Looking for invisible Higgs signal at the LHC

Monoranjan Guchait Tata Institute of Fundamental Research(TIFR) Mumbai, India

21st International Conference on Supersymmetry and Unification of Fundamental Interactions(SUSY13) ICTP, Trieste, 26-31st August,2013

Outline

•Higgs at the LHC

Invisible Higgs decays

•Invisible Higgs signal: Analysis and Results

Conclusion

Higgs at the LHC

ATLAS: $m_{\rm H} = 125.5 \pm 0.2(stat)^{+0.5}_{-0.6}(syst)$ **CMS :** $m_{\rm H} = 125.7 \pm 0.3(stat) \pm 0.3(syst)$

Is it the SM Higgs?

 $\mu = 0.80 \pm 0.14 \Rightarrow H \rightarrow H_{SM}$ Spin and parity measurement favour SM hypothesis

Physics..... (page 4)

Non SM decay of Higgs? $\Gamma_H = \Gamma_{SM} + \Gamma_{BSM} \Rightarrow BR_{BSM} = 1 - BR_{SM}$

CMS: $(BR)_{BSM} < 0.64 @ 95\%$ C.L.

Invisible Higgs decays:Models $H \rightarrow \chi \chi$

$$\chi \chi = ZZ \to \nu \bar{\nu} \nu \bar{\nu} \quad \text{very tiny,}$$
$$= \tilde{\chi}_1^0 \tilde{\chi}_1^0, \tilde{\nu} \tilde{\nu}$$

 $= \nu_H \nu_H$

= graviscalars in extra dimension models

....and many more other models

• Higgs Portal models: Higgs is coupled with the Dark matter, acts as a mediator in DM annhilation and scattering, so invisible decay BR and DM scattering cross sections are connected,

$$\chi\chi=$$
S, V, f

A. Djouadi, et. al. 1205.3169 G. Belanger et. al.1308.3735

Invisible Decay width $\mathbf{H} \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 \text{ in SUSY}$

BR_{inv} pMSSM framework, constraints from LEP, flavour physics, DM, Higgs...

G. Belanger, et .al. 1308.3735

Invisible Higgs signal:ZH and VBF

$M_H=125 { m GeV}$	
$ZH:\ell^+\ell^-+E_T,b\overline{b}+E_T$	Г
vbfH : 2 jets + E_T	•

	$\sigma({\sf pb})$ 8 TeV	$\sigma({\sf pb})$ 14 TeV
ZH	0.4	0.83
vbfH	1.73	4.3

$$R_{inv} \equiv \sigma_H^{BSM} BR(H \to inv) / \sigma_H^{SM}$$

Simulation: Tools

- •**ZH** : Madgraph+PYTHIA6
- •VBF productions(Signal+Background): MadGraph
- •Backgrounds: PYTHIA6 and PYTHIA6+Madgraph
- •Jet Reconstruction: FastJet, anti K_T with R =0.5
- •Jet Substructure: FastJet, R=1.2

Background cross sections:

	$t\overline{t}$	W+jets	Z+jets	QCD
8 TeV	160	$\sim 10^4$	$\sim 10^3$	$\sim 10^{6}$
14 TeV	500	$\sim 10^5$	$\sim 10^4$	10^{9}

Backgrounds: ZZ $(\rightarrow (\ell \ell)(\nu \bar{\nu}), WZ \rightarrow \ell \nu \nu \bar{\nu}, t\bar{t} \rightarrow (\ell \nu b)(\ell \nu \bar{b}), WW$ Selections:

• Leptons: $p_T^{\ell} > 10$ GeV and $|\eta_l| < 3$. Isolation: $E_T^{ac} \le 0.2 p_T^{\ell}$. $E_T^{ac} = \sum p_T^j (\Delta R(l, j) \le 0.2)$

• Jet veto, $p_T > 30$ GeV and $|\eta| < 4$.

- $\cos \phi_{\ell \bar{\ell}} > 0$, $M_T^{l \bar{l}} > 150$ (200) GeV for 8 (14) TeV.
- $M_T^{l\bar{l}} = \sqrt{p_T^{ll} E_T \left(1 \cos\phi(E_T^{ll}, E_T)\right)}. \quad \Rightarrow \text{ used in CMS}$
- $|M_Z m_{\ell \bar{\ell}}| < 10$ GeV.

R.Godbole, MG,K.Mazumdar,S.Moretti,D.P.Roy, PLB,'03. D.Ghosh, R.M.Godbole, MG, K. Mohan D. Sengupta, 1211.7015 Y. Bai et. al.1112.4496

ZH: $\ell^+ \ell^- + E_T$

Process	8 TeV		14 TeV	
	Production	After Cuts	Production	After Cuts
	C.S[pb]	C.S[fb]	C.S[pb]	C.S[fb]
ZZ	4.79	6.7	10.1	17.6
WZ	12.6	1.8	47.3	3.8
WW	33.8	0.3	69.4	2.3
$t \overline{t}$	115	0.1	480	0.95
Total Bg		8.9		24.7
ZH	0.3	2.3	0.64	5.6
S/\sqrt{B}	$\mathcal{L}{=}20 f b^{-1}$	~ 3.5	$\mathcal{L}{=}50 f b^{-1}$	\sim 8

D.Ghosh, R.M.Godbole, MG, K. Mohan, D.Sengupta, PLB '13(1211.7015)

ZH:
$$b\bar{b} + E_T$$

Method (a): b-jets are identified using jet reconstruction algorithm and matching, taking care b-jet efficiency.

Method (b): b-jets are identified using Jet substructure technique.

Backgrounds: ZZ, $Zb\bar{b}$, WZ, $t\bar{t}$, $Wb\bar{b}$.

Selections:

•b jet selection, Jet reconstruction/Jet substructure

- •Veto events with leptons
- • $|M_{b\bar{b}} M_Z| < 30$ GeV.
- • E_T >70 GeV
- • $M_T(b\overline{b}, \overline{E}_T) > 200 \text{ GeV}.$

•No un-tagged jet activitiy, $R_T = \frac{p_{T_{b_{j_1}}} + p_{T_{b_{j_2}}}}{H_T} > 0.9$

ZH: $b\bar{b} + E_T$ $\sqrt{S}=8 \text{ TeV}$

Process	Prod. C.S[pb]	After Cuts C.S [fb]	After cuts C.S[fb]
		b jet cluster	b jet substructure
ZZ	4.79	2.26	1.92
WZ	12.6	0.38	0.36
$ uar{ u}bar{b}$	16	3.1	1.33
$t \overline{t}$	115	0.48	0.52
$Wb\overline{b}$	50.5	0.54	0.16
Background		6.76	4.29
ZH	0.3	0.8	0.72
S/\sqrt{B}			
$\mathcal{L} = 20 f b^{-1}$		~ 2	\sim 2

D.Ghosh, R.M.Godbole, MG, K. Mohan, D.Sengupta, PLB '13(1211.7015)

Physics..... (page 13)

ZH: $b\bar{b} + E_T \mathbf{14} \mathbf{TeV}$ $\sqrt{S}=\mathbf{14} \mathbf{TeV}$

Process	Production C.S[pb]	After Cuts C.S [fb]	After cuts C.S[fb]
		b jet cluster	b jet substructure
ZZ	10	5.56	2.47
WZ	26.7	3.5	1.44
$ uar{ u}bar{b}$	47.3	12.9	3.04
$t\overline{t}$	476	3.92	0.16
$Wb\overline{b}$	112	4.2	1.08
Background		30.	8.19
ZH	0.64	2.	1.1
S/\sqrt{B}		~4	~4
$\mathcal{L} = 100 f b^{-1}$			

D.Ghosh, R.M.Godbole, MG, K. Mohan, D.Sengupta, PLB '13(1211.7015)

VBF: 2 jets + E_T

Event Selections:

- •VBF selections: $|\eta_{j1} \eta_{j2}| = |\Delta \eta| > 4, \eta_{j1} \times \eta_{j2} < 0.$
- •Central Jet veto: no jets with $p_T > 40$ GeV in the rapidity gap region between two jets.
- •Lepton veto(LV): Since Signal is free of any leptonic presence.
- •Dijet invariant mass M_{jj} : $M_{jj} > 1400$ (1800) GeV for 8 TeV (14 TeV).

VBF: 2 jets + E_T

Process	8 TeV		14 TeV	
	Production	After cuts	Production	After cuts
	CS[pb]	CS[fb]	CS[pb]	CS[fb]
W+2jets(VBF)	76.5	4.5	167.9	6.3
W+2jets	18700	5.8	45900	18.7
W+3jets	10260	< 1	21000	13
Z+2jets(VBF)	19	6	43.2	6.7
Z+2jets	6000	16.5	14000	11.2
Z+3jets	2772	8.3	7300	17.8
tbW	140	< 1	611	< 1
Total Background		41.1		74
hjj(VBF)	1.73	7.3	4.3	8.7
hjj	6.7	1.2	24.5	1.3
Signal		8.5		10

D.Ghosh, R.M.Godbole, MG, K. Mohan, D.Sengupta, 1211.7015

Results:Summary

$\mathrm{BR}_{\mathrm{inv}}$ sensitivity at $\mathbf{5}\sigma$

Process	8 TeV	14 TeV	14 TeV
	(20 ${\rm fb}^{-1}$)	(30 ${\rm fb}^{-1}$)	(100 ${\rm fb}^{-1}$)
VBF	0.34	0.33	0.17
$Z(\rightarrow l^+l^-)H$	0.58	0.32	0.18
$Z(\rightarrow b\overline{b})H$ (substructure)	_	_	0.50
$Z(\rightarrow b\overline{b})H(\mathbf{b-jet\ cluster})$	_	_	0.55

Possible to measure invisible BR as low as 30% at 14 TeV LHC

Invisible Higgs Search at the LHC:CMS and ATLAS $PP \rightarrow ZH \rightarrow (\ell^+\ell^-) + E_T$

CMS: BR(H \rightarrow inv) <0.75% @ 95% C.L, CMS - PAS-HIG 13-018 ATLAS: BR(H \rightarrow inv) <0.65% @ 95% C.L, ATLAS CONF 2013-011

Conclusion

•Invisible Higgs decay width still a window to confirm the existence of BSM physcis.

 Invisible decay width and DM are connected, Higgs as a portal

•LHC may find invisible decay of Higgs signal in future, about 30% at low luminosity and 17% at high luminosity.