Mirage Models Confront LHC Data

Brent D. Nelson

with Bryan Kaufman 1303.6575, 1309.XXXX

SUSY 2013, ICTP Trieste

Motivation

- First 20 fb $^{-1}$ provide a lot of information for SUSY phenomenologists
 - ⋆ No superpartners observed, but...
 - \star SM-like Higgs in the SUSY preferred window with $m_h \simeq 126 \,\mathrm{GeV}$
- Add this to what we already know
 - ⋆ FCNC and rare decays in line with SM predictions
 - \star If neutralino is stable we have an upper bound on its relic density, etc.
- Might think that this information is not too useful just push up the scale?

Motivation

- First 20 fb⁻¹ provide a lot of information for SUSY phenomenologists
 - ⋆ No superpartners observed, but...
 - \star SM-like Higgs in the SUSY preferred window with $m_h \simeq 126 \,\mathrm{GeV}$
- Add this to what we already know
 - ⋆ FCNC and rare decays in line with SM predictions
 - ✓ If neutralino is stable we have an upper bound on its relic density, etc.
- Might think that this information is not too useful just push up the scale?
- But in a theory with a legitimate UV completion these scales are not arbitrary
- String models are highly constrained and inter-connected in these models the LHC data is already telling is something very meaningful about the underlying theory
- String models provide a rich laboratory for exploring how LHC data impacts models of supersymmetry breaking generally

- ⇒ Operational definition: a *mirage model* is any model in which soft supersymmetry breaking gaugino masses take a specific form
- Mirage pattern of gaugino masses at EW scale a one-parameter family:

 $M_1: M_2: M_3 \simeq (1+0.66\alpha): (2+0.2\alpha): (6-1.8\alpha)$

- A logical departure from 'unified' models
 - ★ Easy to understand and visualize
 - ★ Interpolates between mSUGRA ($\alpha = 0$) and AMSB limit ($\alpha \rightarrow \infty$)
 - Motivated by a variety of constructions, including string theory (heterotic and Type II) as well as "deflected" AMSB
- All values of α correspond to a unified pattern the only issue is at which energy scale they unify
 - $\star\,$ When $\alpha=0$ gaugino masses unify at $M_{\rm\scriptscriptstyle GUT}\simeq 2\times 10^{16}\;{\rm GeV}$
 - \star Other α values give effective unification scale elsewhere (hence "mirage")
 - ★ Example: $\alpha = 2$ gives $M_1 \simeq M_2 \simeq M_3$ at low-energy scale
 - ★ Effective unification scale is now at

$$\Lambda_{\rm mir} = \Lambda_{\rm GUT} \left(\frac{m_{3/2}}{M_{\rm PL}}\right)^{\alpha/2}$$

→ Moduli stabilization generally produces distinctive patterns of SUSY breaking → Mirage pattern arises when $\langle V \rangle = 0$ achieved by non-perturbative effects

- \Rightarrow Moduli stabilization generally produces distinctive patterns of SUSY breaking
- \Rightarrow Mirage pattern arises when $\langle V \rangle = 0$ achieved by non-perturbative effects
- A single un-stabilized geometrical modulus in 4D effective supergravity theory
 - \star Heterotic: dilaton superfield S
 - \star Type IIB: an overall Kähler modulus T
- Tree-level gauge kinetic function determined by this field
 - **+** Heterotic: $f_a^0 = S$
 - ***** Type IIB: $f_a^0 = T$ for gauge fields arising from D7-branes
- This modulus stabilized via non-perturbative contributions to the superpotential
 - \star Heterotic: gaugino condensation in hidden sector (subgroups of E_8)

$$W_{\rm np} = \sum_i A_i e^{-S/\mathbf{b}_i}$$

 \star Type IIB: Gaugino condensation and/or Euclidean D3-instantons

$$W_{\rm np} = W_0 + \sum_i A_i e^{-a_i T}$$

- \Rightarrow Moduli stabilization generally produces distinctive patterns of SUSY breaking
- \Rightarrow Mirage pattern arises when $\langle V \rangle = 0$ achieved by non-perturbative effects
- Vanishing vacuum energy $\langle V\rangle=0$ engineered through additional non-perturbative effects/explicit supersymmetry breaking
 - ★ Heterotic: instanton corrections to dilaton action
 - * Type IIB: explicit SUSY breaking in an 'uplift' sector KKLT: $\overline{D3}$ -branes at tip of Klebanov-Strassler throat
- Hierarchies in SUSY breaking $\langle F \rangle \sim m_{3/2}/16\pi^2$ related to condensate parameter (let "+" represent largest confining group):

+ Heterotic:
$$\langle F_S \rangle / m_{3/2} \sim g_s^2 b_+ / (1 + g_s^2 b_+)$$

$$\star\,$$
 Type IIB: $\left< F_T \right> /m_{3/2} \sim g_s^2/a_+$

- Key difference: non-universality parameter α that defines the mirage pattern determined by how vacuum energy is handled
 - ★ Heterotic: same mechanism as stabilization, therefore $\alpha = \alpha(\beta_+)$
 - \star Type IIB: depends on $(T + \overline{T})$ -dependence of uplift mechanism

- \Rightarrow Moduli stabilization generally produces distinctive patterns of SUSY breaking
- \Rightarrow Mirage pattern arises when $\langle V \rangle = 0$ achieved by non-perturbative effects
- Vanishing vacuum energy $\langle V\rangle=0$ engineered through additional non-perturbative effects/explicit supersymmetry breaking
 - ★ Heterotic: instanton corrections to dilaton action
 - * Type IIB: explicit SUSY breaking in an 'uplift' sector KKLT: $\overline{D3}$ -branes at tip of Klebanov-Strassler throat
- Hierarchies in SUSY breaking $\langle F \rangle \sim m_{3/2}/16\pi^2$ related to condensate parameter (let "+" represent largest confining group):

+ Heterotic:
$$\langle F_S \rangle / m_{3/2} \sim g_s^2 b_+ / (1 + g_s^2 b_+)$$

$$\star\,$$
 Type IIB: $\left< F_T \right> /m_{3/2} \sim g_s^2/a_+$

- Key difference: non-universality parameter α that defines the mirage pattern determined by how vacuum energy is handled
 - ★ Heterotic: same mechanism as stabilization, therefore $\alpha = \alpha(\beta_+)$
 - **\star** Type IIB: depends on $(T + \overline{T})$ -dependence of uplift mechanism

⇒ Kähler stabilized heterotic model far more constrained than Type IIB flux-compactified model

Kähler-Stabilized Heterotic Parameter Space

 \Rightarrow Soft terms set by two (quasi-)independent parameters: β_+ and $m_{3/2}$

$$\beta_{+} = \left(3C_{+} - \sum_{i} C_{+}^{i}\right), \qquad b_{+} = \frac{2}{3}\left(\frac{\beta_{+}}{16\pi^{2}}\right)$$

- Largest the hidden sector can be is E_8 , so $\beta_+ = 90$
- Achieving the Standard Model gauge group generally involves Wilson lines, so expect a hidden sector no bigger than E_6 ($\beta_+ = 36$) or SO(10) ($\beta_+ = 24$)
- Even smaller values tend to be favored from realistic constructions

⇒ Soft terms show mirage pattern in dimension-one terms only

$$M_{a} \sim F_{S} + \frac{\beta_{a}}{16\pi^{2}} m_{3/2}$$

$$A_{ijk} \sim -F^{S} + (\gamma_{i} + \gamma_{j} + \gamma_{k}) m_{3/2}$$

$$m_{i}^{2} \sim (1 + \gamma_{i}) m_{3/2}^{2} - \tilde{\gamma}_{i} \left(\frac{m_{3/2} F^{S}}{2} + \text{h.c.} \right)$$

Higgs Mass versus Dark Matter

- Tension between correct LSP relic density and LHC Higgs mass measurement
- 'Automatic' dark matter for wino-like WIMP at $\beta_+ \lesssim 9$ now strongly disfavored

Higgs Mass versus Dark Matter

- Hidden sector of pure E_6 (no matter) has $\beta_+ = 36$
- Will need to boost Higgs mass by going to high aneta

8 TeV LHC Results

			Low Multiplicity Jets						Leptonic Channels					
			2 Jets		4 Jets			1 Lepton		SS Dilepton		SS 2ℓ, B-Jets		
Point	β_+	$m_{ ilde{g}}$	М	Т	L	M	Т	1 <i>e</i>	1μ	$e \mu$	$\mu\mu$	0b	1b	3b
A	9	498	24	9	101	27	5	2	12	6	1	24	15	2
В	10	628	6	1	39	11	1	2	11	6	1	33	68	21
C	11	699	4	1	23	7	—	1	7	8	4	22	44	13
D	12	808	2	—	13	3	—	1	4	6	3	12	33	9
E	13	913	2	—	7	2	—	1	2	3	2	7	18	4
F	14	1050	2	—	4	2	—	-	2	1	1	2	6	1
G	15	1114	1	_	2	1	—	-	1	1	1	2	4	1
Н	18	1392	—	—	—	—	—	—	—	—	—	—	1	—
Observed			111	10	156	31	1	10	4	2	1	5	8	4
$N_{ m BSM}$			34	9	66	18	3	10	6	6	3	7	11	7

Table 1: Event Counts for BGW Benchmark Points at $\sqrt{s} = 8 \text{ TeV}$ for Selected ATLAS Searches. Table entries in boldface indicate a channel which would have produced a discovery for that point.

⇒ Greatest reach from same-sign dilepton with b-tagged jets (ATLAS-CONF-2013-007)

- At least two leptons (e or μ) with the same sign and $p_T > 20 \,\text{GeV}$
- Requires 0, 1 and 3⁺ b-tagged jets with $p_T > 40 \,\mathrm{GeV}$
- Missing transverse energy $E_T^{\text{mis}} > 150 \,\text{GeV}$
- Total effective mass cut $M_{\rm eff} > 700 \,{\rm GeV}$

Effective Mass Distribution

 \Rightarrow Softer decay products implies 100-200 GeV less reach in $m_{\tilde{g}}$ relative to mSUGRA benchmarks

Type IIB (à la KKLT) Parameter Space

- Soft terms set by two truly independent parameters
 - \star Can choose two mass scales $M_0\equiv \left\langle F_T/(T+\overline{T})
 ight
 angle$ and $m_{3/2}$
 - * Or choose one mass scale and the parameter $\alpha \equiv \frac{m_{3/2}}{M_0 \ln(M_{\rm PL}/m_{3/2})}$
- \Rightarrow For certain choices of uplift sector, α becomes a *prediction*
- Example: consider modifying effective supergravity Lagrangian as follows

$$\mathcal{L} \ni -2\int \mathsf{d}^4\theta E \to -2\int \mathsf{d}^4\theta \left[E + P(T,\overline{T})\right], \quad P(T,\overline{T}) = C(T+\overline{T})^n$$

• Now α given by a rational number

$$\alpha = \frac{1}{1 - n/2} + \mathcal{O}\left(1/\ln(M_{\rm PL}/m_{3/2})\right)$$

• Note that for original KKLT suggestion of $\overline{D3}$ -branes, $n = 0 \longrightarrow \alpha = 1$

Flux-Compactified Type IIB: Soft Terms

- \Rightarrow Our analysis chose to scan on parameters α and M_0
- M₀ most directly tied to overall superpartner masses; α is the parameter of most interest theoretically
- Soft terms are more easily expressed in terms of M_0 and $m_{3/2}$, however

$$M_a \sim M_0 + \frac{\beta_a}{16\pi^2} m_{3/2}$$

$$A_{ijk} \sim -(3 - n_i - n_j - n_k) M_0 + (\gamma_i + \gamma_j + \gamma_k) m_{3/2}$$

$$m_i^2 \sim (1 - n_i) M_0^2 - \theta_i M_0 m_{3/2} - \dot{\gamma}_i m_{3/2}^2$$

- \Rightarrow Expressions for scalar fields involve the modular weight n_i
- Indicates the non-canonical nature of the kinetic terms for scalar fields

$$K_{i\bar{j}} = \frac{\delta_{i\bar{j}}}{(T+\overline{T})^{n_i}}$$

- Depends on how SM fields are realized locally on stacks of *D*-branes
 - ★ $n_i = 1$ for *D*3-brane fields, $n_i = 0$ for *D*7-brane fields
 - ★ $n_1 = 1/2$ for twisted sectors stretched between D3/D7 branes, or different stacks of D7-branes

Higgs Mass Distribution: All Modular Weights

 \Rightarrow Once requirement $\Omega_{\chi}h^2 \leq 0.128$ imposed, distribution on Higgs mass favors LHC measured values

Gluino Mass Distribution: All Modular Weights

 \Rightarrow Before imposing Higgs mass and dark matter requirements

Gluino Mass Distribution: All Modular Weights

 \Rightarrow After imposing $124.2 \,\text{GeV} \le m_h \le 127.0 \,\text{GeV}$ and $\Omega_{\chi} h^2 \le 0.128$

LSP Mass Distribution: All Modular Weights

 \Rightarrow Blue histogram: before Higgs mass and dark matter requirements

 \Rightarrow Yellow histogram: requiring $124.2 \text{ GeV} \le m_h \le 127.0 \text{ GeV}$ and $\Omega_{\chi} h^2 \le 0.128$

LSP Mass Distribution: All Modular Weights

⇒ Blue histogram: before Higgs mass and dark matter requirements

- \Rightarrow Yellow histogram: requiring $124.2 \,\text{GeV} \le m_h \le 127.0 \,\text{GeV}$ and $\Omega_{\chi} h^2 \le 0.128$
- \Rightarrow Red histogram: requiring $\Omega_{\chi}h^2 = 0.1199 \pm 0.0027$

Example: Modular Weights $(n_M, n_H) = (1/2, 0)$

Example: Modular Weights $(n_M, n_H) = (1/2, 0)$

Example: Modular Weights $(n_M, n_H) = (1/2, 0)$

Summary of Modular Weight Results

	$n_H = 0$	$n_{H} = 1/2$	$n_H = 1$
	$1.08 \le \alpha \le 1.19$	$0.50 \le \alpha \le 0.62$	
	$1.96 \le \alpha \le 2.0$	$1.85 \le \alpha \le 2.0$	$0 \le \alpha \le 0.20$
	$1200 \le M_0 \le 3410$	$1290 \le M_0 \le 2600$	$1700 \le M_0 \le 2800$
$n_M = 0$			
	$1770 \le m_{\tilde{g}} \le 5400$	$1860 \le m_{\tilde{g}} \le 4330$	$3470 \le m_{\tilde{g}} \le 5710$
	$\sigma_{ m SUSY}^{ m 14TeV}=39.1~{ m fb}$	$\sigma_{ m SUSY}^{ m 14TeV}=21.3~{ m fb}$	$\sigma_{ m SUSY}^{ m 14TeV} = 15.8~{ m fb}$
	$0.97 \le \alpha \le 1.03$	$0.72 \le \alpha \le 0.82$	
	$1.10 \le \alpha \le 1.74$	$1.46 \le \alpha \le 1.79$	$1.95 \le \alpha \le 2.0$
	$1570 \le M_0 \le 3820$	$1290 \le M_0 \le 5090$	$4600 \le M_0 \le 6000$
$n_M = 1/2$			
	$1990 \le m_{\tilde{g}} \le 4390$	$2580 \le m_{\tilde{g}} \le 5550$	$3900 \le m_{\tilde{g}} \le 5200$
	$\sigma_{ m SUSY}^{ m 14TeV}=2.2~{\sf pb}$	$\sigma_{ m SUSY}^{ m 14TeV}=1.1~{\sf pb}$	$\sigma_{ m SUSY}^{ m 14TeV} = 4.5~{ m fb}$
	$0.62 \le \alpha \le 0.78$	$0.77 \le \alpha \le 0.88$	$1.09 \le \alpha \le 1.15$
	$1200 \le M_0 \le 3410$	$1290 \le M_0 \le 2600$	$1700 \le M_0 \le 2800$
$n_M = 1$			
	$2250 \le m_{\tilde{g}} \le 4410$	$3300 \le m_{\tilde{g}} \le 6000$	$ 4860 \le m_{\tilde{g}} \le 6000 $
	$\sigma_{ m SUSY}^{ m 14TeV}=4.4~{\sf pb}$	$\sigma_{ m SUSY}^{ m 14TeV}=0.6~{\sf pb}$	$\sigma_{ m SUSY}^{ m 14TeV}=6.7~{ m pb}$

Table 2: Summary Table for All Modular Weight Combinations. All mass values in GeV. Total SUSY production cross-section at $\sqrt{s} = 14 \text{ TeV}$ for parameter set with smallest $m_{\tilde{g}}$ value.

Conclusions

- ⇒ LHC data starting to put the screws to semi-realistic models from string theory
- Theories with a meaningful UV completion have less room to maneuver
- Cannot simply increase the overall mass scale arbitrarily tied to underlying theory parameters
- ⇒ Kähler stabilized heterotic models (the generalized dilaton domination scenario) already under stress
- Key parameter region will be tested early in LHC at $\sqrt{s} = 13 14 \,\mathrm{TeV}$
- Expect direct dark matter detection signals within one ton-year of exposure on liquid Xenon
- ⇒ Type IIB flux compactification models (the generalized modulus domination scenario) not yet being probed at LHC
- Model building prefers n_M , $n_H = 0,1/2$ these models may have gluinos accessible at $\sqrt{s} = 13 14$ TeV
- $n_M = 1$ has light EW gauginos accessible at ILC and/or dark matter detection experiments