Beyond the Standard Model Higgs Physics using the ATLAS detector

21st International Conference on Supersymmetry and Unification of Fundamental Interactions.

Alessandro Manfredini On behalf of the ATLAS Collaboration

26-31/8/2013 Trieste, Italy.

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

BSM Higgs search at ATLAS

- Many search ongoing for extended Higgs sector at ATLAS
- Almost all the searches uses a minimal extension of the Higgs sector like a Two Higgs Doublets Model (2HDM)
- This leads to 5 physical Higgses: H^{\pm} , H^{0} , h^{0} , A (CP-odd)
- Two types considered:
 - Type-I: all quarks couple to just one of the doublets
 - Type-II: up-type-quarks and down-type-quarks couple to different doublets. (MSSM is an example)
- One can easily accommodate the 125 GeV Higgs in those models

Overview of ATLAS BSM Higgs Searches

• Charged Higgs:

 $H^+ \rightarrow \tau^+ \upsilon + jets \text{ (updated)}$ $H^+ \rightarrow C\overline{S}$

Doubly charged Higgs

• Next to Minimal:

$$\begin{split} NMSSM & a_1 \to \mu\mu \\ NMSSM & h \to a_1a_1 \to 4\gamma \end{split}$$

• Neutral Higgs: $H^{0} \rightarrow \tau^{+}\tau^{-}$ and $\mu^{+}\mu^{-}$ $2HDM \quad H^{0} \rightarrow W^{+}W^{-}$ Invisible Higgs Fermiophobic $H^{0} \rightarrow \gamma\gamma$ 4^{th} fermion generation

For More details: ATLAS PUBLIC RESULT

Neutral Higgs Searches

2HDM $H \rightarrow WW$

- Assumption: "the Higgs" at 125 GeV is the light "h" → search for a heavier neutral H assuming a 2HDM
- Production: gluon fusion and vector boson fusion
- Final state: W decays leptonically, only considered electron-muon, missing energy
- Strategy: split into 0-jet and 2-jet channels
- Discriminant variable: neural network output (trained for different masses)

ATLAS-CONF-2013-027

2HDM $H \rightarrow WW$: Limits

Exclusion limit set for type-I and II, for $tan\beta = 1,3,6,20,50$

MSSM $H \rightarrow \tau \tau / \mu \mu$

- Search for: Neutral Higgs H/h/A decaying $\tau\tau/\mu\mu$ assuming MSSM
- Production: gluon-fusion and b-associated
- General Strategy: split in b-tag and b-veto categories
- At high tan β BR to $\tau\tau \sim 10\%$ and to $\mu\mu \sim 0.04\%$, final state considered: $\tau_e \tau_{\mu}, \tau_1 \tau_h, \tau_h \tau_h$ and $\mu\mu$
- Discriminant variable: di-τ invariant mass (likelihood based method), µµ channel parametrized background fitted to data (invariant mass scan)

JHEP02(2013)095⁷

MSSM $H \rightarrow \tau \tau / \mu \mu$ - Limits:

Expected and observed 95% CL limits on $\tan\beta$ as a function of mA (left), and on the production cross-section times BR for each production mechanism (right). Assuming gluon-fusion and b-associated production.

Charged Higgs Searches

$H^+ \rightarrow \tau^+ \upsilon + jets$: Analysis Overview

- NOTE: charge conjugated is implied
- First LHC search for Heavy charged Higgs!
- Analysis Strategy: Light and Heavy Higgs mass category to take advantage of production channels
- Assuming MSSM: high BR of H⁺ to τ^+ over wide range of parameter space
- **Goal** discovery of H⁺ or put limits on:

$H^+ \rightarrow \tau^+ \upsilon + jets$: Signal final state

- Analysis final state selections:
 - Fully hadronic final state: only W → jets and hadronic τ considered
 - Veto on other leptons
 - 3 or 4 jets of which 1 btagged
 - High Missing Transverse
 Energy
 - Discriminating variable m_T

 $m_T =$ Transverse invariant mass of tau and Missing Transverse Energy

$H^+ \rightarrow \tau^+ \upsilon + jets$: Background Model

- Backgrounds: $t\bar{t}$ and single-top, W and Z + jets, dibosons, QCD multi-jet.
- Background estimation divided in 2 categories:
 - Real taus (and an additional lepton-fake taus) contribution → estimated via Simulation
 - Jet-fake taus \rightarrow estimated via data-driven method: apply to data weights calculated from τ identification and misidentification efficiency

$H^+ \rightarrow \tau^+ \upsilon + jets$: Results

No evidence in data found for the existence of a charged Higgs boson.

Using 2012 full dataset expected and observed 95% CL upper limits are set for:

- Left Branching ratio of top into charged higgs, assuming $BR(H^+ \rightarrow \tau^+ \upsilon) = 1$ (light higgs search)
- Right production cross-section × BR(H⁺ $\rightarrow \tau^+ \upsilon)$ (heavy higgs search)

$H^+ \rightarrow \tau^+ \upsilon + jets$: Results

Interpretation in the context of the MSSM m_h^{max} scenario of the limits on BR(t \rightarrow H⁺ b) for light H⁺ (left) and production of heavy charged Higgs (right)

14

Summary

- An update on the search for charged Higgs using the τ +jet channel with 19.5 fb⁻¹ has been presented
- No evidence of charged Higgs is found.
- Limits are set at 95% CL on:
 - BR(t \rightarrow bH⁺) in a range of 0.2 2.1% for 90 < m_H < 160 GeV
 - σ (top assoc. prod.) × BR(H⁺ → $\tau^+\nu$) in a range of 0.01 0.9 pb for mass 180 < m_H < 600 GeV
- Many different searches for extended BSM Higgs sector with Atlas, however no evidence found.
- Further analysis still in progress!!!

Additional Material

H[±] data driven jet-fake tau

H^{\pm} Systematics table

Variation Detector effects	Shift Up (%)	Shift Down (%)	Shift Up (%)	Shift Down (%)	
	light H^+ event selection		heavy H^+ event selection		
<i>b</i> –Jet (Mis-)Tag Efficiency Uncertainty	3.1	-3.4	2.9	-3.2	
Jet Energy Scale Uncertainties	3.7	-4.8	7.1	-6.8	
JVF Uncertainty	2.2	-1.9	2.2	-2.1	
$E_{\rm T}^{\rm miss}$ Uncertainties	-0.6	-0.2	0.4	0.3	
$ au_{had-vis}$ e-Veto Uncertainty	0.02	-0.02	0.01	-0.01	
$ au_{had-vis}$ Energy Scale Uncertainty	3.6	-3.8	3.6	-3.8	
$ au_{\rm had-vis}$ ID Uncertainty	3.8	-3.8	3.7	-3.7	
Pile-up Uncertainties	0.9	-1.5	2.6	-2.1	

Variation Data-driven method	Shift (±%)	Shift (±%)	
	light H^+ event selection	heavy H^+ event selection	
True $\tau_{had-vis}$ Contamination	3.1	3.3	
Jet Composition	10.1	9.8	
Statistical Uncertainty on p_m	16.3	13.9	
Statistical Uncertainty on p_r	6.7	7.7	
$\tau_{had-vis}$ e-Veto Uncertainty	3.5	3.7	
$\tau_{\rm had-vis}$ ID Uncertainty	9.2	10.9	

H^{\pm} observed p_0 -values

m_{H^+} (GeV)	90	100	110	120	130	140	150	160
p ₀ -value	0.29	0.50	0.57	0.69	0.72	0.90	0.94	0.95
m_{H^+} (GeV)	180	190	200	225	250	275	300	350
p ₀ -value	0.42	0.35	0.37	0.90	0.93	0.94	0.92	0.65
m_{H^+} (GeV)	400	450	500	550	600			
p ₀ -value	0.27	0.31	0.34	0.62	0.31			

The compatibility with background is measured by p_0 -values, probability that a background only hypothesis is as or more compatible with the result than that obtained from the maximum likelihood fit to data with the background+signal model.

2HDM $H \rightarrow WW$: NN variables

Table 2: Input variables used for the NNs in the 0-jet and 2-jet channels. The definitions of the variables use the terms *leading lepton* and *leading jet*, defined as the lepton/jet with the highest p_{T} .

	Variables used in the 0-jet channel and the 2-jet channel
$ \eta(\ell_1) $	The absolute value of the pseudorapidity of the leading lepton.
m_{T}	The transverse mass of the lepton- $E_{\rm T}^{\rm miss}$ system, as defined in Equation 2.
$m(\ell_1\ell_2)$	The invariant mass of the dilepton system.
	Variables used in the 0-jet channel only
$p_{\mathrm{T}}(\ell_1\ell_2)$	The transverse momentum of the dilepton system.
$E_{\mathrm{T,rel}}^{\mathrm{miss}}$	The projection of the calorimeter-based missing transverse momentum.
$ \Delta Y(\ell_1 \ell_2) $	The absolute value of the rapidity differences of the two charged leptons.
	Variables used in the 2-jet channel only
$p_{\mathrm{T}}(\ell_2)$	The transverse momentum of the second-leading lepton.
$p_{\mathrm{T}}(j_1)$	The transverse momentum of the leading jet.
$m(j_1)$	The mass of the leading jet.
$\cos\theta(\ell_1,\ell_2)$	The cosine of the angle between the two charged leptons.
$m(j_1j_2)$	The invariant mass of the dijet system.
$p_{\mathrm{T}}^{\mathrm{tot}}$	The total transverse momentum, defined as the magnitude of the vector sum of the transverse
-	momenta of the two jets, the two leptons and the missing transverse momentum:

 $p_{\rm T}^{\rm tot} = |\mathbf{p}_{\rm T}^{\rm tot}| = |\mathbf{p}_{\rm T}^{\ell 1} + \mathbf{p}_{\rm T}^{\ell 2} + \mathbf{p}_{\rm T}^{j 1} + \mathbf{p}_{\rm T}^{j 2} + \mathbf{p}_{\rm T}^{\rm miss}|.$

MMC in MSSM $H \rightarrow \tau \tau$

0.01

0.005

0.05

0.1

0.15

- From 6 to 8 unknowns in the final state (depending on τ decays)
- Only 4 constraint
- Scan parameter space, calculate di-tau invariant mass and weight it by the tau decay likelihood distribution
- Most probable invariant mass used as estimator

$$\mathbb{E}_{\Gamma_x} = p_{\min_1} \sin \theta_{\min_1} \cos \phi_{\min_1} + p_{\min_2} \sin \theta_{\min_2} \cos \phi_{\min_2} \\ \mathbb{E}_{\Gamma_y} = p_{\min_1} \sin \theta_{\min_1} \sin \phi_{\min_1} + p_{\min_2} \sin \theta_{\min_2} \sin \phi_{\min_2} \\ M_{\tau_1}^2 = m_{\min_1}^2 + m_{vis_1}^2 + 2\sqrt{p_{vis_1}^2 + m_{vis_1}^2} \sqrt{p_{\min_1}^2 + m_{\min_1}^2} \\ -2p_{vis_1}p_{\min_1} \cos \Delta \theta_{vm_1} \\ M_{\tau_2}^2 = m_{\min_2}^2 + m_{vis_2}^2 + 2\sqrt{p_{vis_2}^2 + m_{vis_2}^2} \sqrt{p_{\min_2}^2 + m_{\min_2}^2} \\ -2p_{vis_2}p_{\min_2} \cos \Delta \theta_{vm_2} \\ \end{bmatrix}$$

Probability function

0.2

 $\Delta \theta_{3D}$ [rad]

$H^+ \rightarrow c\bar{s} in t\bar{t}$ events

- Search for: Light charged Higgs in top decays (as previously).
- In MSSM for tg $\beta < 1$ BR(H⁺ \rightarrow cs̄) ~ 70% for mass ~ 110 GeV
- Final state: $H^{\pm} \rightarrow 2jets$, and leptons from second top.
- Selections: e/μ and ≥ 4 Jets (of which 2 b-tagged) High Missing Energy
- Discriminant variable: di-jet invariant mass. Using Kinematic fitter to fully reconstruct top decay.
- Upper limits on BR($t \rightarrow bH^+$) are set.

Eur. Phys. J. C, 73 6 (2013) 2465 22