Habemus MSSM?

Jérémie Quevillon, LPT Orsay

SUSY2013, ICTP Trieste, August 27th 2013

A. Djouadi, L. Maiani, G. Moreau, A. Polosa, JQ, V. Riquer, arXiv:1307.5205

A. Djouadi, JQ, arXiv:1304.1787

The post–Higgs MSSM scenario :

- observation of the lighter h boson at a mass of ≈ 125 GeV.
- non-observation of superparticles at the LHC.

MSSM \Rightarrow SUSY-breaking scale M_S is rather high, $M_S \gtrsim 1$ TeV.

- M_h ≈ 125 GeV fixes the dominant radiative corrections that enter the MSSM Higgs boson masses ⇒ the Higgs sector can be described by only 2 free parameters (good approximation).
- \bigcirc Main phenomenological consequence of these high M_S values :
 - reopen the low $\tan \beta$ region, $\tan \beta \lesssim$ 3–5, which was for a long time buried under the LEP constraint on the lightest h mass when a low SUSY scale was assumed.
 - \bullet The heavier MSSM neutral \bar{H}/A and charged H^\pm states can be searched for in a variety of interesting final states.
- We consider the direct supersymmetric radiative corrections :
 - the phenomenology of the lighter Higgs state can be described by its mass and 3 couplings.
 - We perform a fit of these couplings using the latest LHC data on the production and decay rates of the light h boson.

In the MSSM to break the electroweak symmetry one need 2 doublets of complex scalar fields :

$$H_d = \left(\begin{array}{c} H_d^0 \\ H_d^- \end{array} \right) \text{ with } Y_{H_d} = -1 \ \ , \ \ H_u = \left(\begin{array}{c} H_u^+ \\ H_u^0 \end{array} \right) \text{ with } Y_{H_u} = +1$$

The tree-level masses of the CP-even h and H bosons depend on M_A , $\tan \beta$ and M_Z .

However, many parameters of the MSSM such as the SUSY scale $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$, the stop/sbottom trilinear couplings $A_{t/b}$ or the higgsino mass μ enter M_h and M_H through radiative corrections.

In the basis (H_d, H_u) , the CP-even Higgs mass matrix can be written as:

$$M_S^2 = M_Z^2 \left(\begin{array}{cc} c_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & s_\beta^2 \end{array} \right) + M_A^2 \left(\begin{array}{cc} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{array} \right) + \left(\begin{array}{cc} \Delta \mathcal{M}_{11}^2 & \Delta \mathcal{M}_{12}^2 \\ \Delta \mathcal{M}_{12}^2 & \Delta \mathcal{M}_{22}^2 \end{array} \right)$$

where we have introduced the radiative corrections by a 2 \times 2 matrix $\Delta \mathcal{M}_{ij}^2$.

One can then derive the neutral CP even Higgs boson masses and the mixing angle α that diagonalises the h,H states, $H=\cos\alpha H_d^0+\sin\alpha H_u^0$ & $h=-\sin\alpha H_d^0+\cos\alpha H_u^0$

$$\begin{array}{lcl} {\cal M}_{h/H}^2 & = & \frac{1}{2} \big({\cal M}_A^2 + {\cal M}_Z^2 + \Delta {\cal M}_{11}^2 + \Delta {\cal M}_{22}^2 \mp \sqrt{{\cal M}_A^4 + {\cal M}_Z^4 - 2{\cal M}_A^2 {\cal M}_Z^2 c_{4\beta} + C} \big) \\ \\ \tan \alpha & = & \frac{2\Delta {\cal M}_{12}^2 - \big({\cal M}_A^2 + {\cal M}_Z^2 \big) s_{\beta}}{\Delta {\cal M}_{11}^2 - \Delta {\cal M}_{22}^2 + \big({\cal M}_Z^2 - {\cal M}_A^2 \big) c_{2\beta} + \sqrt{{\cal M}_A^4 + {\cal M}_Z^4 - 2{\cal M}_A^2 {\cal M}_Z^2 c_{4\beta} + C} \\ \end{array}$$

$$C = 4\Delta \mathcal{M}_{12}^4 + (\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)^2 - 2(M_A^2 - M_Z^2)(\Delta \mathcal{M}_{11}^2 - \Delta M_{22}^2)c_{2\beta} - 4(M_A^2 + M_Z^2)\Delta \mathcal{M}_{12}^2s_{2\beta}$$

Let's assume that only $\Delta \mathcal{M}_{22}^2$ which involves the by far dominant stop–top sector correction, is relevant, $\Delta \mathcal{M}_{22}^2 \gg \Delta \mathcal{M}_{11}^2$, $\Delta \mathcal{M}_{12}^2$.

One can simply trade $\Delta \mathcal{M}_{22}^2$ for the by now known M_h using

$$\Delta \mathcal{M}_{22}^2 = \frac{M_h^2 (M_A^2 + M_Z^2 - M_h^2) - M_A^2 M_Z^2 c_{2\beta}^2}{M_Z^2 c_{\beta}^2 + M_A^2 s_{\beta}^2 - M_h^2}$$

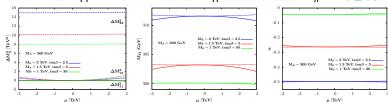
In this case, one can simply write M_H and α in terms of M_A , $\tan \beta$ and M_h :

$$\text{hMSSM}: \begin{aligned} M_{H}^{2} &= \frac{(M_{A}^{2} + M_{Z}^{2} - M_{h}^{2})(M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2}) - M_{A}^{2}M_{Z}^{2}c_{2\beta}^{2}}{M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2} - M_{h}^{2}} \\ \alpha &= -\arctan\left(\frac{(M_{Z}^{2} + M_{A}^{2})c_{\beta}s_{\beta}}{M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2} - M_{h}^{2}}\right) \end{aligned}$$

We first consider the radiative corrections when the subleading contributions proportional to μ , $A_{t/b}$ are included in the form of : Degrassi, Slavich, Zwirner, 2001; Carena Haber, 2003

$$\begin{split} \Delta\mathcal{M}_{11}^2 &=& -\frac{v^2\sin^2\beta}{32\pi^2}\,\bar{\mu}^2\bigg[x_t^2\lambda_t^4(1+c_{11}\ell_{\boldsymbol{S}}) + a_b^2\lambda_b^4(1+c_{12}\ell_{\boldsymbol{S}})\bigg] \\ \Delta\mathcal{M}_{12}^2 &=& -\frac{v^2\sin^2\beta}{32\pi^2}\,\bar{\mu}\bigg[x_t\lambda_t^4(6-x_ta_t)(1+c_{31}\ell_{\boldsymbol{S}}) - \bar{\mu}^2a_b\lambda_b^4(1+c_{32}\ell_{\boldsymbol{S}})\bigg] \\ \Delta\mathcal{M}_{22}^2 &=& \frac{v^2\sin^2\beta}{32\pi^2}\bigg[6\lambda_t^4\ell_{\boldsymbol{S}}(2+c_{21}\ell_{\boldsymbol{S}}) + x_ta_t\lambda_t^4(12-x_ta_t)(1+c_{21}\ell_{\boldsymbol{S}}) - \bar{\mu}^4\lambda_b^4(1+c_{22}\ell_{\boldsymbol{S}})\bigg] \end{split}$$

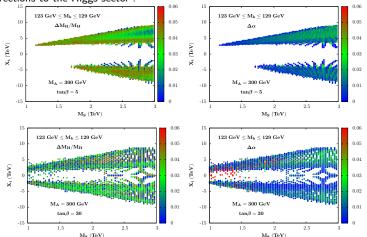
We calculate "approximate" and "exact" M_H and α values for $M_h=126\pm3 \text{GeV}$.



• Even for large μ , $\Delta M_H/M_H < 0.5\%$ and $\Delta \alpha \lesssim 0.015$.

 \Rightarrow The approximation of determining the parameters M_H and α from $\tan \beta, M_A$ and the value of M_h is extremely good.

To check more thoroughly the impact of the subleading corrections $\Delta \mathcal{M}_{11}^2$, $\Delta \mathcal{M}_{12}^2$: we perform a scan of the MSSM parameter space with the full two–loop radiative corrections to the Higgs sector:

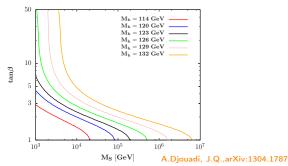


For a chosen $(\tan\beta, M_A)$, $|\mu| \le 3$ TeV, $|A_t, A_b| \le 3M_S$, 1 TeV $\le M_3 \le 3$ TeV and 0.5 TeV $\le M_S < 3$ TeV.

- In all cases, $\Delta M_H/M_H < 5\%$, very small values ($\ll \Gamma_H$).
- $\Delta \alpha < 0.025$ for low tan β but at high tan β one can reach ≈ 0.05 in some rare situations (large μ which enhance the μ tan β contributions).
- Nevertheless, at high enough $\tan \beta$, we are far in the decoupling regime already for $M_A \gtrsim 200$ GeV and such a difference does not significantly affect the couplings of the h/H bosons.
- Hence, even when including the full set of radiative corrections up to two loops, it is a very good approximation to derive the parameters M_H and α in terms of the inputs $\tan \beta$, M_A and the measured value of M_h (hMSSM).
- For the charged Higgs boson mass, the radiative corrections are much smaller for large enough M_A and one has $M_{H^\pm} \simeq \sqrt{M_A^2 + M_W^2}$.

- Large value of M_h+ non-observation of superparticles at the LHC \Rightarrow suggest a high M_S .
- $\tan \beta \lesssim 3$ usually "excluded" by LEP2 ($M_h \gtrsim 114$ GeV) but it assumes $M_S \sim 1$ TeV!

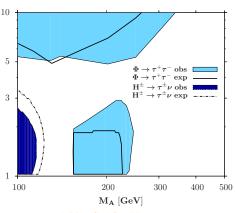
But we can be more relaxed: $M_S \gg M_Z \Rightarrow \tan \beta \approx 1$ could be allowed! \Rightarrow Let's reopen the low $\tan \beta$ regime and heavy Higgs searches.



- (hMSSM) We turn $M_h\sim M_Z|\cos2\beta|+RC$ to $RC=126\,{\rm GeV}-f(M_A,\tan\beta)$ ie. we trade the RC with the measured M_h
 - \Rightarrow MSSM with only 2 inputs at HO: M_A , tan β a model indep. effective approach!

Constraints from the heavier Higgs searches at high tan β :

- CMS $H/A \to \tau\tau$ analysis : constraint very restrictive for $M_A \lesssim 250$ GeV, excludes $\tan \beta \gtrsim 5$.
- Caveat : ATLAS&CMS constraint apply for a specific benchmark : $X_t/M_S = \sqrt{6}$ and $M_S = 1$ TeV.
- Exclusion limit can be obtained in any MSSM scenario, CMS search limit is effective and excludes low tan β.

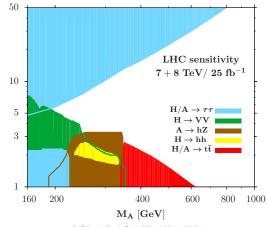


A.Djouadi, J.Q.,arXiv:1304.1787

- \rightarrow Low tan β areas, thought to be buried under the LEP2 exclusion bound on M_h , are now open territory for heavy MSSM Higgs hunting!
- →This can be done not only in these 2 channels but also in a plethora of channels...

The main search channels for the H/A states :

- The H → WW, ZZ channels
- \bullet The $\textbf{H}/\textbf{A} \rightarrow \textbf{t}\overline{\textbf{t}}$ channels
- The $A \rightarrow Zh$ channel
- The $H \rightarrow hh$ channel



A.Djouadi, J.Q.,arXiv:1304.1787

• Knowing $[\tan \beta, M_A]$ and fixing $M_h=125$ GeV, the couplings of the Higgs bosons can be derived, including the generally dominant radiative corrections that enter in the MSSM Higgs masses :

$$c_V^0 = \sin(\beta - \alpha)$$
, $c_t^0 = \frac{\cos \alpha}{\sin \beta}$, $c_b^0 = -\frac{\sin \alpha}{\cos \beta}$

- However, there are also direct radiative corrections to the Higgs couplings not contained in the mass matrix. These can alter this simple picture!
- \bullet The $hb\bar{b}$ coupling : modified by additional one–loop vertex corrections,

$$c_b \approx c_b^0 \times [1 - \Delta_b/(1 + \Delta_b) \times (1 + \cot \alpha \cot \beta)]$$

 Δ_b : SUSY-QCD corr. with sbottom-gluino loops

- The $ht\bar{t}$ coupling : derived indirectly from $\sigma(gg \to h)$ and $BR(h \to \gamma\gamma)$, $c_t \approx c_t^0 \times \left[1 + \frac{m_t^2}{4m_{\tilde{t}_1}^2} m_{\tilde{t}_2}^2 \left(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 (A_t \mu\cot\alpha)(A_t + \mu\tan\alpha)\right)\right]$
- $c_c = c_t^0 \text{ and } c_\tau = c_b^0$.
- Invisible decays? (Djouadi, Falkowski, Mambrini, JQ, arXiv:1205.3169)
 ⇒ neutralinos are relatively light and couple significantly to h → rather unlikely.

- If large direct corrections \Rightarrow 3 independent h couplings : $c_c = c_t$, $c_\tau = c_h$ and $c_V = c_V^0$.
- To study the h state at the LHC, we define the effective Lagrangian :

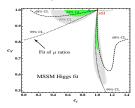
$$\mathcal{L}_{h} = c_{V} g_{hWW} h W_{\mu}^{+} W^{-\mu} + c_{V} g_{hZZ} h Z_{\mu}^{0} Z^{0\mu}$$

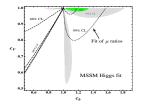
$$- c_{t} y_{t} h \bar{t}_{L} t_{R} - c_{t} y_{c} h \bar{c}_{L} c_{R} - c_{b} y_{b} h \bar{b}_{L} b_{R} - c_{b} y_{\tau} h \bar{\tau}_{L} \tau_{R} + \text{h.c.}$$

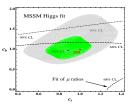
• We fit the Higgs signal strengths : $\mu_{\mathbf{X}} \simeq \frac{\sigma(\mathbf{pp} \to \mathbf{h}) \times \mathrm{BR}(\mathbf{h} \to \mathbf{XX})}{\sigma(\mathbf{pp} \to \mathbf{h})_{\mathrm{SM}} \times \mathrm{BR}(\mathbf{h} \to \mathbf{XX})_{\mathrm{SM}}}$

Best-fit value : $c_t = 0.89$, $c_b = 1.01$ and $c_V = 1.02$ (ATLAS & CMS data).

If we neglect direct corrections \rightarrow 2 parameters fits :



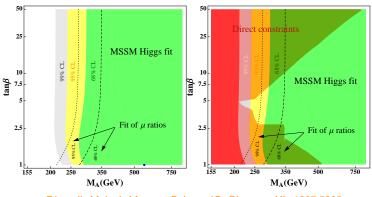




best-fit points : $(c_t = 0.88, c_V = 1.0), (c_b = 0.97, c_V = 1.0)$ and $(c_t = 0.88, c_b = 0.97)$

Using the expressions defining the hMSSM one can perform a fit in the plane [$\tan \beta$, M_A].

The best-fit point :
$$(\tan \beta = 1 \text{ and } M_A = 557 \text{ GeV})$$
 or $(M_H = 580 \text{ GeV}, M_{H^\pm} = 563 \text{ GeV}, \alpha = -0.837 \text{ rad}).$



Djouadi, Maiani, Moreau, Polosa, JQ, Riguer, arXiv:1307.5205

We also superimpose on these indirect limits, the direct constraints on the heavy $H/A/H^{\pm}$ boson searches performed by the ATLAS and CMS (as discussed earlier).

Conclusion:

- We have discussed the hMSSM, i.e. the MSSM that we seem to have after the discovery of the Higgs boson at the LHC.
 - \Rightarrow the MSSM Higgs sector can be described by only $(\tan \beta, M_A)$ if the information $M_b = 125$ GeV is used.
- $M_h \approx 125$ GeV and the non-observation of SUSY particles, seems to indicate that the soft-SUSY breaking scale might be large.
 - \Rightarrow We have considered the production of the heavier H,A and H^{\pm} bosons of the MSSM at the LHC, focusing on the low tan β regime.
- We have shown that to describe the h properties when the direct radiative corrections are also important, we need the 3 couplings c_t, c_b and c_V.
 - \Rightarrow the best fit point is at low tan β , tan $\beta \approx 1$, and with a not too high CP-odd Higgs mass, $M_A \approx 560$ GeV.