

UNIVERSIT.

PPEK

Stefan Liebler

Higgs production in the 2HDM and the MSSM (SusHi) &RGISCHF.

SUSY 2013 ICTP Trieste, Italy

27 August 2013

Theoretische Teilchenphysik Fachbereich C Bergische Universität Wuppertal

UNIVERSITÄT WUPPERTAL

Higgs production in the MSSM and the 2HDM

Higgs production processes:

Stefan Liebler

Higgs production in the MSSM and the 2HDM

MSSM

Higgs sector of the MSSM:

Two SU(2) doublets $\Phi_u = (\Phi_u^+, \Phi_u^0)^T$ and $\Phi_d = (\Phi_d^0, \Phi_d^-)^T$ mix as follows

$$\begin{pmatrix} \Phi_{u}^{0} \\ \Phi_{d}^{0} \end{pmatrix} = \begin{pmatrix} v_{u} \\ v_{d} \end{pmatrix} + \frac{1}{\sqrt{2}} R_{\alpha} \begin{pmatrix} h \\ H \end{pmatrix} + \frac{i}{\sqrt{2}} R_{\beta} \begin{pmatrix} G \\ A \end{pmatrix}$$

8 degrees of freedom result in 5 physical particles: h, H, A, H^{\pm} . MSSM Higgs sector input: $\tan \beta = \frac{v_u}{v_d}, m_A^2 \rightarrow m_{h,H}$, Higgs mixing angle α . Higher orders e.g. by FeynHiggs [Frank Degrassi Hahn Heinemeyer Hollik Rzehak Slavich Weiglein Williams]. Relative strength of Higgs couplings for $\phi = \{h, H, A\}$ (w.r.t. SM couplings)

▷ to SM fermions g_f^{ϕ} : ▷ to gauge bosons g_V^{ϕ} : ▷ squark couplings $g_{f_i}^{\phi}$:

Vacuum structure of 2HDMs with Higgs doublets Φ_1 and Φ_2 generally rich. Assumptions (used in 2HDM analyses by the LHC experiments):

- > CP conservation in the Higgs sector
- No tree-level FCNCs

 $4 \ {\rm types}$ of models can be distinguished by Yukawa couplings:

Туре	u_R	d_R	e_R	
Type I Type II Lepton-specific Flipped	$\begin{array}{c} \Phi_2 \\ \Phi_2 \\ \Phi_2 \\ \Phi_2 \\ \Phi_2 \end{array}$	$\begin{array}{c} \Phi_2 \\ \Phi_1 \\ \Phi_2 \\ \Phi_1 \end{array}$	$ \begin{array}{c} \Phi_2 \\ \Phi_1 \\ \Phi_1 \\ \Phi_2 \end{array} $	~ MSSM

Physical particle content: h, H, A, H^{\pm} 2HDM input: $m_h, m_H, m_A, m_{H^{\pm}}, \tan \beta = v_1/v_2, \alpha$ (mixing h - H)

Relative couplings of Higgs fields: $g_f^{\phi} = F(\alpha, \beta)$, g_V^{ϕ} as before, $g_{\tilde{f}}^{\phi} = 0$ [Review of 2HDMs: The Higgs Hunter's guide; Branco Ferreira Lavoura Rebelo Sher Silva; arXiv:1106.0034]

Gluon fusion basics

BERGISCHE UNIVERSITÄT WUPPERTAL

Gluon fusion basics

NLO virtual amplitudes:

- ▷ gluon-quark: known analytically (higher orders) [Spira Djouadi Graudenz Zerwas '95; Harlander Kant '05; . . .]
- gluon-squark: known analytically/numerically

[Anastasiou Beerli Bucherer Daleo Kunszt '06; Aglietti Bonciani Degrassi Vicini '06; Mühlleitner Spira '06; Bonciani Degrassi Vicini '07]

gluino-squark-quark contributions: semi-analytically known

[Anastasiou Beerli Daleo '08; Mühlleitner Spira Rzehak '10]

Problem with gluino-quark-squark contributions: Five different masses: $m_q, m_{\tilde{q}1}, m_{\tilde{q}2}, m_{\tilde{g}}, p^2 = m_{\phi}^2$

> Taylor expansion in small Higgs mass:

 \longrightarrow top-stop-gluino contribution $m_{\phi} \ll m_t, m_{\tilde{t}1}, m_{\tilde{t}2}, m_{\tilde{g}}$ [Harlander Steinhauser '03 '04 + Hofmann '05; Degrassi Slavich '08]

(NNLO top-stop-gluino contr. [Pak Steinhauser Zerf '10 '12])

- $\triangleright~$ Expansion in heavy SUSY masses: $m_{\phi}, m_q \ll m_{ ilde q_1}, m_{ ilde q_2}, m_{ ilde g}$

SusHi [Harlander Mantler SL '12] combines efforts achieved in the XS calculation:

(0. Link of SusHi to FeynHiggs or 2HDMC [Eriksson Rathsman Stål '09].)

- Calculate XS with guark contributions (using resummation) (YR1).
- 2. Add expanded squark/gluino contributions of third generation (in the MSSM).

(4. Add bottom-guark annihilation and calculate differential guantities.)

Electroweak contributions by light quarks: [Aglietti Bonciani Degrassi Vicini '04 '10]

Example from new benchmark scenarios defined by [Carena et al.; arXiv:1302.7033]: "lightstop scenario"

Stefan Liebler

Relevant diagrams for $pp \rightarrow V\phi$ at LO:

 $\sigma_{WH} = \sigma_{WH}^{\rm DY} (1 + \delta_{WH, {\rm EW}}), \qquad \sigma_{ZH} = \sigma_{ZH}^{\rm DY} (1 + \delta_{ZH, {\rm EW}}) + \sigma_{gg \rightarrow ZH}$

Known corrections in the SM:

- ▷ σ^{DY}_{UT} calculated up to NNLO with vh@nnlo [Brein Djouadi Harlander Zirke '03 '12] with electroweak corrections [Ciccolini Dittmaier Krämer '03]
- $\triangleright \sigma_{gg \rightarrow ZH}$ known at NLO [Altenkamp Dittmaier Harlander Rzehak Zirke '12]
- ▷ Top-induced corrections [Brein Harlander Wiesemann Zirke '11]

Procedure in the 2HDM: Reweight σ_{VH} with $(g_V^{\phi})^2$? Problem: Gluon-induced contributions are dependent on g_t^{ϕ} and g_b^{ϕ} as well!

Higgs Strahlung in the 2HDM: [Harlander SL Zirke '13] Moreover resonant contributions to $gg \rightarrow Z\phi$:

Even more contributions possible $b\overline{b} \rightarrow Z\phi$:

 $\longrightarrow pp \rightarrow Z\phi$ affected by various contributions. $pp \rightarrow W\phi$ reweighted by $(q_V^{\phi})^2$.

 \longrightarrow New physics effects in the ratio $R_{WZ\phi} = \sigma_{W\phi}/\sigma_{Z\phi}!$ Independent of ϕ decay mode, uncertainties reduced.

Implementation in vh@nnlo with link to 2HDMC.

UNIVERSITÄT

Higgs Strahlung

in the 2HDM

We showed progress in the calculation of Higgs production for a neutral Higgs ϕ in the SM/MSSM/2HDM.

In case of gluon fusion/bottom-quark annihilation:

- calculation of MSSM/2HDM gluon fusion XS @NLO including all SUSY, NNLO top and electroweak contributions.
- ▷ calculation of MSSM/2HDM weighted bottom-quark annihilation XS.

 \rightarrow SusHi

In case of Higgs Strahlung in the 2HDM calculation of all relevant contributions at least at LO \leftrightarrow Ratio $\sigma_{W\phi}/\sigma_{Z\phi}$.

 \rightarrow vh@nnlo (2HDM version published soon.)

Many thanks for your attention!

Where can I get SusHi/vh@nnlo? http://sushi.hepforge.org and http://nnlo.de

Appendix

How can the Higgs sector in a local $SU(2) \times U(1)$ gauge theory be extended?

Measurement of $\rho \sim 1.0004 \ [PDG]$

Introduce n scalar multiplets ϕ_i with:

- ▷ weak Isospin T_i
- \triangleright weak hypercharge Y_i
- \triangleright VEVs v_i of neutral comp.

$$\rho = \frac{\sum_{i=1}^{n} [T_i(T_i+1) - Y_i^2] v_i}{\sum_{i=1}^{n} 2Y_i^2 v_i}$$

→ Simplest version: Add multiplets with $T(T + 1) = 3Y^2$ e.g. SU(2) singlets with Y = 0, SU(2) doublets with $Y = \pm \frac{1}{2}$, ...

Within this talk:

- $\triangleright~$ Standard Model: One SU(2) doublet
- $\triangleright~$ Minimal Supersymmetric Standard Model (MSSM): Two SU(2) doublets
- $\triangleright~2$ Higgs Doublet Model (2HDM): Two SU(2) doublets

Resummation of large $\tan\beta$ -enhanced terms in the MSSM

$$\mathcal{L} \supset -Y_t H_u Q t_R + Y_b H_d Q b_R$$

Using $\langle H_u \rangle = v_u, \langle H_d \rangle = v_d$ and $v_d^2 + v_u^2 = v^2, \tan \beta = v_u/v_d$ we define

The effective Lagrangian motivates:

$$m_b = Y_b v_d + \tilde{Y}_b v_u = Y_b v_d (1 + \epsilon \tan \beta)$$

$$\Rightarrow \quad Y_b = \frac{m_b}{v_d (1 + \Delta_b)}$$

This replacement implies a resummation of large $\tan \beta$ -enhanced terms:

Enhancement of g_b^{ϕ} for large $\tan \beta$ in MSSM

Idea: Use results from 5FS and reweight accordingly with resummed MSSM couplings [Guasch Häfliger Spira '03]:

$$g_b^A = g_b^A \frac{1}{1 + \Delta_b} \left(1 - \frac{1}{\tan^2 \beta} \Delta_b \right)$$
$$g_b^h = g_b^h \frac{1}{1 + \Delta_b} \left(1 - \frac{1}{\tan \beta \tan \alpha} \Delta_b \right)$$
$$g_b^H = g_b^H \frac{1}{1 + \Delta_b} \left(1 + \frac{\tan \alpha}{\tan \beta} \Delta_b \right)$$

$$\begin{split} \Delta_{Ab} &= -\frac{C_F}{2\pi} \, \alpha_s(\mu_r) m_{\tilde{g}} A_b I(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, m_{\tilde{g}}^2) \\ \Delta_b &= \frac{C_F}{2\pi} \, \alpha_s(\mu_r) m_{\tilde{g}} \mu \tan \beta I(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, m_{\tilde{g}}^2) \end{split} \Delta_b \to \Delta_b \frac{1}{1 + \Delta_{Ab}} \end{split}$$

Specify model, collider, \sqrt{s} , Higgs, processes

I.

Give SM input values

MSSM/2HDM input values: Link SusHi to

▷ FEYNHIGGS

> 2HDMC [Eriksson et al, arXiv: 0902.0851]

Specify PDF sets

Specify VEGAS input

Block	SUSHI					
1	1 #	# model:	0 = SM, 1 = M	SSM, 2 = 2HDM		
2	0 #	# 0 = so	calar (h), 1 =	pseudoscalar (A),	2 = scalar (H)	
3	0 #	≮ collid	er: 0 = p—p, 1	= p-pbar		
4	8000.d0 #	¢ center	-of-mass energy	y in GeV		
5	2 #	f order	ggh: -1 = off,	0 = LO, 1 = NLO,	2 = NNLO	
	#	ŧ	3 = ~NNL0) stop		
6	2 #	t order	bbh: -1 = off,	0 = LO, 1 = NLO,	2 = NNLO	
7	1 #	electro	oweak cont. fo	r ggh:		
	#	t = nc	o, 1 = light qu	arks at NLO, 2 = S	SMEW factor	
Block	SMINPUTS		# Standard Mod	lel inputs		
1	1.27934000e	+02	<pre># alpha_em^(- 1</pre>)(MZ) SM MSbar		
<u></u>						
Block	MINPAR		# SUSY breaking	g input parameters	6	
3	1.00000000e	2+01 # tanb				
BIOCK	EXTPAR		# M O			
3	2000 d0		# IVI_3 # A +			
	2000.00		# A_l			
Block						
_83	_83691204e_01 # mixing in Higgs sector					
Block	MASS		# mixing m m	393 300101		
25	120.76695d0)	# Higgs mass h			
Block	PDFSPEC					
1 MSTW2008lo68cl.LHgrid			# name of pdf (lo)		
2	MSTW2008nlo68cl.LHgrid #			# name of pdf ()	nlo)	
3	MSTW2008nr	1lo_asmz	range.LHgrid	# name of pdf ()	nnlo)	
4	0 #	set nu	umber			
Block	VEGAS					
1	10000 #	numbe	r of points			
2	5 #	numbe	r of iterations			
3	10 #	print:	: 0 = no output	, 1 = prettyprint	, 10 = table	

BERGISCHE UNIVERSITÄT WUPPERTAL

Example output file

<pre># Please cite the following papers (for this run): # Harlander:2012pb</pre>
Heinemeyer:1998np # Degrassi:2002 fi # Frank:2006vh
Block SUSHiggh # Bon appetit
1 1.59566551E+01 # ggh XS in pb
Block SUSHIbbh # Bon appetit
1 2.67975811E-01 # bbh XS in pb
Block XSGGH # ggh MSSM-Cross sec. in pb (w/o EW)
2 1.13849524E+01 # NLO
21 1.14675980E+01 # NLO gg
22 - 1.02733041E-01 # NLO qg
23 2.00874475E-02 # NLO qq
Block XSGGHEFF # ggh MSSM-Cross sec.
1 1.49056433E+01 # ggh@NLO MSSM
2 1.88154287E+01 # ggh@NNLO MSSM
3 5.81396602E—02 # electroweak factor
Block XSBBH # bbh MSSM-Cross sec. in pb
1 3.72508379E-01 # LO
2 3.35738356E-01 # NLO
3 2.67975811E-01 # NNLO
Block MASSOUT
5 4.21300000E+00 # m_b(m_b), MSbar
6 1.73200000E+02 # m_t(pole)
23 9.11876000E+01 # m_Z
24 8.03980311E+01 # m_W
25 1.23484421E+02 # MSSM-Mh in GeV
1000005 4.93350465E+02 # sbottom1 mass in GeV
2000005 5.18897088E+02 # sbottom2 mass in GeV
1000006 3.23616710E+02 # stop1 mass in GeV
2000006 6.71663496E+02 # stop2 mass in GeV

BERGISCHE UNIVERSITÄT WUPPERTAL

SusHi usage: Current ATLAS 2HDM analysis $\phi \rightarrow WW \rightarrow l\nu l\nu$

- ▷ **Gluon fusion:** σ from SusHi
- $\triangleright~{\rm Vector}~{\rm boson}~{\rm fusion};~\sigma^{\rm VBF}=\sigma^{\rm VBF, {\rm SM}}(g_V^\phi)^2$

