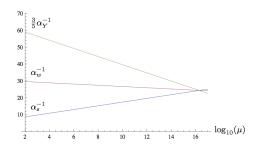
On messengers couplings in extended GMSB models

Tomasz Jeliński

Department of Field Theory and Particle Physics University of Silesia, Katowice, Poland


based on: arXiv:1305.6277 [hep-ph]

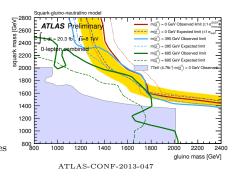
SUSY 2013, Trieste, 26-31 August

1. MSSM

Still the best candidate for BSM is softly broken MSSM:

- \bullet solves problem of quadratic corrections to m_{h^0}
- \bullet dark matter candidate \to LSP
- \bullet better unification of gauge couplings at $10^{16}~{\rm GeV}{\rightarrow}$ hint for GUT model

Problems:


- one needs additional sector which breaks SUSY communicate with MSSM
- fine-tuning
- a lot of parameters (soft terms) → explain them using RGE and some simple set of initial conditions at high scale (← GUT model)

2. LHC vs. MSSM

What do the LHC searches tell us about MSSM?

- no SUSY signal so far
- relevant exclusions only for 1st and 2nd family
- still Q_3, \ldots can be as light as 400 GeV

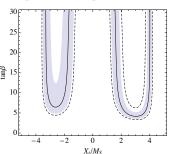
BUT important information comes from Higgs mass measurement:

• $m \sim 125 \text{ GeV} \rightarrow \text{need for large loop corrections}$

ASSUME other MSSM Higgses are much heavier and masses of $\widetilde{Q}_{1,2}$ and \widetilde{g} are bigger than 1.5 TeV.

3. 1-loop corrections to m_{h^0}

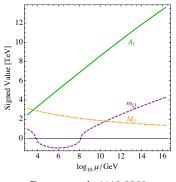
• dominant contribution from top quarks and stops (due to $y_t \sim 1$):


$$\Delta(m_{h^0}^2) \; = \; \stackrel{h^0}{-} \; - \; \stackrel{t}{-} \; \stackrel{h^0}{-} \; \stackrel{\tilde{t}}{-} \; \stackrel{\tilde{t}}{-}$$

$$m_{h^0}^2 = m_Z^2 \cos^2 2\beta + \frac{3 m_t^4}{4 \pi^2 v^2} \left[\ln \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] \approx (125 \, \mathrm{GeV})^2,$$

$$M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$
$$X_t = A_t - \mu \cot \beta$$

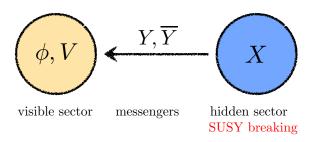
A-terms:


$$V_{\text{soft}} \supset y_t A_t H_u \widetilde{Q}_3 \widetilde{U}_3^c \longrightarrow y_t A_t h_0 \widetilde{t}_1 \widetilde{t}_2$$

Draper et al. 1112.3068

4. How to generate large A-terms?

• value of A-term gives initial condition for RGE evolution


$$\mu \frac{dA_t}{d\mu} \sim y_t^2 A_t + g_3^2 M_3$$

 \rightarrow see talk by Shih

Draper et al. 1112.3068

• how to get A-terms in GUT model?

5. SUSY breaking mediation

- such structure is dictated by SUSY
- mediation = interactions between Y, \overline{Y} and other fields
- singlet $\langle X \rangle = M + \theta^2 F \rightarrow$ spontaneous SUSY breaking
- $\bullet~X$ does not interact via superpotential with visible sector
- \bullet messengers have large masses e.g. $M \sim 10^{14}~{\rm GeV}$

6. SUSY breaking mediation

- supergravity
 - ullet no control over FCNC at all \to arbitrary mixings between families
- gauge interactions
 - no FCNC effects at M scale (small mixing generated via RGE)
 - $A \approx 0$ at M scale
 - $m_{h^0} \sim 125~{
 m GeV}
 ightarrow M \gtrsim 10^{14}~{
 m GeV}$ (i.e. here A need long RGE evolution)
- Yukawa (and gauge) interactions
 - mild hierarchy of additional couplings FCNC effects suppressed
 - A-terms $\neq 0$ at M scale
 - easy to satisfy $m_{h^0} \sim 125 \text{ GeV}$ even for $M \sim 10^5 \text{ GeV}$
 - rich phenomenology

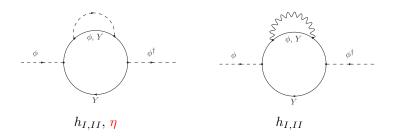
7. Messenger couplings

Focus on: SU(5) unification model with messengers in $5+\overline{5}$ and $10+\overline{10}$

- matter ϕ_i in $5, \overline{5}$ or 10 (in MSSM only 5 10 10 and $\overline{5} \overline{5} 10$)
- pair of messengers $Y = (Y, \overline{Y})$

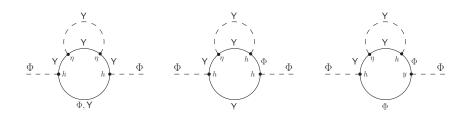
$$W_Y = \frac{\eta}{\text{YYY}} + h_I^i \phi_i \text{YY} + h_{II}^{ij} \phi_i \phi_j \text{Y}$$

- allowed couplings: $5\,10\,10$, $\overline{5}\,\overline{5}\,10$, $\overline{5}\,\overline{10}\,\overline{10}$, $5\,\overline{5}\,\overline{10}$
- $h_{I,II}$ quite well explored (Yukawa-Deflected Gauge Mediation) usually some hierarchy in messenger-matter is assumed


see talks by: Ziegler, Galon

- \bullet couplings of three messengers $\eta \to \text{additional effects!}$
 - relevant only if occur together with h_I or h_{II}
 - do not contribute to A-terms (nor to 1-loop masses)

8. Soft terms


• 2-loop contributions to soft masses

$$W_Y = \mathbf{\eta YYY} + h_I \phi \mathbf{YY} + h_{II} \phi \phi \mathbf{Y}$$

$$m_{\widetilde{\phi},\eta}^2 \sim \frac{1}{(4\pi)^4} ({\color{blue} \eta^2 h^2 + \eta h^3 + \eta h^2 y}) \left(\frac{F}{M} \right)^2$$

9. New contributions to the soft terms

$$m_{\widetilde{\phi},\eta}^2 \sim \frac{1}{(4\pi)^4} (\eta^2 h^2 + \eta h^3 + \eta h^2 y) \left(\frac{F}{M}\right)^2$$

10. Phenomenological constraints

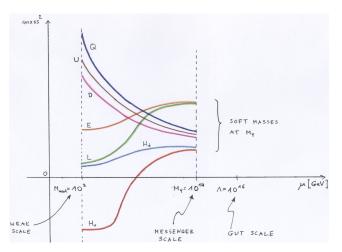
Assumptions:

• no rapid proton decay via

$$\phi_{\overline{5}}\phi_{\overline{5}}\phi_{10}, \quad \frac{1}{M}\phi_{\overline{5}}\phi_{10}\phi_{10}\phi_{10} \quad \frac{1}{M^2}(\phi_{10}^{\dagger}\phi_{10})^2$$

- absence of μ/B_{μ} problem
- no $\mu H_u H_d$ term in the superpotential
- Higgs mass term via

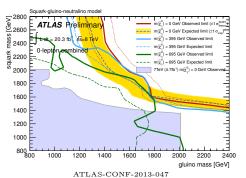
$$\frac{1}{M_{GUT}} X^{\dagger} H_u H_d$$


One needs additional selection rules \rightarrow e.g. global U(1) symmetry

• the simplest model restricted by U(1)

$$W_{\mathsf{Y}} = \frac{1}{2} h_{14} \phi_{10} Y_{\overline{5}} Y_{\overline{5}} + \frac{1}{2} \eta_2 Y_{\overline{5}} Y_{\overline{10}} Y_{\overline{10}}.$$

11. Top-down analysis


Reverse the initial problem and evolve parameters from M to EWSB scale:

12. Phenomenology

Find spectrum and check if phenomenology is correct i.e.

- $m_{h^0} \approx 125 \,\mathrm{GeV}$
- no tachyons
- scalar potential bounded from below, no CCB
- $a_{\mu}, b \rightarrow s\gamma$
- ATLAS bounds on gluino and squarks of 1. and 2. generation

13. The simplest example

$$W_{\rm Y} = \frac{1}{2} \frac{\eta_2}{Y_5} Y_{\overline{10}} Y_{\overline{10}} + \frac{1}{2} h_{14} \phi_{10} Y_{\overline{5}} Y_{\overline{5}}$$

$$m_{\widetilde{Q},\eta}^2 = 6\alpha_{h_{14}} \alpha_{\eta_2} \frac{\xi^2}{16\pi^2}, \quad m_{\widetilde{Q},h}^2 = \alpha_{h_{14}} \left(6\alpha_{h_{14}} - \frac{7}{15}\alpha_1 - 3\alpha_2 - 6\alpha_3 \right) \frac{\xi^2}{16\pi^2}$$

Figure : Plot of the particles masses vs. η_2 coupling for $\tan \beta = 10$ (left plot), $\tan \beta = 30$ (middle plot) and $\tan \beta = 50$ (right plot). h_{14} is set to 1.2, while $\xi = F/M$ scale is 1.6×10^5 GeV. Dashed lines show masses of the particles when $h_{14} = \eta_2 = 0$, which corresponds to the standard GMSB case. $\tilde{\tau}_1$ and $\tilde{\epsilon}_1$ are mostly right-handed.

$$\mu \frac{dm_{\widetilde{E}_3}^2}{d\mu} = \ldots + \frac{6}{10} g_1^2 m_{\widetilde{Q}, \mathbf{r}}^2$$

14. Conclusions

- Yukawa-Deflected Gauge Mediation models naturally accommodate for left-right top squarks mixing
- in some cases superpotential couplings of three messengers are relevant to mass spectrum
- \bullet additional selection rules (e.g. global U(1)) are necessary to satisfy phenomenological constraints