SUSY2013@ICTP, Trieste, Italy (2013 August 27)

Compact Supersymmetry++

Kohsaku Tobioka

Kavli IPMU, Univ. of Tokyo

Murayama, Nomura, Shirai, KT (arXiv:1206.4993) Murayama, Nojiri, KT (arXiv:1107.3369)

Discovery of 125GeV Higgs and E_{Tmiss} exclusion of MSSM @LHC

Implications for MSSM

Implications for MSSM

2. E_{Tmiss} Search excludes squark/gluino mass up to TeV

Compressed spectrum leads very different limit

Beyond m_{LSP}~700GeV, gluino/squark mass is not constrained, because missing energy is much smaller due to the compression
Increasing data (by factor of 4) doesn't improve the limit

Compressed spectrum leads very different limit

Beyond m_{LSP}~700GeV, gluino/squark mass is not constrained, because missing energy is much smaller due to the compression
Increasing data (by factor of 4) doesn't improve the limit

Compressed Spectrum

Mostly based on Phenomenological studies [arXiv:1105.4304, 1206.6767, 1207.1613, 1207.6289, 1208.0949, 1308.1526..]

Is there any theoretical motivation? ...

•Compressed Spectrum • Large A term

Higgs mass is enhanced when $|At| \sim \sqrt{6*m_{stop}}$ But too much A term, $|At| > 3m_{stop}$, leads instability

Not easy from model building point of view, e.g. GMSB... [arXiv:1302.2642,1206.4086, 1107.3006, 1112.3068..] Compressed Spectrum

• Large A term

SUSY breaking from Extra Dimension "Scherk-Schwarz mechanism" =Radion Mediation

Scherk-Schwarz mechanism

y: 5th dimensional coordinate /R: radius of extra dimension [Scherk and Schwarz (1979)]

- **D** 5D Minimal SUSY (corresponding to $\mathcal{N}=2$ in 4D)
- **Geometry:** S^1/Z_2 (chiral for zero mode, $\mathcal{N}=1$ in 4D)

Non-trivial boundary condition on SU(2)_R space breaks supersymmetry =Scherk-Schwarz mechanism

•Non-trivial B.C.

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y + 2\pi R) = e^{-2\pi i \alpha \sigma_2} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y)$$

Continuous twist parameter, $\alpha << 1$

Scherk-Schwarz mechanism

y: 5th dimensional coordinate /R: radius of extra dimension [Scherk and Schwarz (1979)]

- **D** 5D Minimal SUSY (corresponding to $\mathcal{N}=2$ in 4D)
- **Geometry:** S^1/Z_2 (chiral for zero mode, $\mathcal{N}=1$ in 4D)

Non-trivial boundary condition on SU(2)_R space breaks supersymmetry =Scherk-Schwarz mechanism

•Non-trivial B.C.

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y + 2\pi R) = e^{-2\pi i \alpha \sigma_2} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y)$$

Continuous twist parameter, $\alpha << 1$

•Resulting KK decomposition

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y) = \sum_{n=0}^{\infty} e^{-i\alpha\sigma_2 y/R} \begin{pmatrix} \lambda_1^{(n)}(x_{\mu})\cos[ny/R] \\ \lambda_2^{(n)}(x_{\mu})\sin[ny/R] \end{pmatrix}$$
$$\supset \begin{pmatrix} \lambda_1^{(0)}(x_{\mu})\cos[\alpha y/R] \\ \lambda_1^{(0)}(x_{\mu})\sin[\alpha y/R] \end{pmatrix}$$

$$m_n = \begin{cases} \alpha/R & \text{zero mode} \\ (\alpha \pm n)/R & \text{non-zero modes} \end{cases}$$

11

Fields: $V,~\chi,~\Phi,~\Phi^c$	Higgs localized at y=0:	$H_u(x), H_d(x)$
V :Vector superfield χ : Adjoint chiral superfield $\Phi^{(c)}$: Hypermultiplet of matter	fields $egin{array}{c} A_{\mu},\lambda_{1}\ \lambda_{2},\ A_{5},\ \Sigma\ \phi^{(c)},\psi^{(c)} \end{array}$	

Inversion $[y \rightarrow -y]$ (Orbifold)

$$\binom{V(x,-y)}{\chi(x,-y)} = \binom{V(x,y)}{-\chi(x,y)}$$

$$\begin{pmatrix} \Phi(x,-y)\\ \Phi^c(x,-y) \end{pmatrix} = \begin{pmatrix} \Phi(x,y)\\ -\Phi^c(x,y) \end{pmatrix}$$

Translation $[\mathbf{y} \rightarrow \mathbf{y}+2\pi \mathbf{R}]$ (SS mechanism) •For SU(2)_R doublets, common twist $\begin{pmatrix} \lambda_1(x,y+2\pi R)\\ \lambda_2(x,y+2\pi R) \end{pmatrix} = e^{-2\pi\alpha\sigma_2} \begin{pmatrix} \lambda_1(x,y)\\ \lambda_2(x,y) \end{pmatrix}$ $\begin{pmatrix} \phi(x,y+2\pi R)\\ \phi^{c\dagger}(x,y+2\pi R) \end{pmatrix} = e^{-2\pi\alpha\sigma_2} \begin{pmatrix} \phi(x,y)\\ \phi^{c\dagger}(x,y) \end{pmatrix}$ <u>same for gravitinos</u>

•For others,
$$X(x, y + 2\pi R) = X(x, y)$$

 $m_{1/2, \text{squark, slepton}} = \frac{\alpha}{R}$

Common soft mass

Radion Mediation ~ SS mechanism

Radion mediation: SUSY breaking by the Radion superfield VEV $T = R + iB_5 + \theta \Psi_R^5 + \theta^2 F_T$

~Dynamical realization of Scherk-Schwarz mechanism

[D.Marti and A.Pomarol(2001), D.Kaplan and N. Weiner(2001) ...]

Radion Mediation ~ SS mechanism

Radion mediation: SUSY breaking by the Radion superfield VEV $T = R + iB_5 + \theta \Psi_R^5 + \theta^2 F_T$

~Dynamical realization of Scherk-Schwarz mechanism

[D.Marti and A.Pomarol(2001), D.Kaplan and N. Weiner(2001) ...]

• Gauge sector

$$S_5 = \int dx^4 dy \left[\frac{1}{4g_5^2} \int d^2\theta \left(\frac{T}{R} \right) W^{\alpha} W_{\alpha} + \text{h.c.} + \frac{1}{g_5^2} \int d^4\theta \frac{2R}{T+T^{\dagger}} \left(\partial_5 V - \frac{\chi + \chi^{\dagger}}{\sqrt{2}} \right)^2 \right]$$

$$S_5 = \int dx^4 dy \left[\frac{1}{4g_5^2} \int d^4\theta \; \frac{T + T^{\dagger}}{2R} \left(\Phi^{\dagger} e^{-V} \Phi + \Phi^c e^V \Phi^{c\dagger} \right) + \int d^2\theta \; \Phi^c \left(\partial_5 - \frac{\chi}{\sqrt{2}} \right) \Phi + \text{h.c.} \right]$$

Radion vev:
$$\langle T \rangle = R + F_T \theta^2 \Rightarrow R - 2\alpha \theta^2$$
 $F_T = -2\alpha$

Canonically normalize:

Matter sector

$$\Phi^{(c)} \rightarrow \left(1 + \frac{\alpha}{R}\theta^2\right) \Phi^{(c)}, \quad \chi \rightarrow \left(1 - \frac{\alpha}{R}\theta^2\right) \chi$$

15

Higgs fields and Yukawa interactions are localized on the brane at y=0

$$\mathcal{L}_{brane} = \delta(y) \int d^2 \theta (y_U^{ij} Q_i U_j H_u + y_D^{ij} Q_i D_j H_d + y_E^{ij} L_i E_j H_d + \mu H_u H_d)$$

Higgs fields and Yukawa interactions are localized on the brane at y=0

$$\mathcal{L}_{brane} = \delta(y) \int d^2 \theta (y_U^{ij} Q_i U_j H_u + y_D^{ij} Q_i D_j H_d + y_E^{ij} L_i E_j H_d + \mu H_u H_d)$$

Large A term is generated by the field redefinition

Take α<<1
 KK states(~n/R) are decoupled ->MSSM at low energy
 Compact parameter set rather than CMSSM:

At tree level and at scale ~1/R,

$$M_{1/2} = \frac{\alpha}{R}, \quad m_{\tilde{Q},\tilde{U},\tilde{D},\tilde{L},\tilde{E}}^2 = \left(\frac{\alpha}{R}\right)^2, \quad m_{H_u,H_d}^2 = 0,$$
$$A_0 = -\frac{2\alpha}{R}, \quad \mu \neq 0, \quad B = 0,$$

Take α<<1
 KK states(~n/R) are decoupled ->MSSM at low energy
 Compact parameter set rather than CMSSM:

At tree level and at scale ~1/R,
$$\begin{array}{ll} M_{1/2} = \frac{\alpha}{R}, & m_{\tilde{Q},\tilde{U},\tilde{D},\tilde{L},\tilde{E}}^2 = \left(\frac{\alpha}{R}\right)^2, & m_{H_u,H_d}^2 = 0, \\ A_0 = -\frac{2\alpha}{R}, & \mu \neq 0, & B = 0, \end{array}$$

□ Radiative corrections from at and above 1/R are under control because of symmetries of higher dimensions

Calculated threshold corrections to the Higgs mass parameters

$$\begin{split} \delta m_{H_u}^2 &= \left(-\frac{33y_t^2}{8\pi^2} + \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \right) \left(\frac{\alpha}{R} \right)^2, \\ \delta m_{H_d}^2 &= \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \left(\frac{\alpha}{R} \right)^2, \\ \delta B &= \left(\frac{9y_t^2}{8\pi^2} - \frac{3(g_2^2 + g_1^2/5)}{8\pi^2} \right) \frac{\alpha}{R}, \end{split}$$

Only three parameters!

•No physical phase

•Geometry is universal

Take α<<1
 KK states(~n/R) are decoupled ->MSSM at low energy
 Compact parameter set rather than CMSSM:

At tree level and at scale ~1/R,
$$\begin{array}{ll} M_{1/2} = \frac{\alpha}{R}, & m_{\tilde{Q},\tilde{U},\tilde{D},\tilde{L},\tilde{E}}^2 = \left(\frac{\alpha}{R}\right)^2, & m_{H_u,H_d}^2 = 0, \\ A_0 = -\frac{2\alpha}{R}, & \mu \neq 0, & B = 0, \end{array}$$

□ Radiative corrections from at and above 1/R are under control because of symmetries of higher dimensions

Calculated threshold corrections to the Higgs mass parameters

$$\begin{split} \delta m_{H_u}^2 &= \left(-\frac{33y_t^2}{8\pi^2} + \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \right) \left(\frac{\alpha}{R} \right)^2, \\ \delta m_{H_d}^2 &= \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \left(\frac{\alpha}{R} \right)^2, \\ \delta B &= \left(\frac{9y_t^2}{8\pi^2} - \frac{3(g_2^2 + g_1^2/5)}{8\pi^2} \right) \frac{\alpha}{R}, \end{split}$$
 Only three parameters!

•No physical phase

•Geometry is universal

 μ .

Take α<<1
 KK states(~n/R) are decoupled ->MSSM at low energy
 Compact parameter set rather than CMSSM:

□ Radiative corrections from at and above 1/R are under control because of symmetries of higher dimensions

Calculated threshold corrections to the Higgs mass parameters

$$\begin{split} \delta m_{H_u}^2 &= \left(-\frac{33y_t^2}{8\pi^2} + \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \right) \left(\frac{\alpha}{R} \right)^2, \\ \delta m_{H_d}^2 &= \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \left(\frac{\alpha}{R} \right)^2, \\ \delta B &= \left(\frac{9y_t^2}{8\pi^2} - \frac{3(g_2^2 + g_1^2/5)}{8\pi^2} \right) \frac{\alpha}{R}, \end{split}$$
 Only three parameters!

No physical phaseGeometry is universal

Spectrum

 \square 2 scales: μ and α/R \square More compressed as $\mu \rightarrow \alpha/R$, i.e. larger 1/R (Q₀)

Higgs mass and tuning

Theoretical error of Higgs
mass is not small $|\Delta M_H| \approx 2 - 3 \text{ GeV}$

•Also deviation from top mass $\Delta m_t = \pm 0.9 \text{ GeV}$ $\Longrightarrow \Delta M_H \approx \pm 1 \text{ GeV}$

□ Fine tuning of sub-% level
 mainly from µ
 ⇒ better than CMSSM

 $\Delta^{-1} \equiv \min_{x} |\partial \ln m_{Z}^{2} / \partial \ln x|^{-1}$ with $x = \alpha, \mu, 1/R, y_{t}, g_{3}, \cdots$

Collider limit

Limit does not change much 5fb⁻¹(7TeV)⇒20fb⁻¹(8TeV)
Need improvement

Collider limit

Possible improvement by M_{T_2}

Dark Matter Nature

 \blacksquare Thermal relic of LSP is not enough for observed DM density unless LSP \gtrsim TeV $$\Omega_{\rm DM}h^2\simeq0.1$$

Direct detection of DM does not exclude this scenario, and the future update will be interesting

Conclusion

Compact Supersymmetry: model with SUSY breaking from Extra Dimension

Compressed spectrum & large A term are realized. Only
 parameters (No Flavor & No CP problem), sub-% tuning

Collider limit is mild. It is not much improved by increasing data/energy. MT2 is useful to search for the signal

Higgsino-like LSP, sub-dominant component of DM. Consistent with Direct detection result

Grazie!

Backup

Mu problem in NMSSM extension

Work in progress [Murayama, Nomura, Shirai, KT]

Singlet Hypermultiplet in the bulk

$$W_{NMSSM} = \left(\lambda SH_uH_d + \frac{1}{3}\kappa S^3\right)\,\delta(y)$$

□ Again, soft parameters are automatically determined

•No CP violation source

$$V_{soft}^{\text{NMSSM}} = (a_{\lambda}SH_{u}H_{d} + \frac{1}{3}a_{\kappa}S^{3} + \text{h.c.}) + m_{s}|S|^{2}$$
$$a_{\lambda} = -\frac{\alpha}{R}, \ a_{\kappa} = -\frac{3\alpha}{R}, \ m_{s}^{2} = \left(\frac{\alpha}{R}\right)^{2},$$
Double well potential at ~1/R
$$V(S) = S^{2}\left(\kappa S - \alpha / R\right)^{2}, \ \langle S \rangle = \frac{\alpha / R}{\kappa}$$
$$\mu_{eff} = \lambda \langle S \rangle = \frac{\lambda}{\kappa} \frac{\alpha}{R} \sim O(1) \frac{\alpha}{R}$$

 μ term is generated, $\sim \alpha/R$, -> compressed

 \bullet Relatively free λ,κ realize Higgs mass

Brane-localized kinetic terms and cutoff

□ Radiative corrections from above 1/R generates boundary kinetic terms from dimensional analysis

$$\frac{\delta M_{1/2}}{M_{1/2}}, \, \frac{\delta m_{\tilde{f}}^2}{m_{\tilde{f}}^2}, \, \frac{\delta A_0}{A_0} \approx O\left(\frac{1}{16\pi^2}\ln(\Lambda R)\right).$$

□ Assume the tree level contributions are same size of radiative ones

Effective theory with tree level estimation of soft parameters is valid for $\Lambda R \ll 16\pi^2$

Power of $\mathcal{N}=2$

 \square S¹/Z₂ orbifolding makes zero modes chiral, but higher KK modes consists \mathcal{N} =2 multiplets

 \blacksquare No wavefunction renormalization of hypermultiplet in $\mathcal{N}\text{=}2$ SUSY

$$S_5 = \int dx^4 dy \left[\frac{1}{4g_5^2} \int d^4\theta \left[\frac{T+T^{\dagger}}{2R} \left(\Phi^{\dagger} e^{-V} \Phi + \Phi^c e^{V} \Phi^{c\dagger} \right) + \int d^2\theta \, \Phi^c \left(\partial_5 - \frac{\chi}{\sqrt{2}} \right) \Phi + \text{h.c.} \right]$$

• Even log divergences are cancelled out for each KK mode (n>0)

• Only MSSM(n=0) particles give log divergences

Gravitino mass

□ Obviously the SU(2)R doublets should have same soft mass from their 5d derivatives

 $\mathbf{2}$

□ SUSY breaking is from Radion

•GR action

$$M_{pl}^2 \mathcal{R} \to M_{pl}^2 \left(\frac{T + T^{\dagger}}{R} \right)$$
$$\left(g_{55} \to \frac{T + T^{\dagger}}{R} \right)$$

•Gravitino mass Radion should be canonically normalized

$$M_{3/2} \sim \frac{\langle \mathcal{F} \rangle}{M_{pl}} \sim \frac{(F_T/R)M_{pl}}{M_{pl}}$$

$$M_{1/2, \text{ squark, slepton}} = M_{3/2} = \frac{\alpha}{R}$$