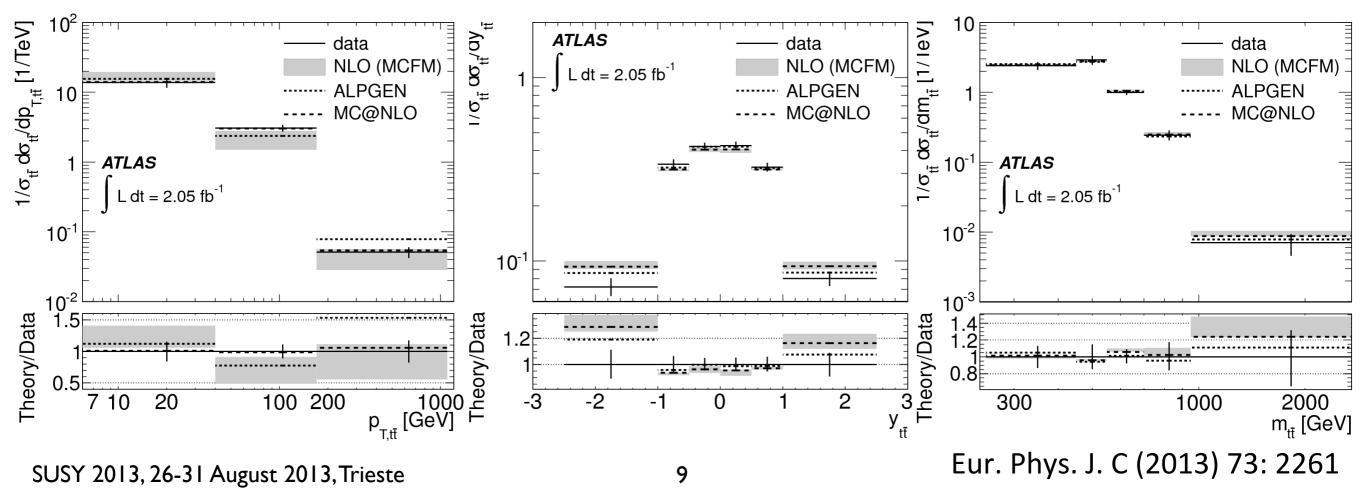
- Background-subtracted events, unfolded into particle-jet^[*] multiplicity distribution
- MC@NLO+HERWIG model disfavored, predicts lower jet multiplicity and softer jets
- ALPGEN+PYTHIA nominal and $\alpha_{s}\text{-up}$ predict too high jet multiplicities

SUSY 2013, 26-31 August 2013, Trieste

Measurement of jet multiplicity in tt final states

Events ATLAS Preliminary Data AI PGEN+HERWIG MC@NI O+HERWIG 10⁴ PGEN+PYTHIA (α, Down) $L dt = 4.7 \text{ fb}^{-1}$ s = 7 TeV 10^{3} anti k, R=0.4 $|\eta| < 2.5$ p_ > 25 GeV 10² e+iets MC/Data 1.5 0.5 ≥8 3 5 6 7 n_{iets} Events ATLAS Preliminary Data ALPGEN+PYTHIA 10⁴ PGEN+PYTHIA (α , Up) PGEN+PYTHIA (a Down L dt = 4.7 fb s = 7 TeV 10^{3} anti k, R=0.4 $|\eta| < 2.5$ p_ > 25 GeV 10² _e+jets MC/Data 0.5 ≥8 3 5 6 7

ATLAS-CONF-2012-155



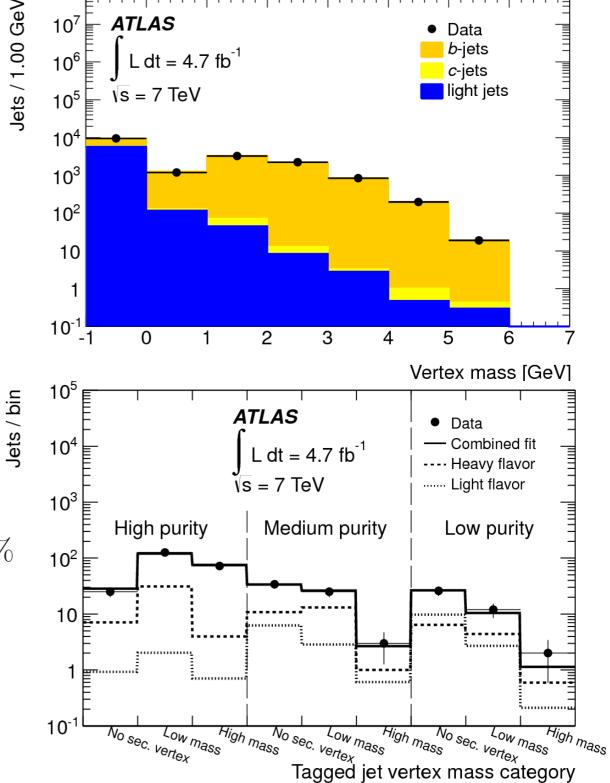
Top pair differential cross section

- Dataset: 2.05 fb⁻¹ @7TeV, lepton+jets channel
- Relative differential cross-sections as a function of the invariant mass M_{tt}, the transverse momentum p_{T,tt}, and the rapidity y_{tt} of the top quark pair system
- Precision SM test. $M_{t\bar{t}}$ sensitive to new physics in s-channel

- 1 lepton (e/μ, p_T>25GeV), 4 or more jets (p_T>25GeV), 1 or more b-tags (70% efficiency), large E_T^{miss} and m_T(W)
- Kinematic likelihood fit of the event, cut on the likelihood improves purity of the sample
- Background-subtracted events, unfolded into parton-level kinematic distribution
- Measurement consistent with SM expectation

tt+HF measured from events with at least 3 b-tags tt+j measured from events with 3 jets, 2 b-tags 10

- Maximum likelihood fit to separate light/heavy flavor, 2D templates: vertex mass and jet p_{τ}
- Fit performed in 3 mutually exclusive bins of b-jet purity. Boundaries defined at operating points of 60, 70, 75% efficiency


$$\mathbf{R_{HF}} = \frac{\sigma_{\mathbf{fid}} \left(\mathbf{t} \mathbf{\bar{t}} + \mathbf{HF} \right)}{\sigma_{\mathbf{fid}} \left(\mathbf{t} \mathbf{\bar{t}} + \mathbf{j} \right)} = \mathbf{7.1} \pm \mathbf{1.3} (\mathrm{stat})^{+\mathbf{5.3}}_{-\mathbf{2.0}} (\mathrm{syst})\%$$

Compared to ALPGEN **3.4%** and POWHEG **5.2%**

- Why tt+HF?
 - Background for ttH(H→bb), H+→tb, composite Higgs, 4 tops

Top pair with associated heavy flavor quarks

- Dataset: 4.7 fb⁻¹ @7TeV, dilepton channel
- Fiducial cross section measurement and ratio, 2 charged leptons (p_T>25GeV, |eta| < 2.5), 3 or more jets (p_T>25GeV, |eta| < 2.5)

Submitted to PRD

- Results agree well with SM theory predictions
- ATLAS is testing the SM at high precision with inclusive and differential cross section measurements
 - In some cases the measurements are reaching enough precision to constrain the range of systematic variations and disfavor generator models
 - Smaller uncertainties → better sensitivity for searches :)
- Better understanding of QCD in ttbar final states through differential measurements paves the way for more precision in the future
- Please see: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults for the full list of ATLAS top quark publications, only a subset has been shown here