Buckets of Tops

Michihisa Takeuchi (King's College London)

arxiv:1302.6238 M. R. Buckley, T. Plehn, M. T.

Top at LHC

• top : closest to new physics

fine tuning problem \rightarrow top partner $\delta m_h^2 \sim -t - t - \frac{3}{4\pi} y_t^2 \Lambda_{\rm SM}^2$

- $\tilde{t}\tilde{t} \rightarrow t\bar{t}\chi\chi$: stop search
- $t\bar{t}H$: largest yukawa coupling to higgs to be measured
- $t\bar{t}$: main background for new physics search
- hadronic top:

• events look different depending on $p_{T,t}$

jet substructure method solve QCD problem

• events look different depending on $p_{T,t}$

moderate boost help to solve combinatorics

Buckets of tops

start with standard jets (C/A R = 0.5) Aim: find jets corresponding to 2 tops

Buckets of tops

start with standard jets (C/A R = 0.5) Aim: find jets corresponding to 2 tops

scan all permutation,
select the grouping minimizing
$$\Delta^2 = \omega \Delta_{B_1}^2 + \Delta_{B_2}^2 \quad (\omega = 100)$$

$$\Delta_{B_i} = |m_{B_i} - m_t|$$

 $m_{B_i}^2 = \left(\sum_{j \in B_i} p_j\right)^2$

One event provides $\{B_1, B_2, B_{\text{ISR}}\}$

always 2 top tags 3/13

Buckets of tops

start with standard jets (C/A R = 0.5) with 2 *b*-jets Aim: find jets corresponding to 2 tops

scan all permutation,
select the grouping minimizing
$$\Delta^2 = \omega \Delta_{B_1}^2 + \Delta_{B_2}^2 \quad (\omega = 100)$$

$$\Delta_{B_i} = |m_{B_i} - m_t|$$

$$m_{B_i}^2 = \left(\sum_{j \in B_i} p_j\right)^2$$

One event provides $\{B_1, B_2, B_{\text{ISR}}\}$

always 2 top tags 3/13

Bucket mass, W condition

• top mass window

```
155 \text{ GeV} < m_{B_{1,2}} < 200 \text{ GeV}
```

• W mass window

regard B_i contains W if 2 jets in a bucket satisfy

$$\left|\frac{m_{kl}}{m_{B_i}} - \frac{m_W}{m_t}\right| < 0.15$$

4/13

Bucket mass, W condition

• top mass window

```
155 \text{ GeV} < m_{B_{1,2}} < 200 \text{ GeV}
```

• W mass window

regard B_i contains W if 2 jets in a bucket satisfy

$$\left|\frac{m_{kl}}{m_{B_i}} - \frac{m_W}{m_t}\right| < 0.15$$

 $\rightarrow 4$ categories

$$(\mathfrak{t}_w, \mathfrak{t}_w) : B_1 \ni W, B_2 \ni W$$
$$(\mathfrak{t}_w, \mathfrak{t}_-) : B_1 \ni W, B_2 \not\supseteq W$$
$$(\mathfrak{t}_-, \mathfrak{t}_w) : B_1 \not\supseteq W, B_2 \supseteq W$$
$$(\mathfrak{t}_-, \mathfrak{t}_-) : B_1 \not\supseteq W, B_2 \not\supseteq W$$

4/13

	$t_h \bar{t}_h + jets$ [fb]	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$
5 jets, 2b-tag	21590		16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w)$	2750	68.9%	126.2	21.8
$(\mathfrak{t}_w,\mathfrak{t})$	2517	23.4%	727.1	3.5
$(\mathfrak{t}_{-}, \mathfrak{t}_{w})$	1782	21.8%	596.5	3.0
$(\mathfrak{t}_{-},\mathfrak{t}_{-})$	2767	9.0%	2002	1.4

	$t_h \bar{t}_h + jets$ [fb]	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$
5 jets, 2b-tag	21590		16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w)$	2750	68.9%	126.2	21.8
$(\mathfrak{t}_w,\mathfrak{t})$	2517	23.4%	727.1	3.5
$(\mathfrak{t}_{-},\mathfrak{t}_{w})$	1782	21.8%	596.5	3.0
$(\mathfrak{t}_{-},\mathfrak{t}_{-})$	2767	9.0%	2002	1.4

 $R_i < 0.5$: good reconstruction

 $R_i = \Delta R(B_i, p_t^{\text{MCtruth}})$

	$t_h \bar{t}_h + \text{jets [fb]}$	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$
5 jets, 2b-tag	21590		16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w)$	2750	68.9%	126.2	21.8
$(\mathfrak{t}_w,\mathfrak{t})$	2517	23.4%	727.1	3.5
$(\mathfrak{t}_{-},\mathfrak{t}_{w})$	1782	21.8%	596.5	3.0
$(\mathfrak{t}_{-},\mathfrak{t}_{-})$	2767	9.0%	2002	1.4

 $R_i < 0.5$: good reconstruction

$$R_i = \Delta R(B_i, p_t^{\text{MCtruth}})$$

 $(\mathfrak{t}_w,\mathfrak{t}_w)$ provide reasonable momentum, $\epsilon_{(\mathfrak{t}_w,\mathfrak{t}_w)} \sim 13\%$

V

		$t_h \bar{t}_h + jets$ [fb]	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$	-	
	5 jets, 2b-tag	21590		16072	1.36	-	
	$(\mathfrak{t}_w,\mathfrak{t}_w)$	2750	68.9%	126.2	21.8	-	
	$(\mathfrak{t}_w,\mathfrak{t})$	2517	23.4%	727.1	3.5	-	
	$(\mathfrak{t}, \mathfrak{t}_w)$	1782	21.8%	596.5	3.0		
	$(\mathfrak{t}_{-},\mathfrak{t}_{-})$	2767	9.0%	2002	1.4		
R_i	z < 0.5 : good	l reconstructi	on R_{ℓ}	$_{i} = \Delta R(B)$	p_i, p_t^{MCtru}	^{1th})	
						,	
(1	t) provide	, roogonoblo, r	nomontum		120%	\sum	
	$w, \mathbf{t}_w)$ provide	\neg \neg \Box		$\mathfrak{t}_{(\mathfrak{t}_w,\mathfrak{t}_w)}\sim 0$	13/0		- r
ሆጊ ť	not reconst	ruct5@evrect.e	nomentum _	<u>/</u> ```			
					tī	ן tī	
Ļ			ſ			5	
						_ <u> </u>	
			QCD	\sim		Ъ. j	
		ji ji	لى			L.	
]	L L	ے / 5	13
							1

V

	t	$t_h \bar{t}_h + \text{jets [fb]}$	R_1, R_2	$_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$	- 	
5 je	ets, $2b$ -tag	21590			16072	1.36)	
(\mathfrak{t}_w)	(\mathfrak{t}_w)	2750	(68.9%	126.2	21.8		
(\mathfrak{t}_w)	$,\mathfrak{t}_{-})$	2517	(23.4%	727.1	3.5)	
$(\mathfrak{t}_{-}$	$,\mathfrak{t}_w)$	1782		21.8%	596.5	3.0	1	
$(\mathfrak{t}_{-}$	$,\mathfrak{t}_{-}) \qquad \parallel$	2767		9.0%	2002	1.4	:	
$R_i < 0$ $(\mathfrak{t}_w, \mathfrak{t}_w)$).5 : good) provide	reconstruction reasonable n	on nomei	R_i ntum, e	$\mathbf{t} = \Delta R(B)$	p_i, p_t^{MCtr} 13%	uth)	
<pre> f L no f lonly only </pre>	ot reconstruction of the second secon	e tagged inwork	nomer total	ntum —				5/13

V

	t	$\overline{t}_h \overline{t}_h + \text{jets [fb]}$	$R_1, R_2 <$	< 0.5	QCD [fb]	$S/B_{\rm QCD}$		
5 je	ts, $2b$ -tag	21590			16072	1.36		
$(\mathfrak{t}_w,$	(\mathfrak{t}_w)	2750	6	8.9%	126.2	21.8	<u>}</u>	
$(\mathfrak{t}_w,$	(\mathfrak{t}_{-})	2517	2	3.4%	727.1	3.5)	
$(\mathfrak{t}_{-},$	(\mathfrak{t}_w)	1782	2	1.8%	596.5	3.0		
$(\mathfrak{t}_{-},$	(\mathfrak{t}_{-})	2767		9.0%	2002	1.4	:	
$R_i < 0$ $(\mathfrak{t}_w, \mathfrak{t}_u)$).5 : good ,) provide	reconstructions reconstructions reconstructions reconstructions reconstructions reasonable reasonable reconstructions reasonable reconstructions reasonable reconstructions reasonable reconstructions reconst	on noment	R_i um, ϵ	$\boldsymbol{\xi} = \Delta R(B)$	p_i, p_t^{MCtr} 13%	uth)	
f t_ no only Why e	t reconstru 45% doubl ficiency s	o low with	noment total h such _{QCD}	um \ sim		tī Prithm?		5/13

V

	$t_h \bar{t}_h + jets$ [fb]	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$	-	
5 jets, $2b$ -tag	21590		16072	1.36	-	
$(\mathfrak{t}_w, \mathfrak{t}_w)$	2750	68.9%	126.2	21.8	-	
$(\mathfrak{t}_w,\mathfrak{t})$	2517	23.4%	727.1	3.5	-	
$(\mathfrak{t},\mathfrak{t}_w)$	1782	21.8%	596.5	3.0		
$(\mathfrak{t}_{-},\mathfrak{t}_{-})$	2767	9.0%	2082	1.4		
$R_i < 0.5$: good $(\mathfrak{t}_w, \mathfrak{t}_w) \text{ provide}$	l reconstructions r	on R_{a} nomentum, c	$t_i = \Delta R(B)$	p_i, p_t^{MCtru}	^{1th})	
f t_ not reconst only 45% doub Why efficiency 6 jets	ructs ole tagged in so low with not often f	nomentum – total h such sim _{QCD} urvive-due		$\begin{bmatrix} \mathbf{t} \\ \mathbf{t} $	shold ,	ے 5/13

6 partons from top pair decays

 $p_{T,j} > 25$ GeV kills 6th jet 98% of j_6 from W

6 partons from top pair decays

 $p_{T,j} > 25$ GeV kills 6th jet 98% of j_6 from W

About 50% of events with only 5 partons surviving.

	$t_h \bar{t}_h + jets [pb]$	$p_{T,6} > 25 \text{ GeV}$	$p_{T,5} > 25 \text{ GeV} > p_{T,6}$
lepton veto	104.1	33.4%	44.9%
$n_j \ge 5$	70.5	42.5%	46.4%

6 partons from top pair decays

 $p_{T,j} > 25$ GeV kills 6th jet 98% of j_6 from W

About 50% of events with only 5 partons surviving. Even 6 jets events, about 40% with only 5 partons. (due to ISR) /

	$ t_h \bar{t}_h + \text{jets [pb]} $	$p_{T,6} > 25 \text{ GeV}$	$p_{T,5} > 25 \text{ GeV} > p_{T,6}$
lepton veto	104.1	33.4%	44.9%
$n_j \ge 5$	70.5	42.5%	46.4%
$n_j \ge 6$	36.7	54.7%	(38.0%) ←

		$ t_h \bar{t}_h + \text{jets [pb]} $	$p_{T,6} > 25 \text{ GeV}$	$p_{T,5} > 25 \text{ GeV} > p_{T,6}$
lepton veto	0	104.1	33.4%	44.9%
$n_j \ge 5$		70.5	42.5%	46.4%
$n_j \ge 6$		36.7	54.7%	38.0%
$n \cdot > 5$	$p_{T,t_2} > 100 \text{ GeV}$	32.7	43.6%	46.2%
$m_j \ge 0$	$p_{T,t_2} > 200 \text{ GeV}$	6.7	47.4%	44.7%

		$t_h \bar{t}_h + jets [pb]$	$p_{T,6} > 25 \text{ GeV}$	$p_{T,5} > 25 \text{ GeV} > p_{T,6}$
lepton vet	0	104.1	33.4%	44.9%
$n_j \ge 5$		70.5	42.5%	46.4%
$n_j \ge 6$		36.7	54.7%	38.0%
$n \cdot > 5$	$p_{T,t_2} > 100 \text{ GeV}$	32.7	43.6%	46.2%
$n_j \ge 0$	$p_{T,t_2} > 200 \text{ GeV}$	6.7	47.4%	44.7%

bj-buckets

• m_{bj} -peak from top decay kinematics

o
$$m_{bj} < \sqrt{m_t^2 - m_W^2} \sim 155 \text{GeV}$$

unique feature of 3 body decay more pronounced peak with $p_{T,3} < 25 \text{GeV}$

ī

• m_{bj} -peak from top decay kinematics

$$\overbrace{\theta}^{\mathsf{J}} \mathsf{b} \quad m_{bj} < \sqrt{m_t^2 - m_W^2} \sim 155 \text{GeV}$$

unique feature of 3 body decay more pronounced peak with $p_{T,3} < 25 \text{GeV}$

• acceptable momentum reconstruction

• m_{bj} -peak from top decay kinematics

$$f \rightarrow b$$
 $m_{bj} < \sqrt{m_t^2 - m_W^2} \sim 155 \text{GeV}$

unique feature of 3 body decay more pronounced peak with $p_{T,3} < 25 \text{GeV}$

• acceptable momentum reconstruction

new metric:

 $\Delta_B^{bj} = |m_B - 145 \text{GeV}|$

if $m_B > 155 \text{GeV}$, thrown away

 $(\mathfrak{t}_w,\mathfrak{t}_w)$: keep them $(\mathfrak{t}_w,\mathfrak{t}_-)$: reconstruct \mathfrak{t}_- with Δ_B^{bj} $(\mathfrak{t}_{-},\mathfrak{t}_{-})$: reconstruct \mathfrak{t}_{-} to minimize $\Delta_{B_1}^{bj} + \Delta_{B_2}^{bj}$ j_1 <u>b</u>/ keep $B_1 \quad \mathfrak{t}_w$ j_2 j_3 <u>b</u> / \mathfrak{t}_w keep B_2 j_4 j_5 $B_{\rm ISR}$ j_6 •

$$(\mathfrak{t}_{w},\mathfrak{t}_{w}): \text{keep them}$$

$$(\mathfrak{t}_{w},\mathfrak{t}_{-}): \text{reconstruct }\mathfrak{t}_{-} \text{ with } \Delta_{B}^{bj}$$

$$(\mathfrak{t}_{-},\mathfrak{t}_{-}): \text{reconstruct }\mathfrak{t}_{-} \text{ to minimize } \Delta_{B_{1}}^{bj} + \Delta_{B_{2}}^{bj}$$

$$\overset{j_{1}}{\overbrace{j_{2}}} \underbrace{b}_{b} B_{1} \quad \mathfrak{t}_{w} \text{ keep}$$

$$\overset{j_{3}}{\overbrace{j_{4}}} \underbrace{b}_{b} B_{2} \quad \mathfrak{t}_{-} \text{ recompute}$$

$$\overset{j_{4}}{\overbrace{j_{5}}} \underbrace{b}_{j_{6}} B_{ISR}$$

$$\vdots \qquad \Delta_{B_{i}} = |m_{B_{i}} - m_{t}| \qquad \Delta_{B}^{bj} = |m_{B} - 145 \text{GeV}|$$

$$(\mathfrak{t}_{w}, \mathfrak{t}_{w}) : \text{keep them}$$

$$(\mathfrak{t}_{w}, \mathfrak{t}_{-}) : \text{reconstruct } \mathfrak{t}_{-} \text{ with } \Delta_{B}^{bj}$$

$$(\mathfrak{t}_{-}, \mathfrak{t}_{-}) : \text{reconstruct } \mathfrak{t}_{-} \text{ to minimize } \Delta_{B_{1}}^{bj} + \Delta_{B_{2}}^{bj}$$

$$j_{1} \underbrace{ \begin{array}{c} j_{1} \\ j_{2} \\ j_{3} \\ j_{4} \\ j_{5} \\ j_{6} \end{array}} \underbrace{ \begin{array}{c} b \\ B_{2} \\ B_{1} \\ B_{2} \\ \mathfrak{t}_{-} \\ \mathbf{t}_{-} \\ \mathbf{recompute} \\ \mathbf{t}_{-} \\ \mathbf{t}_{$$

		$t_h \bar{t}_h + \text{jets [fb]}$	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{ m QCD}$
	5 jets, $2b$ -tag	21590		16072	1.4
unchanged —	$(\mathfrak{t}_w, \mathfrak{t}_w)$	2750	68.9%	126.2	21.8
-	$(\mathfrak{t}_w,\mathfrak{t})$	7787	47.3%	2259	3.4
	$(\mathfrak{t}_{-},\mathfrak{t}_{w})$	1093	27.3%	190.5	5.7
	$(\mathfrak{t}_{-},\mathfrak{t}_{-})$	4887	28.5%	4077	1.2

		$t_h \bar{t}_h + \text{jets [fb]}$	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{ m QCD}$
	5 jets, $2b$ -tag	21590		16072	1.4
unchanged —	$(\mathfrak{t}_w,\mathfrak{t}_w)$	2750	68.9%	126.2	21.8
	$(\mathfrak{t}_w,\mathfrak{t})$	7787	47.3%	2259	3.4
	$(\mathfrak{t}, \mathfrak{t}_w)$	1093	27.3%	190.5	5.7
	$(\mathfrak{t}, \mathfrak{t})$	4887	28.5%	4077	1.2

increase in number and quality

70% double tagged in total (45% before)

 $R_i < 0.5$: good reconstruction

 $R_i > 0.5$: bad reconstruction

R_i>0.5

 $\frac{400}{p_{T,bj}}[GeV]$

 $R_i < 0.5$: good reconstruction

to enhance $R_i < 0.5$

$p_T^{\rm rec} > 100 {\rm GeV}$

 $R_i < 0.5$: good reconstruction $R_i > 0.5$: bad reconstruction $\Delta \, R_{\rm bj}$ $\Delta \, R_{\rm bj}$ R_i<0.5 0r 0r 200 'n 200 $\begin{array}{c} 400 \\ p_{T,bj} [GeV] \end{array}$

R_i>0.5

to enhance $R_i < 0.5$

$p_T^{\rm rec} > 100 {\rm GeV}$

	$t_h \bar{t}_h + jets [fb]$	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$
5 jets, $2b$ -tag	21590		16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w), p_T^{\mathrm{rec}} > 100 \text{ GeV}$	1417	86.4%	27.1	52.3
$(\mathfrak{t}_w,\mathfrak{t}), p_T^{\mathrm{rec}} > 100 \mathrm{GeV}$	2805	80.5%	305.4	9.2
$(\mathfrak{t}_{-},\mathfrak{t}_{w}), p_{T}^{\mathrm{rec}} > 100 \mathrm{GeV}$	287.9	60.5%	26.4	10.9
$(\mathfrak{t}_{-},\mathfrak{t}_{-}), p_T^{\mathrm{rec}} > 100 \mathrm{GeV}$	1084	67.7%	339.3	3.2
total, $p_T^{\rm rec} > 100 { m GeV}$	5593	78.5%	698.2	8.0

 $\sim 80\%$ provide good momentum for both tops

 $\frac{400}{p_{T,bj}}[GeV]$

 $R_i < 0.5$: good reconstruction $R_i > 0.5$: bad reconstruction $\Delta \, R_{\rm bj}$ $\Delta\,R_{bj}$ R_i<0.5 0r 0r 'n 200 $\frac{400}{p_{T,bj}^{}[GeV]}$

to enhance $R_i < 0.5$

$p_T^{\rm rec} > 100 {\rm GeV}$

	$t_h \bar{t}_h + jets [fb]$	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$
5 jets, $2b$ -tag	21590		16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w), p_T^{\mathrm{rec}} > 100 \text{ GeV}$	1417	86.4%	27.1	52.3
$(\mathfrak{t}_w,\mathfrak{t}), p_T^{\mathrm{rec}} > 100 \text{ GeV}$	2805	80.5%	305.4	9.2
$(\mathfrak{t}_{-},\mathfrak{t}_{w}), p_{T}^{\mathrm{rec}} > 100 \mathrm{GeV}$	287.9	60.5%	26.4	10.9
$(\mathfrak{t}_{-},\mathfrak{t}_{-}), p_T^{\mathrm{rec}} > 100 \mathrm{GeV}$	1084	67.7%	339.3	3.2
total, $p_T^{\rm rec} > 100 { m GeV}$	5593	78.5%	698.2	8.0

200

 $\sim 80\%$ provide good momentum for both tops

R_i>0.5

 $\frac{400}{p_{T,bj}}[GeV]$

25% double tagged in total

Efficiency as functions of pT

base number: after 5j with 2b-tag selection

 $\bar{p}_{T,t} = 100 - 150 \text{ GeV}: 30\% \text{ (double top tags)}$ $\bar{p}_{T,t} = 150 - 300 \text{ GeV}: 50-70\% \text{ (double top tags)}$

Efficiency as functions of pT

base number: after 5j with 2b-tag selection

Stop pair search

• $\tilde{t}\tilde{t}^* \to t\bar{t}\chi\chi$: $t\bar{t} + E_T$ typically 10⁴ difference in cross section

- \bullet include \mathfrak{t}_- increase both signal and BG
- LHC 8 TeV with 25 fb^{-1} :

 $S/B \sim 1$ for $m_{\tilde{t}} = 600 \text{ GeV}$

	$t\bar{t}$ +jets [fb]		$\tilde{t}\tilde{t}^*$ [fb]		S/B	S/\sqrt{B}	m_{T2} [GeV]
$m_{\tilde{t}} \; [\text{GeV}]$		500	600	700	60	00	
before cuts	234×10^3	80.50	23.00	7.19			
veto lepton	157×10^3	50.45	14.38	4.46			
≥ 5 jets	85.9×10^{3}	37.87	10.90	3.37			
2 b-tags	28.0×10^{3}	11.41	3.30	1.02			
2 tops reconstructed, $p_{T,t}^{\rm rec} > 100 \text{ GeV}$	6.32×10^{3}	3.90	1.23	0.38	0.0002	0.08	
$E_T > 150 \text{ GeV}$	44.71	2.80	0.98	0.33	0.02	0.7	
$m_{T2} > 350 \text{ GeV}$	0.45	0.79	0.44	0.18	1.0	3.3	
$100\% \ \tau$ rejection	0.14	0.73	0.40	0.16	2.8	5.3	10/-

Summary

- top : tool for new physics search
- keep low p_T signal tops : $p_{T,t} = 100 350 \text{ GeV}$
- buckets help to solve combinatorics
- *bj*-buckets provide ~ 4 times the signal