Search for Higgs bosons at CMS in final states containing a tau

Mauro Verzetti - University of Zurich On behalf of the CMS collaboration SUSY2013 - Trieste - 26-31 August 2013

SM Higgs @ LHC

W/Z

W/Z

- Mainly comes in three flavors:
 - gluon fusion
 - Vector Boson Fusion
 - Associated production with a vector boson
- Taus offer a great environment to search the Higgs boson due to the high σ×BR at low masses

W/Z

0000000000

MSSM Higgs @ LHC

• MSSM extension:

CMS

- Five physical bosons: h, H, A, H[±]
- At tree level masses and $\sigma \times BR$ controlled by two parameters: m_A and $tan\beta$.
- Dominant decays into taus and b-quarks
- Enhanced production in association with b-quarks

- SM Higgs boson searches include:
 - Five channels for direct production $(e\tau_h, \mu\tau_h, e\mu, \tau_h\tau_h, \mu\mu)$
 - Three macro-channels for associate VH production $(WH \rightarrow \ell t_h, WH \rightarrow \ell \tau_h \tau_h, ZH \rightarrow 2\ell 2\tau)$
- Exploiting the full statistics collected by CMS so far $(24.3/\text{fb} \text{ at } \sqrt{\text{s}} = 7-8\text{TeV})$
- MSSM searches include only ($\ell \tau_h$, $e\mu$, $\mu\mu$) and use only 17/fb ($\sqrt{s} = 7-8$ TeV)

Tools

Tau identification

- Identification:
 - Based on Particle Flow objects
 - Reconstructs the decay modes starting from charged hadrons and ECAL strips
- Additional discriminators to reject light leptons
- Isolation:
 - BDT using the energy deposits in concentric rings around the tau
 - Pile-Up correction using FastJet rho

Mass reconstruction

- Tau decay involves one or two neutrinos smearing the visible invariant mass of the pair
- Use dynamical-likelihood method of full $m_{\tau\tau}$ hypothesis
- Computed event-by-event using the momenta of visible product, missing energy and its expected resolution
- Better resolution and Z/H separation

$\frac{\text{SM VH} \rightarrow \tau\tau}{\text{CMS PAS HIG-12-053}}$

Analysis Higlights

- •Background suppression:
 - •WH $\ell\ell\tau$:
 - Light leptons are required to be Same Sign to suppress Drell-Yan and ttbar
 - Cut on $LT = \sum p_T^{obj}$ to further reduce the backgrounds

•WH *ℓ*ττ:

- Tighter isolation and tau p_T requirements to suppress QCD and W+Jets
- $M_T(\ell, MET)$ and MET cut to suppress DY

•ZH:

- •Cut on LT to further reduce the backgrounds
- Veto any additional light lepton and b-tagged jets to reduce ttbar and ensure **orthogonality of the signal region w.r.t. other searches**
- •Reducible background estimated with the **fake-rate method**
 - Fully data-driven
 - •Uses sidebands where the objects fail the identification
- •Irreducible background (diboson production) estimated with simulation

• drives high mass limit

m_H[GeV/c²]

$\frac{SMH}{----}\tau\tau$

Analysis strategy

- Select two well identified Opposite Sign lepton/hadronic taus
- Topological cut to suppress main background:
 - $M_T(\ell, MET) < 20 \text{ GeV to suppress W+Jets } (\ell \tau_h)$
 - p_{ζ} 0.85 p_{ζ}^{vis} > -20 GeV to suppress W+Jets (e μ)
 - BDT selection to reject $Z\mu\mu$ events ($\mu\mu$)
 - $p_T^H > 140 (110) \text{ GeV to reject QCD} (\tau_h \tau_h)$
- Simultaneous binned template fit of $m_{\tau\tau}$ in all the channels and categories

of Jets

Event categories *l*τ_h, eµ, µµ

0 Jet, low p_T VBF 1 Jet, low p_T Negligible signal contribution $\tau_{
m h}/\mu\,\,
m p_{
m T}$ • Boosted higgs • ≥ 2 Jets Constrains backgrounds Better mass resolution Singnal is not fitted • $M_{ij} > 500 \text{ GeV}$ • $\Delta \eta_{ii} > 3.5$ 1 Jet, high p_T 0 Jet, high pT • Boosted higgs Negligible signal • Central jet veto contribution Better mass resolution • VBF-enhanced Constrains backgrounds • $Z \rightarrow \tau \tau$ suppresses by p_T region Singnal is not fitted requirement

0 Jet

- ThTh
- Not available due to $p_T^H > 140 \text{ GeV}$ trigger constraints

1 Jet

- QCD suppression

VBF

- $p_T^{\tau\tau} > 110 \text{ GeV}$
- $M_{ii} > 250 \text{ GeV}$
- $\Delta \eta_{ii} > 2.5$
- Central jet veto

Background estimation

Z→ττ

Embedded MC: real $Z\mu\mu$ events with a simulated tau replacing the muon. Normalization from $Z\mu\mu$ data.

Uncertainties:

8% TauID efficiency0-8% Category efficiency3% Tau energy scale(shape)

W+Jets

Shape taken from MC simulation, normalization from high $M_T(\mu, MET)$ sideband

Uncertainties: 10-20% normalization

Z→ℓℓ

Shape taken from simulation, an yield corrected looking at visible mass region

Uncertainties: 20/30% for ee/ $\mu\mu$

QCD

Jets identified as lepton/ tau. Estimation taken from Same Sign events and corrected for OS/SS ratio

Uncertainties:

10% Normalization bin-by-bin uncertainties on low-stats categories

VH included

$\frac{\text{MSSSM}H \rightarrow \tau\tau}{\text{CMS PAS HIG-12-050}}$

Analysis Strategy

- MSSM shares all the analysis strategy and background estimation with the SM search
- Then only difference is the event categorization:
 - **B-Tag**: at least 1 b-tagged jet with p_T > 20 GeV, maximum another jet with p_T > 30 GeV. Exploits the **enhanced bbH production** in the MSSM
 - **No B-Tag**: maximum 1 jet with p_T > 30 GeV, no b-tagged jets above 20 GeV

- m_A -tan β plot obtained scanning tan β for each m_A hypothesis
- The dependency of the limit to the other two Higgs bosons is included

Summary

- Broad excess compatible with SM Higgs is observed
- \bullet 2.85 σ away from null hypothesis at 125GeV
- Signal strength 1.1±0.4
- Presented the current status of MSSM Higgs into taus search
 - No excess is observed

Final results coming!

CMS Experiment at LHC, CERN Data recorded: Sun Nov 25 00:15:46 2012 CEST Run/Event: 207898 / 97057018 **THANK YOU**

CMS

Luminosity

After quality selection 4.9/fb @ 7TeV (2011) 19.4/fb @ 8TeV (2012)

Particle Flow

- Benchmark scenario
- Fixed parameters:
 - $M_{SUSY} = 1$ TeV soft SUSY breaking squark mass
 - Xt = 2TeV stop trilinear coupling
 - M2 = 200 GeV SU2 gaugino mass parameter
 - $\mu = 200 \text{ GeV}$ Higgs mixing parameter
 - M3 = 800 GeV gluino mass parameter
- Why to use this scenario?
 - Link with past experiments: was used by LEP and Tevatron experiments
 - Allows a "heavy" light scalar higgs
 - Conservative in m_A-tanβ exclusion
 - SUSY QCD corrections are small: easier to compute xsections

- Used for event categorization
- Pile-up jets are usually softer
 - High E_T PU jets from jet superimposition

- PU jets rejected with the aid of an MVA
 - track-vertex association
 - jet shape
- Reduces background in VBF by a factor ~2

Hττ 0 Jet distributions

CMS Preliminary, \sqrt{s} = 7-8 TeV, L = 24.3 fb⁻¹, H $\rightarrow \tau \tau$

observed

electroweak

Ζ→ττ

Z→ ee

tŦ

dN/dm $_{
m tr}$ [1/GeV]

 $\mathbf{e}\tau_{\mathbf{h}}$

1000 **-0 jet**

800

m_{ττ} [GeV]

M_T sidebands

Yields

$\mu au_{ m h}$					
Process	0-Jet	VBF			
Z au au	84833 ± 1927	4686 ± 232	109 ± 11		
QCD	18313 ± 478	481 ± 38	48 ± 7		
EWK	8841 ± 653	1585 ± 153	63 ± 9		
ttbar	11 ± 1	155 ± 11	5 ± 1		
Total Bkg.	111998 ± 2090	6908 ± 281	225 ± 16		
Ηττ		73 ± 13	11 ± 2		
Observed	112279	7011	240		

eμ					
Process	0-Jet	1-Jet high	VBF		
Ζττ	48882 ± 1282	1830 ± 105	61 ± 6		
QCD	4374 ± 249	395 ± 36	19 ± 2		
EWK	1185 ± 89	461 ± 44	7 ± 1		
ttbar	74 ± 5	1100 ± 66	19 ± 2		
Total Bkg.	54514 ± 1309	3785 ± 137	105 ± 7		
Ηττ		23 ± 4	5 ± 0.6		
Observed	54694	3774	118		

$e\tau_h$					
Process	0-Jet	1-Jet high	VBF		
Ζττ	25161 ± 708	792 ± 62	47 ± 6		
QCD	7706 ± 307	3 ± 0.3	17 ± 4		
EWK	9571 ± 510	365 ± 53	44 ± 6		
ttbar	4 ± 0.5	47 ± 4	4 ± 1		
Total Bkg.	42443 ± 924	1207 ± 82	113 ± 9		
Ηττ		15 ± 3	5 ± 1		
Observed	42481	1217	117		

$\mu au_{ m h}$					
Process	0-Jet	VBF			
Ζμμ	$(19 \pm 5) \times 10^4$	$(68.5 \pm 2.7) \times 10^4$	380 ± 38		
Ζττ	20669 ± 470	3888 ± 157	116 ± 9		
QCD	1299 ± 226	561 ± 161	6 ± 11		
EWK	4732 ± 1594	7827 ± 1297	22 ± 9		
ttbar	4708 ± 2110	2168 ± 522	15 ± 5		
Total Bkg	$(195 \pm 5) \times 10^4$	$(69.9 \pm 2.7) \times 10^4$	539 ± 42		
Ηττ		37± 5	5 ± 1		
Observed	1956931	700020	548		

Yields

$ au_{h} au_{h}$				
Process	1-Jet	VBF		
Ztautau	428 ± 90	47 ± 28		
QCD	210 ± 31	61 ± 10		
EWK	41 ± 9	4 ± 1		
ttbar	29 ± 6	2 ± 2		
Total Bkg.	709 ± 95	114 ± 30		
Htautau	9 ± 4	4 ± 2		
Observed	718	120		

VH Yields

Process	$\ell\ell au_h$	$\ell au_h au_h$	$\ell\ell \ell LL$
Reducible backgrounds	26.3 ± 4.7	20.8 ± 4.2	25.2 ± 10.0
WZ	35.3 ± 3.9	6.3 ± 0.9	23.2 ± 10.0
ZZ	2.5 ± 0.3	0.39 ± 0.08	27.2 ± 3.8
Total bkg.	64.1 ± 6.2	27.5 ± 4.3	52 ± 11
$VH \rightarrow V\tau\tau(m_H = 125 \text{GeV}/c^2)$	3.6 ± 0.4	1.2 ± 0.2	2.1 ± 0.2
VH \rightarrow VWW ($m_H = 125 \text{GeV}/c^2$)	0.50 ± 0.05	0	1.13 ± 0.09
Observed	65	36	66

Fake-rate method

- •The probability for a jet to pass the lepton/tau requirement is computed in a **signal-free** control region and **parametrized** (mainly in function of the object **p**_T)
- Each event failing the lepton requirements is then weighted.
- Weighted events are used as reducible background estimation

Injected signal limit

Limits

$m_{\rm H} [{\rm GeV}/c^2]$	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	Obs. Limit
115	1.50	1.99	2.76	3.83	5.09	2.91
120	1.56	2.07	2.87	3.98	5.29	3.38
125	1.68	2.24	3.10	4.31	5.72	3.87
130	1.74	2.31	3.20	4.45	5.91	4.29
135	1.79	2.38	3.30	4.58	6.08	4.46
140	1.81	2.40	3.33	4.62	6.14	4.60
145	1.60	2.13	2.95	4.09	5.44	4.11