SUSY 2013 ICTP Trieste August 2013

TeV-Scale Superpartners from the Multiverse

Lawrence Hall University of California, Berkeley

BERKELEY CENTER FOR THEORETICAL PHYSICS

Results and Implications of LHC 8

A Surprise:

125 GeV Higgs
No BSM Discovery *v* is fine tuned (to some degree)

Results and Implications of LHC 8

A Surprise:

125 GeV Higgs No BSM Discovery

v is fine tuned (to some degree)

Almost Natural Physics will show up soon

Naturalness arguments are flawed

Results and Implications of LHC 8

Outline

1. High Scale SUSY

2. Spread SUSY

3. TeV SUSY with $\rho_D \sim \rho_B$

Outline

1. High Scale SUSY

2. Spread SUSY 3. TeV SUSY with $\rho_D \sim \rho_B$

(multi)-TeV superpartners

Outline

1. High Scale SUSY

2. Spread SUSY 3. TeV SUSY with $\rho_D \sim \rho_B$ (multi)-TeV superpartners

All three have a fine-tuned weak scale Agnostic Multiverse

Where are the Superpartners?

Without Naturalness

Where are the Superpartners?

Split SUSY

Λ_{CC} from the Multiverse

Λ_{CC} from the Multiverse

Fraction of virialized baryons

Λ_{CC} from the Multiverse

Fraction of virialized baryons

Stars in the Causal Patch

Martell, Shapiro, Weinberg astro-ph/9701099

Multiverse for v and Λ_{CC}

Multiverse for v and Λ_{CC}

Scanning SUSY Breaking

Consider a power law distribution for \tilde{m} in multiverse

 $dP \propto \tilde{m}^p \ d\ln \tilde{m}$

For $\tilde{m} \geq v$ include a factor for fine tuning of weak scale

$$dP \propto \left(\frac{v}{\tilde{m}}\right)^2 \tilde{m}^p \ d\ln \tilde{m}$$

1. High Scale SUSY

Runaway to High Scale SUSY

Runaway to High Scale SUSY

1. From Approximate Symmetry

Hall, Nomura 0910.2235

1. From Approximate Symmetry

2. From Multiverse Argument

Feldstein, Hall, Watari hep-ph/0608121

Both Schemes Require a Heavy Quark

Feldstein, Hall, Watari hep-ph/0608121

е	u d	s	μ	с	b τ	i	t
•	••	•	•	•	••		
L							
10 ⁻⁶	10 - ⁵	10 -4	10)-3	10 -2	10 -1	1

Both Schemes Require a Heavy Quark

Feldstein, Hall, Watari hep-ph/0608121

A universal Yukawa distribution peaked around 10^{-3}

2. Spread SUSY

Hall, Nomura 1111.4519

Multiverse for v, Λ_{CC} , and \tilde{m}

A Boundary from LSP Freeze-Out

Assumptions: 1. The LSP is cosmologically stable 2. $T_R \ge \tilde{m}$ 3. No Dilution

The result:

$$\Omega h^2 \propto \frac{1}{\langle \sigma_A v \rangle} \propto m_{LSP}^2 \propto \tilde{m}^2$$

$$\left(\begin{array}{cc} \rho_D < \rho_c & \longrightarrow & \tilde{m} < \tilde{m}_c \end{array}\right)$$

A Boundary from LSP Freeze-Out

Assumptions:1. The LSP is cosmologically stable2. $T_R \ge \tilde{m}$ 3. No Dilution

The result:

$$\Omega h^2 \propto \frac{1}{\langle \sigma_A v \rangle} \propto m_{LSP}^2 \propto \tilde{m}^2$$

$$\left(\begin{array}{cc} \rho_D < \rho_c & \longrightarrow & \tilde{m} < \tilde{m}_c \end{array}\right)$$

Tegmark, Aguirre, Rees, Wilczek astro-ph/0511774

Galactic disks don't fragment Close stellar encounters disrupt planets

A Boundary from LSP Freeze-Out

Assumptions:1. The LSP is cosmologically stable2. $T_R \ge \tilde{m}$ 3. No Dilution

The result:

$$\Omega h^2 \propto \frac{1}{\langle \sigma_A v \rangle} \propto m_{LSP}^2 \propto \tilde{m}^2$$

$$\left(\begin{array}{cc} \rho_D < \rho_c & \longrightarrow & \tilde{m} < \tilde{m}_c \end{array}\right)$$

Tegmark, Aguirre, Rees, Wilczek astro-ph/0511774

Galactic disks don't fragment Close stellar encounters disrupt planets

 $m_{LSP} \sim \alpha_{\text{eff}} \sqrt{T_{\text{eq}} M_{\text{P}}} \approx \left(\frac{\alpha_{\text{eff}}}{0.01}\right) 1 \,\text{TeV}$

Scalar Masses $\frac{X^{\dagger}X}{M^2}(Q^{\dagger}Q+\dots)$

 $\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$

Scalar Masses $\frac{X^{\dagger}X}{M^2}(Q^{\dagger}Q + \dots)$

 $\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$

Scalar Masses $\frac{X^{\dagger}X}{M^2}(Q^{\dagger}Q + \dots)$

 $\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$

Multiverse MSSM

Scalar Masses

$$\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$$

Multiverse MSSM

Spread SUSY

Spread SUSY

Gaugino dark matter

Spread SUSY

125 GeV Scalar is "effortless"

Spread SUSY

125 GeV Scalar is "effortless"

Susy Spectrum

arXiv:1210.2395

Susy Spectrum

arXiv:1210.2395

Dark Matter Abundance

Much To Explore: (1) Flavor/CP

Radiative quark and lepton masses

Arkani-Hamed, Gupta, Kaplan, Weiner, Zorawski arXiv:1210.0555

Flavor/CP

Altmanshofer, Harnik, Zupan arXiv:1308.3653

LFV/CP

Moroi, Nagai arXiv:1303.0668

Moroi, Nagai Yanagida arXiv:1305.7357

McKeen, Pospelov, Ritz arXiv:1303.1172

Much To Explore: (2) Proton Decay

Minimal Susy SU(5) alive

Hisano, Kobayashi, Kuwahara, Nagata arXiv:1304.3651

d=5 from Planck scales needs to be controlled

Dine, Draper, Shepherd arXiv 1308.0274 **d=6 Gauge exchange enhanced** Hall, Nomura arXiv:1111.4519

$$\tau_{p \to e^+ \pi^0} \simeq (0.8 - 5) \times 10^{34} \text{ years}$$

Gluino cascades at LHC

Gluino decays

Arkani-Hamed, Gupta, Kaplan, Weiner, Zorawski arXiv:1210.0555

Gluino decays

Sato, Shirai, Tobioka arXiv:1307.7144

3. TeV Scale Superpartners with $\rho_D \sim \rho_B$

Bousso, Hall 1304.6407

No Catastrophic Boundary for Dark Matter

The Dark to Baryon Ratio

Why is
$$\zeta = \frac{\rho_D}{\rho_B} \sim 1$$
?

The Dark to Baryon Ratio

Why is
$$\zeta = \frac{\rho_D}{\rho_B} \sim 1$$
?

A multiverse explanation: $dP \sim \zeta^{p'/2} \frac{1}{1+\zeta} d\ln \zeta$

LSP Dark Matter from Freeze-Out

LSP Dark Matter from Freeze-Out

LSP Dark Matter from Freeze-Out

Summary: SUSY in the Multiverse

A Remarkable Situation

1973-2013:40years without BSM discovery1998: $\Lambda_{CC} \sim \frac{1}{G_N t_{obs}^2}$ 2013:SM Higgs, apparently tuned

A Remarkable Situation

1973-2013: 40 years without BSM discovery1998: $\Lambda_{CC} \sim \frac{1}{G_N t_{obs}^2}$ 2013:SM Higgs, apparently tuned

Naturalness/Symmetry may be in trouble

A Remarkable Situation

1973-2013: 40 years without BSM discovery1998: $\Lambda_{CC} \sim \frac{1}{G_N t_{obs}^2}$ 2013:SM Higgs, apparently tuned

Naturalness/Symmetry may be in trouble

A New Framework

A Multiverse scanning mass scales: $\Lambda_{CC}, v, ...$ investigate $dP \propto \tilde{m}^p \ d \ln \tilde{m}$

Natural SUSY

Cornered after 30+ years -- we need to be sure

Runaway to High Scale SUSY

