SO(10) INSPIRED GMSB MEK, W. Porod, F. Staub, Phys.Rev. D88 (2013) 015014 – SUSY, Trieste 2013 –

Manuel E. Krauss

in collaboration with W. Porod and F. Staub

Würzburg University Department of Theoretical Physics II

August 27th, 2013

How does SUSY breaking work?

- introduce terms in the Lagrangian which explicitly break SUSY
- often considered scenario: CMSSM-like boundaries at M_{GUT} easy to handle, based on strong assumptions
- appealing alternative:
 Gauge Mediated Supersymmetry Breaking:
 SUSY masses dynamically generated by gauge interactions

How does SUSY breaking work?

- introduce terms in the Lagrangian which explicitly break SUSY
- often considered scenario: CMSSM-like boundaries at M_{GUT} easy to handle, based on strong assumptions
- appealing alternative:
 Gauge Mediated Supersymmetry Breaking:
 SUSY masses dynamically generated by gauge interactions

visible world

Manuel E. Krauss

- $\mathcal{W} = \lambda_i \hat{X} \hat{\Phi}_i \hat{\bar{\Phi}}_i$
- fermion masses: $\lambda_i M$
- boson masses: $\sqrt{|\lambda_i M|^2 \pm |\lambda_i F|}$
- \Rightarrow SUSY breaking!

[see, e.g., Giudice, Rattazzi, '99; Martin, '97]

SUSY, TRIESTE 2013

Problem: Higgs mass in the MSSM:

$$m_{h^0}^2 = \underbrace{M_Z^2 \cos^2 2\beta}_{\text{tree-level mass}} + \frac{3m_t^2 Y_t^2}{4\pi^2} \Big(\ln(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}) + \underbrace{\delta_t}_{\supset A_u} \Big) + \dots$$

Problem: Higgs mass in the MSSM:

but: minimal GMSB predicts very small trilinear terms \Rightarrow Stop mass has to be very large, $m_{\tilde{t}_1} \gtrsim 5$ TeV [Ajaib, Gogoladze, Nasir, Shafi, '12]

Problem: Higgs mass in the MSSM:

but: minimal GMSB predicts very small trilinear terms \Rightarrow Stop mass has to be very large, $m_{\tilde{t}_1} \gtrsim 5$ TeV [Ajaib, Gogoladze, Nasir, Shafi, '12]

ideas:

enlarge trilinear terms by introducing direct messenger-matter interactions

[several studies in the literature/see previous plenary and parallel talks]

enlarge tree-level mass by considering a larger gauge group

THE MODEL

GMSB version of [Hirsch, Porod, Reichert, Staub, '12]

• consider a gauge group inspired by a SO(10) GUT group:

 $SO(10) \xrightarrow{M_{GUT}} SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

 $\rightarrow SU(3)_c \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$

$$\xrightarrow{M_R \sim \text{TeV}} SU(3)_c \times SU(2)_L \times U(1)_Y$$

• $U(1)_R \times U(1)_{B-L}$ can be rotated into another basis: $U(1)_Y \times U(1)_\chi$

additional fields:

- two additional Higgs fields $\hat{\chi}_R$, $\hat{\chi}_R$ to break $U(1)_Y \times U(1)_\chi \to U(1)_Y$
- \blacksquare singlet fields \hat{S} generate neutrino masses via inverse Seesaw

$$\mathcal{W}_{h,\text{add}} = -\mu_R \hat{\bar{\chi}}_R \hat{\chi}_R$$
$$\mathcal{W}_{\nu} = Y_{\nu} \hat{\nu}^c \hat{L} \hat{H}_u + Y_S \hat{\nu}^c \hat{S} \hat{\chi}_R + \mu_S \hat{S} \hat{S}$$

UNIVERSITÄT WÜRZBURG

THE MODEL

Messenger fields

introduce n copies of messenger **10**-plets

	$SU(3)_c \times SU(2)_L$	$U(1)_R \times U(1)_{B-L}$	$U(1)_Y \times U(1)_\chi$
$\hat{\Phi}_1$	(1 , 2)	$(\frac{1}{2}, 0)$	$\left(\frac{1}{2},-\frac{1}{2}\right)$
$\hat{\bar{\Phi}}_1$	(1 , 2)	$(-\frac{1}{2},0)$	$(-\frac{1}{2},\frac{1}{2})$
$\hat{\Phi}_2$	(3 , 1)	$(0, -\frac{1}{3})$	$\left(-\frac{1}{3},-\frac{1}{2}\right)$
$\hat{ar{\Phi}}_2$	$(\overline{f 3}, {f 1})$	$(0, \frac{1}{3})$	$\left(\frac{1}{3},\frac{1}{2}\right)$

- \blacksquare soft masses calculated at M including gauge kinetic mixing
- numerical implementation in SARAH, SPheno (code publicly available)
- require gauge coupling unification
- free model parameters: $n, F, M, \tan \beta_{(R)}, v_R, \operatorname{sign} \mu_{(R)}, Y_S, Y_i, \mu_S$

HIGGS PHYSICS

UNIVERSITÄT

recall: tree level mass in the MSSM:

$$m_{h,\text{tree}}^2 \Big|_{\text{MSSM}} \le M_Z^2 = \frac{1}{4} (g^2 + g'^2) v^2$$

now, with additional $U(1)_{\chi}$ sector:

$$m_{h,\text{tree}}^2 \le M_Z^2 + \frac{1}{4} g_\chi^2 v^2$$

but: dependent on ratio of the two new vevs, $\tan \beta_R = v_{\chi_R} / v_{\bar{\chi}_R}$

HIGGS PHYSICS

UNIVERSITÄT

HIGGS PHYSICS

 $h\to\gamma\gamma$

 \exists hints to enhanced $BR(h \rightarrow \gamma \gamma)$ at the LHC [ATLAS, '12; CMS, '12] What does this model predict?

⇒
$$R_{h\to\gamma\gamma} \leq 1$$

complies with recent data from CMS [CMS, '13]

 $= \frac{\sigma(pp \to h) \times BR(h \to \gamma\gamma)}{\sigma(pp \to h) \times BR(h \to \gamma\gamma)|_{SM}}$

SUSY, Trieste 2013

 $R_{h \to \gamma \gamma}$

Phenomenology of the NLSP and the Z'

LSP and NLSP

Gravitino \tilde{G} is the LSP:

$$m_{3/2} = rac{F}{\sqrt{3}m_{Pl}} \sim \mathcal{O}(\mathrm{MeV})$$

 \exists three possibilities for NLSP:

- lightest neutralino $\tilde{\chi}_1^0$ (\tilde{B} or $\tilde{\chi}_R$): ($n \leq 2$ and Y_S nonhierarchical, or small μ_R)
- lightest slepton $\tilde{\tau}$:

 $(n > 2, Y_S \text{ nonhierarchical and large } \tan \beta)$

- lightest sneutrino $\tilde{\nu}(\tilde{S})$:
 - $(Y_S \text{ hierarchical})$

⇒ new with respect to usual GMSB considerations: \tilde{S} - and $\tilde{\chi}_R$ -like NLSP

Manuel E. Krauss

SUSY, TRIESTE 2013

Phenomenology of the NLSP and the Z'

 $\tilde{\chi}_1^0$ **NLSP:** • $\mu_R > M_1$: bino NLSP

UNIVERSITÄT WÜRZBURG

> ■ µ_R < M₁: new higgsino NLSP

possibly interesting: new Higgs h_{χ_R} in SUSY cascade decays

MANUEL E. KRAUSS

$\tilde{\nu}$ (\tilde{S}) **NLSP**

- fermionic (bosonic) singlet fields $S(\tilde{S})$ mix with (s)neutrinos • $m_{\tilde{s}\tilde{s}}^2 \approx v_R^2 \sin^2 \beta_R Y_S^{\dagger} Y_S/2$
- hierarchical diagonal Y_S entries can give a light \tilde{S} -like NLSP:

possibly interesting: heavy neutrino ν_h in SUSY cascade decays: $\tilde{\chi}_1^0 \to \tilde{\nu}_1 \nu_h \to \nu \tilde{G} W^{(*)} l^{-1}$

Manuel E. Krauss

SUSY, TRIESTE 2013

Phenomenology of the NLSP and the Z'

Z' Phenomenology

possibly interesting Z' decays: $Z' \to \nu_h \nu_h, \ Z' \to \tilde{\nu} \tilde{\nu}$

SUSY, Trieste 2013

Conclusions

- Higgs mass is a major problem for minimal GMSB models
- extended gauge structure allows for enhanced tree-level Higgs mass
- \blacksquare in a SO(10)-inspired model: minimal GMSB is not dead yet!

Conclusions

- Higgs mass is a major problem for minimal GMSB models
- extended gauge structure allows for enhanced tree-level Higgs mass
- in a SO(10)-inspired model: minimal GMSB is not dead yet!

Thank you for your attention!

interested?

MEK, Porod, Staub, Phys.Rev. D88, 015014, arXiv:1304.0769

Manuel E. Krauss

SUSY, TRIESTE 2013

13

BACKUP

Manuel E. Krauss

SUSY, Trieste 2013

The superpotential reads

$$\begin{aligned} \mathcal{W} &= Y_{u}^{ij} \hat{u}_{i}^{c} \hat{Q}_{j} \hat{H}_{u} - Y_{d}^{ij} \hat{d}_{i}^{c} \hat{Q}_{j} \hat{H}_{d} - Y_{e}^{ij} \hat{e}_{i}^{c} \hat{L}_{j} \hat{H}_{d} + \mu \hat{H}_{u} \hat{H}_{d} \\ &+ Y_{\nu}^{ij} \hat{\nu}_{i}^{c} \hat{L}_{j} \hat{H}_{u} + Y_{S}^{ij} \hat{\nu}_{i}^{c} \hat{S}_{j} \hat{\chi}_{R} - \mu_{R} \hat{\chi}_{R} \hat{\chi}_{R} + \mu_{S}^{ij} \hat{S}_{i} \hat{S}_{j} \end{aligned}$$

The soft SUSY breaking terms are

$$\begin{aligned} \mathcal{V}_{soft} &= m_{ij}^2 \phi_i^* \phi_j + \left(\frac{1}{2} M_{ab} \lambda_a \lambda_b + B_\mu H_u H_d + B_{\mu_R} \bar{\chi}_R \chi_R \right. \\ &+ B_{\mu_S} \tilde{S} \tilde{S} + T_d^{ij} H_d \tilde{d}_i^c \tilde{Q}_j + T_u^{ij} H_u \tilde{u}_i^c \tilde{Q}_j \\ &+ T_e^{ij} H_d \tilde{e}_i^c \tilde{L}_j + T_\nu^{ij} H_u \tilde{\nu}_i^c \tilde{L}_j + T_S^{ij} \chi_R \tilde{\nu}_i^c \tilde{S}_j + \text{ h.c.} \right) \end{aligned}$$

SUSY, Trieste 2013

MANUEL E. KRAUSS

15

ROTATIONS

The gauge couplings and charges of $U(1)_R \times U(1)_{B-L}$ and $U(1)_Y \times U(1)_{\chi}$ are (without GUT normalization) related via

$$A^{\mu} \to A'^{\mu} = \begin{pmatrix} A^{\mu}_{Y} \\ A^{\mu}_{\chi} \end{pmatrix}, \quad Q \to Q' = \begin{pmatrix} q_{B-L} + q_{R} \\ \frac{3}{2}q_{B-L} - q_{R} \end{pmatrix},$$
$$G \to G' = \begin{pmatrix} g_{Y} & g_{Y\chi} \\ 0 & g_{\chi} \end{pmatrix},$$

with

$$g_{Y} = \frac{g_{BL}g_{R} - g_{BL}g_{RBL}}{\sqrt{(g_{BLR} - g_{R})^{2} + (g_{BL} - g_{RBL})^{2}}},$$

$$g_{\chi} = \frac{2}{5}\sqrt{(g_{BLR} - g_{R})^{2} + (g_{BL} - g_{RBL})^{2}},$$

$$g_{Y\chi} = \frac{2(g_{BL}^{2} + g_{BLR}^{2}) + g_{BLR}g_{R} + g_{BL}g_{RBL} - 3(g_{R}^{2} + g_{RBL}^{2})}{5\sqrt{(g_{BLR} - g_{R})^{2} + (g_{BL} - g_{RBL})^{2}}}$$

boundary conditions from GMSB

■ masses of SUSY particles [e.g. Giudice, Rattazzi, '99; Martin, '97]:

$$M_{a} = \frac{g_{a}^{2}}{16\pi^{2}} \Lambda \sum_{i} n_{a}(i)g(x_{i})$$
$$m_{k}^{2} = 2\Lambda^{2} \sum_{a} C_{a}(k) \frac{g_{a}^{4}}{(16\pi^{2})^{2}} \sum_{i} n_{a}(i)f(x_{i})$$

 including gauge kinetic mixing effects using [Fonseca, Malinskyi, Porod, Staub, '11]

$$M_{A \neq Abelian} = \frac{g_A^2}{16\pi^2} \Lambda \sum_i n_A(i)g(x_i)$$
$$M_{kl=Abelian} = \frac{1}{16\pi^2} \Lambda \left(\sum_i g(x_i) G^T N Q_i Q_i^T N G\right)_{kl}$$
$$m_k^2 = \frac{2}{(16\pi^2)^2} \Lambda^2 \left(\sum_{A \neq Abelian} C_A(k) g_A^4 \sum_i f(x_i) n_A(i) + \sum_i f(x_i) (Q_k^T N G G^T N Q_i)^2\right)$$

MANUEL E. KRAUSS

SUSY, Trieste 2013

17

PARTICLE CONTENT

	s=0	$s=\frac{1}{2}$	Gen.	$SU(3)_c \times SU(2)_L$	$U(1)_R \times U(1)_{B-L}$	$U(1)_Y \times U(1)_\chi$
\hat{Q}	\tilde{Q}	Q	3	(3 , 2)	$(0, \frac{1}{6})$	$(\frac{1}{6}, \frac{1}{4})$
\hat{d}^{c}	\tilde{d}^{c}	d^{c}	3	$(\overline{f 3}, {f 1})$	$(\frac{1}{2}, -\frac{1}{6})$	$(\frac{1}{3}, -\frac{3}{4})$
\hat{u}^{c}	$ ilde{u}^{c}$	u^c	3	$(\overline{f 3}, {f 1})$	$(-\frac{1}{2}, -\frac{1}{6})$	$(-\frac{2}{3},\frac{1}{4})$
Ĺ	Ĩ		3	(1 , 2)	$(0, -\frac{1}{2})$	$(-\frac{1}{2}, -\frac{3}{4})$
\hat{e}^{c}	\tilde{e}^{c}	e^{c}	3	(1 , 1)	$(\frac{1}{2}, \frac{1}{2})$	$(\bar{1}, \frac{1}{4})^{}$
$\hat{\nu}^c$	$\tilde{\nu}^c$	ν^c	3	(1 , 1)	$(-\frac{1}{2},\frac{1}{2})$	$(0, \frac{5}{4})$
\hat{S}	\tilde{S}	S	3	(1 , 1)	(0, 0)	(0, 0)
\hat{H}_d	H_d	\tilde{H}_d	1	(1 , 2)	$(-\frac{1}{2},0)$	$(-\frac{1}{2},\frac{1}{2})$
\hat{H}_u	H_u	\tilde{H}_u	1	(1 , 2)	$(\frac{1}{2}, 0)$	$(\frac{1}{2}, -\frac{1}{2})$
$\hat{\chi}_R$	χ_R	$\tilde{\chi}_R$	1	(1 , 1)	$(\frac{1}{2}, -\frac{1}{2})$	$(\tilde{0}, -\frac{5}{4})$
$\hat{\bar{\chi}}_R$	$\bar{\chi}_R$	$\tilde{\chi}_R$	1	(1 , 1)	$(-\frac{1}{2},\frac{1}{2})$	$(0, \frac{5}{4})$

TADPOLE EQUATIONS

$$\begin{split} B_{\mu} &= \frac{t_{\beta}}{t_{\beta}^{2} - 1} \Big(m_{H_{d}}^{2} - m_{H_{u}}^{2} + \frac{v^{2}}{4} c_{2\beta} \big(g_{L}^{2} + g_{Y}^{2} + (g_{\chi} - g_{Y\chi})^{2} \big) + \frac{5v_{R}^{2}}{8} c_{2\beta_{R}} g_{\chi} (g_{\chi} - g_{Y\chi}) \Big) \,, \\ B_{\mu_{R}} &= \frac{t_{\beta_{R}}}{t_{\beta_{R}}^{2} - 1} \Big(m_{\tilde{\chi}_{R}}^{2} - m_{\chi_{R}}^{2} - \frac{5v^{2}}{8} c_{2\beta} g_{\chi} (g_{\chi} - g_{Y\chi}) + \frac{25v_{R}^{2}}{16} c_{2\beta_{R}} g_{\chi}^{2} \Big) \,, \\ |\mu|^{2} &= \frac{1}{t_{\beta}^{2} - 1} \Big(m_{H_{d}}^{2} - m_{H_{u}}^{2} t_{\beta}^{2} - \frac{v^{2}}{8} \big(g_{L}^{2} + g_{Y}^{2} + (g_{\chi} - g_{Y\chi})^{2} \big) \big(t_{\beta}^{2} - 1 \big) \\ &\quad + \frac{5v_{R}^{2}}{16} c_{2\beta_{R}} \big(1 + t_{\beta}^{2} \big) g_{\chi} \big(g_{\chi} - g_{Y\chi} \big) \Big) \,, \\ \mu_{R}|^{2} &= \frac{1}{t_{\beta_{R}}^{2} - 1} \Big(m_{\tilde{\chi}_{R}}^{2} - m_{\chi_{R}}^{2} t_{\beta_{R}}^{2} + \frac{5v^{2}}{16} c_{2\beta} (t_{\beta_{R}}^{2} + 1) g_{\chi} \big(g_{\chi} - g_{Y\chi} \big) - \frac{25v_{R}^{2}}{32} \big(t_{\beta_{R}}^{2} - 1 \big) g_{\chi}^{2} \Big) \end{split}$$

SUSY, Trieste 2013

Manuel E. Krauss

Messenger Fields

	$SU(3)_c \times SU(2)_L$	$U(1)_R \times U(1)_{B-L}$	$U(1)_Y \times U(1)_\chi$
$\hat{\Phi}_1$	(1 , 2)	$(\frac{1}{2}, 0)$	$\left(\frac{1}{2},-\frac{1}{2}\right)$
$\hat{\bar{\Phi}}_1$	(1 , 2)	$(-\frac{1}{2},0)$	$\left(-\frac{1}{2},\frac{1}{2}\right)$
$\hat{\Phi}_2$	(3 , 1)	$(0, -\frac{1}{3})$	$\left(-\tfrac{1}{3},-\tfrac{1}{2}\right)$
$\hat{\bar{\Phi}}_2$	$(\overline{f 3}, {f 1})$	$(0, \frac{1}{3})$	$(\frac{1}{3}, \frac{1}{2})$

$$\begin{split} M_{A \neq Abelian} &= \frac{g_A^2}{16\pi^2} \Lambda \sum_i n_A(i)g(x_i) \,, \\ M_{kl=Abelian} &= \frac{1}{16\pi^2} \Lambda \Big(\sum_i g(x_i) G^T N Q_i Q_i^T N G \Big)_{kl} \,, \\ m_k^2 &= \frac{2}{(16\pi^2)^2} \Lambda^2 \Big(\sum_{A \neq Abelian} C_A(k) g_A^4 \sum_i f(x_i) n_A(i) \\ &+ \sum_i f(x_i) (Q_k^T N G G^T N Q_i)^2 \Big) \end{split}$$

MANUEL E. KRAUSS

SUSY, TRIESTE 2013

21

INVERSE SEESAW MECHANISM

singlet fields \hat{S} generate neutrino masses via inverse Seesaw

$$\mathcal{W}_{\nu} = Y_{\nu}\hat{\nu}^{c}\hat{L}\hat{H}_{u} + Y_{S}\hat{\nu}^{c}\hat{S}\hat{\chi}_{R} + \mu_{S}\hat{S}\hat{S}$$

$$m_{\nu} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} v_u Y_{\nu}^T & 0\\ \frac{1}{\sqrt{2}} v_u Y_{\nu} & 0 & \frac{1}{\sqrt{2}} v_{\chi_R} Y_S\\ 0 & \frac{1}{\sqrt{2}} v_{\chi_R} Y_S^T & \mu_S \end{pmatrix}$$
$$m_{\nu}^{\text{IS}} \simeq -\frac{v_u^2}{v_{\chi_R}^2} Y_{\nu}^T Y_S^{-1} \mu_S (Y_S^T)^{-1} Y_{\nu}$$

i.e.

- smallness of ν masses: μ_S small and/or $\frac{v_u}{v_{\chi_R}}$ small
- ν mixing: structure of μ_S and/or Y_{ν} and/or Y_S

MANUEL E. KRAUSS

SUSY, TRIESTE 2013

UNIVERSITÄT NURTRURG

HIGGS MASS MATRIX

On tree level, the scalar Higgs mass matrix in the basis $(\sigma_d, \sigma_u, \bar{\sigma}_R, \sigma_R)$ is given by

$$\begin{split} m_{h0}^{2} &= \\ \begin{pmatrix} \frac{1}{4}\tilde{g}_{\Sigma}^{2}v^{2}c_{\beta}^{2} + m_{A}^{2}s_{\beta}^{2} & -\frac{s_{2\beta}}{8}(\tilde{g}_{\Sigma}^{2}v^{2} + 4m_{A}^{2}) & \frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}c_{\beta}c_{\beta_{R}} & -\frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}c_{\beta}s_{\beta_{R}} \\ -\frac{s_{2\beta}}{8}(\tilde{g}_{\Sigma}^{2}v^{2} + 4m_{A}^{2}) & \frac{1}{4}\tilde{g}_{\Sigma}^{2}v^{2}s_{\beta}^{2} + m_{A}^{2}c_{\beta}^{2} & -\frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}s_{\beta}c_{\beta_{R}} & \frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}s_{\beta}s_{\beta_{R}} \\ & \frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}c_{\beta}c_{\beta_{R}} & -\frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}s_{\beta}c_{\beta_{R}} & \frac{21}{16}g_{\chi}^{2}v_{R}^{2}c_{\beta_{R}}^{2} + m_{A}^{2}c_{\beta}^{2} & -\frac{s_{2\beta_{R}}}{32}(25g_{\chi}^{2}v_{R}^{2} + 16m_{A_{R}}^{2}) \\ & -\frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}c_{\beta}s_{\beta_{R}} & \frac{5}{8}\tilde{g}_{\chi}^{2}vv_{R}s_{\beta}s_{\beta_{R}} & -\frac{s_{2\beta_{R}}}{32}(25g_{\chi}^{2}v_{R}^{2} + 16m_{A_{R}}^{2}) & \frac{25}{16}g_{\chi}^{2}v_{R}^{2}s_{\beta_{R}}^{2} + m_{A}^{2}c_{\beta_{R}}^{2} \end{pmatrix} \\ & \text{where } \tilde{g}_{\Sigma}^{2} = g_{L}^{2} + g_{Y}^{2} + (g_{\chi} - g_{Y\chi})^{2}, \ \tilde{g}_{\chi}^{2} = g_{\chi}(g_{\chi} - g_{Y\chi}), \text{ and} \\ & s_{x}, \ c_{x} = \sin x, \ \cos x. \\ & \text{The parameters } m_{A} \ \text{and } m_{A_{R}} \ \text{are the tree-level masses of the} \\ & \text{pseudoscalar Higgs bosons, which are given by} \\ \end{split}$$

$$m_A^2 = B_{\mu}/(s_{\beta}c_{\beta})$$
 and $m_{A_R}^2 = B_{\mu_R}/(s_{\beta_R}c_{\beta_R})$.

SUSY, TRIESTE 2013

MANUEL E. KRAUSS

NEUTRALINO MASS MATRIX

$$M_{\tilde{\chi}0} = \begin{pmatrix} M_1 & 0 & -\frac{g_Y v_d}{2} & \frac{g_Y v_u}{2} & \frac{M_Y \chi}{2} & 0 & 0 \\ 0 & M_2 & \frac{g_L v_d}{2} & -\frac{g_L v_u}{2} & 0 & 0 & 0 \\ -\frac{g_Y v_d}{2} & \frac{g_L v_d}{2} & 0 & -\mu & \frac{(g_\chi - g_Y \chi) v_d}{2} & 0 & 0 \\ \frac{g_Y v_u}{2} & -\frac{g_L v_u}{2} & -\mu & 0 & -\frac{(g_\chi - g_Y \chi) v_d}{2} & 0 & 0 \\ \frac{M_Y \chi}{2} & 0 & \frac{(g_\chi - g_Y \chi) v_d}{2} & -\frac{(g_\chi - g_Y \chi) v_u}{2} & M_\chi & \frac{5g_\chi v_{\bar{\chi}R}}{4} & -\frac{5g_\chi v_{\bar{\chi}R}}{4} \\ 0 & 0 & 0 & 0 & 0 & -\frac{5g_\chi v_{\bar{\chi}R}}{4} & 0 & -\mu_R \\ 0 & 0 & 0 & 0 & -\frac{5g_\chi v_{\bar{\chi}R}}{4} & -\mu_R & 0 \end{pmatrix}$$

SUSY, Trieste 2013

Manuel E. Krauss

SNEUTRINO MASS MATRIX

$$\begin{split} M_{\nu}^{2} &= \\ \begin{pmatrix} m_{L}^{2} + \frac{v^{2}s_{\beta}^{2}}{2}Y_{\nu}^{\dagger}Y_{\nu} + D_{L}^{\prime}\mathbf{1} & \frac{v}{\sqrt{2}}(T_{\nu}^{\dagger}s_{\beta} - \mu Y_{\nu}^{\dagger}c_{\beta}) & \frac{1}{2}vv_{R}Y_{\nu}^{\dagger}Y_{S}s_{\beta}s_{\beta_{R}} \\ \frac{v}{\sqrt{2}}(T_{\nu}s_{\beta} - \mu^{*}Y_{\nu}c_{\beta}) & m_{\nu c}^{2} + \frac{v_{R}^{2}s_{\beta_{R}}^{2}}{2}Y_{S}Y_{S}^{\dagger} + \frac{v^{2}s_{\beta}^{2}}{2}Y_{\nu}Y_{\nu}^{\dagger} + D_{R}^{\prime}\mathbf{1} & \frac{v_{R}}{\sqrt{2}}(T_{S}s_{\beta_{R}} - \mu_{R}^{*}Y_{S}c_{\beta_{R}}) \\ \frac{1}{2}vv_{R}Y_{S}^{\dagger}Y_{\nu}s_{\beta}s_{\beta_{R}} & \frac{v_{R}}{\sqrt{2}}(T_{S}^{\dagger}s_{\beta_{R}} - \mu_{R}Y_{S}^{\dagger}c_{\beta_{R}}) & m_{S}^{2} + \frac{v_{R}^{2}s_{\beta_{R}}^{2}}{2}Y_{S}Y_{S}^{\dagger} \end{pmatrix} \end{split}$$

with

$$\begin{split} D'_{L} &= \frac{1}{32} \left(2 \left(-3g_{\chi}^{2} + g_{\chi}g_{Y\chi} + 2(g_{L}^{2} + g_{Y}^{2} + g_{Y\chi}^{2}) \right) v^{2} c_{2\beta} - 5g_{\chi} (3g_{\chi} + 2g_{Y\chi}) v_{R}^{2} c_{2\beta_{R}} \right), \\ D'_{R} &= \frac{5g_{\chi}}{32} \left(2(g_{\chi} - g_{Y\chi}) v^{2} c_{2\beta} + 5g_{\chi} v_{R}^{2} c_{2\beta_{R}} \right). \end{split}$$

SUSY, Trieste 2013

MANUEL E. KRAUSS