Status of Muon g_{-2} in the MSSM

Andre Lessa University of Sao Paulo

SUSY13, Trieste - August 27th, 2013

 $a_{\mu}^{ extsf{E821}} - a_{\mu}^{ extsf{SM}}(e^+e^-) = (27.8\pm8) imes10^{-10}~(3.5\sigma) o Used$ here Z. Zhang, Nucl. Phys. B Proceedings Supplement 00 (2013) $a_{-}^{SM}(\tau) = (18.6 \pm 8) \times 10^{-10} (2.3\sigma)$ HMNT 07 (e⁺e⁻) -287 ± 53 J 07 (e*e) -294 ± 65 τ result converges to e^+e^- once $\rho - \gamma$ mixing DHMZ 10 (7) -195 ± 54 is included DHMZ 10 (e*e*) (E. Jegerlehner and R. Szafron, Eur.Phys.J. C71 (2011) 1632), M. Benavoun -287 ± 49 . Nucl.Phys.Proc.Suppl. 225-227 (2012) 288-292) JS 11 (e⁺e⁻+τ) -292+60 HLMNT 11(e⁺e⁻) Experimental uncertainty \sim theoretical -261 ± 49 uncertainty BNL-E821 (average) 0 ± 63 a_{-2} is one of the few experimental -600 -500 -400 -300 -200 -100 0 -700

motivations for BSM physics

100

 $\times 10^{-11}$

 $a_{\mu} - a_{\mu}^{exp}$

 $a_{\mu}^{ ext{E821}} - a_{\mu}^{ ext{SM}}(e^+e^-) = (27.8 \pm 8) imes 10^{-10} (3.5\sigma)
ightarrow Used here$ Z. Zhang, Nucl. Phys. B Proceedings Supplement 00 (2013) $a_{-}^{SM}(\tau) = (18.6 \pm 8) \times 10^{-10} (2.3\sigma)$ HMNT 07 (e⁺e⁻) -287 ± 53 J 07 (e⁺e⁻) -294 ± 65 τ result converges to e^+e^- once $\rho - \gamma$ mixing DHMZ 10 (7) -195 ± 54 is included DHMZ 10 (e⁺e⁻) (E. Jegerlehner and R. Szafron, Eur.Phys.J. C71 (2011) 1632), M. Benavoun -287 ± 49 Nucl.Phys.Proc.Suppl. 225-227 (2012) 288-292) JS 11 (e⁺e⁻+τ) -292 ± 60 HLMNT 11(e⁺e⁻) Experimental uncertainty \sim theoretical -261 ± 49 uncertainty BNL-E821 (average) 0 ± 63

- g-2 is one of the few experimental motivations for BSM physics
- A number of constrained SUSY scenarios are already excluded by g-2 (CMSSM, NUHM1)

-600 -500 -400 -300 -200 -100 0 100

 $a_{\mu} - a_{\mu}^{exp}$

-700

 $\times 10^{-11}$

 $a_{\mu}^{ extsf{E821}} - a_{\mu}^{ extsf{SM}}(e^+e^-) = (27.8\pm8) imes10^{-10}~(3.5\sigma) o Used$ here Z. Zhang, Nucl. Phys. B Proceedings Supplement 00 (2013) $a_{-}^{SM}(\tau) = (18.6 \pm 8) \times 10^{-10} (2.3\sigma)$ HMNT 07 (e⁺e⁻) -287 ± 53 J 07 (e⁺e⁻) -294 ± 65 τ result converges to e^+e^- once $\rho - \gamma$ mixing DHMZ 10 (7) -195 ± 54 is included DHMZ 10 (e⁺e⁻) (E. Jegerlehner and R. Szafron, Eur.Phys.J. C71 (2011) 1632), M. Benavoun -287 ± 49 -Nucl.Phys.Proc.Suppl. 225-227 (2012) 288-292) JS 11 (e⁺e⁻+τ) -292 ± 60 HLMNT 11(e⁺e⁻) Experimental uncertainty \sim theoretical -261 ± 49 uncertainty BNL-E821 (average) 0 ± 63 a_{-2} is one of the few experimental -600 -500 -400 -300 -200 -100 0 -700 $\times 10^{-11}$

motivations for BSM physics

A number of constrained SUSY scenarios are already excluded by q_{-2} (CMSSM, NUHM1)

What is the status of q_{-2} in the (unconstrained) MSSM?

 $a_{\mu} - a_{\mu}^{exp}$

100

• g_-2 in the MSSM

Dark Matter Constraints

LHC Constraints

Future Prospects

• Main MSSM contributions:

• Main MSSM contributions:

$$\frac{\tilde{W}^{-}, \tilde{H}^{-}}{\tilde{\nu}} \frac{\mu}{\mu} + \frac{\mu}{\tilde{\mu}} \frac{\tilde{W}, \tilde{H}, \tilde{B}}{\tilde{\mu}} \simeq 12 \times 10^{-10} \frac{\tan\beta}{60} \frac{(775 \, \text{GeV})^2}{M_2 \, \mu} \mathcal{O}(1)$$

- No dependence on the strong sector
- Only depends on the EW gaugino and slepton sectors: μ, M₁, M₂, m_{μ̃_L,R}, tan β

• Main MSSM contributions:

$$\frac{\tilde{W}^{-}, \tilde{H}^{-}}{\tilde{\nu}} \frac{\mu}{\mu} + \frac{\mu}{\tilde{\mu}} \frac{\tilde{W}, \tilde{H}, \tilde{B}}{\tilde{\mu}} \simeq 12 \times 10^{-10} \frac{\tan\beta}{60} \frac{(775 \text{ GeV})^2}{M_2 \mu} \mathcal{O}(1)$$

- No dependence on the strong sector
- Only depends on the EW gaugino and slepton sectors: μ, M₁, M₂, m_{μ̃L,R}, tan β
- $m_{LSP} \lesssim$ 530 GeV (670 GeV) at 1 σ (2 σ)

General scan ($\tilde{\chi}_1^0$ LSP):

• Main MSSM contributions:

$$\frac{\tilde{W}^{-}, \tilde{H}^{-}}{\tilde{\nu}} \frac{\mu}{\mu} + \frac{\mu}{\tilde{\mu}} \frac{\tilde{W}, \tilde{H}, \tilde{B}}{\tilde{\mu}} \simeq 12 \times 10^{-10} \frac{\tan\beta}{60} \frac{(775 \text{ GeV})^2}{M_2 \mu} \mathcal{O}(1)$$

- No dependence on the strong sector
- Only depends on the EW gaugino and slepton sectors: μ, M₁, M₂, m_{μ̃L,R}, tan β
- $m_{LSP} \lesssim$ 530 GeV (670 GeV) at 1 σ (2 σ)

g_2 by itself does not guarantee a visible spectrum at the LHC-Run I

General scan ($\tilde{\chi}_1^0$ LSP):

• Correlation with flavor observables:

• Correlation with flavor observables:

• Correlation with flavor observables:

Correlated if $\mu \sim m_{ ilde{\chi}_1^0}$ (Higgsino LSP)

- From Planck: $\Omega_{DM}h^2 = 0.1199 \pm 0.0027$
 - ► $\Omega_{\tilde{\chi}_1^0} h^2 < 0.12$

- From Planck: $\Omega_{DM}h^2 = 0.1199 \pm 0.0027$
 - $\Omega_{\tilde{\chi}_1^0} h^2 < 0.12$
 - ▶ Well known solutions: higgsino LSP, wino LSP, slepton-coannihilation...

- From Planck: $\Omega_{DM}h^2 = 0.1199 \pm 0.0027$
 - $\Omega_{\tilde{\chi}_1^0} h^2 < 0.12$
 - ▶ Well known solutions: higgsino LSP, wino LSP, slepton-coannihilation...
 - In particular, the higgsino solution $(\tilde{\chi}_1^0 \sim \tilde{H})$:
 - ***** is "favored" by Naturalness (small μ)
 - $\star \ b
 ightarrow s + \gamma$ and a_{μ} are correlated

- From Planck: $\Omega_{DM}h^2 = 0.1199 \pm 0.0027$
 - $\Omega_{\tilde{\chi}_1^0} h^2 < 0.12$
 - Well known solutions: higgsino LSP, wino LSP, slepton-coannihilation...
 - In particular, the higgsino solution $(\tilde{\chi}_1^0 \sim \tilde{H})$:
 - * is "favored" by Naturalness (small μ)
 - $\star \ b
 ightarrow s + \gamma$ and a_{μ} are correlated

Dark Matter Constraints: Xe100

 $\Omega_{ ilde{\chi}_1^0}h^2 < 0.12$:

Mixed $\tilde{\chi}_1^0$: Bino $ilde{\chi}_1^{\scriptscriptstyle 0}$ ($m_{ ilde{\chi}_1^{\scriptscriptstyle 0}}\simeq M_1$): 10-8 10-8 σ(p,SI)^{α1} (pb) Excluded by $BR(b \rightarrow s\gamma)$ Excluded by BR($b \rightarrow s\gamma$) 10.11 Excluded by a., Excluded by a., 10 Mixed LSP Bino LSP Xe100 Xe100 10^{-12} 10.12 $\tilde{\chi}_{100}^{0} \simeq 200 \quad 300 \quad \frac{400}{m_{\tilde{\chi}_{1}^{0}}} \begin{array}{c} 500 \\ GeV \end{array}$ Wino $\tilde{\chi}_{1}^{0} \ (m_{\tilde{\chi}_{1}^{0}} \simeq M_{2})$: Higgsino $\tilde{\chi}_{1}^{0}$ ($m_{\tilde{\chi}_{1}^{0}}$ ($m_{\tilde{\chi}_{1}^{0}}$) $\simeq \mu$): 700 10^{-8} 10-8 10 α(p,SI)^{en} (pb) 10¹⁰ (pb) σ(p,SI)^{en} (pb)

- For simplicity we take $M_2 = 2M_1$ (no Wino LSP, small \tilde{W} contribution to a_{μ})
- No strong sector constraints ($m_{\tilde{g}} = 1.5$ TeV and $m_{\tilde{g}} = 2$ TeV)
- Degenerate sleptons (but $m_{\tilde{l}_l} \neq m_{\tilde{l}_R}$)
- ullet \sim 15 LHC analyses for EW gauginos and sleptons
- Constraints on simplified models are implemented through SmodelS*

*(see pseudo-W. Waltenberger's talk on SmodelS)

- For simplicity we take $M_2 = 2M_1$ (no Wino LSP, small \tilde{W} contribution to a_{μ})
- No strong sector constraints ($m_{\tilde{g}} = 1.5$ TeV and $m_{\tilde{g}} = 2$ TeV)
- Degenerate sleptons (but $m_{\tilde{l}_l} \neq m_{\tilde{l}_R}$)
- ullet \sim 15 LHC analyses for EW gauginos and sleptons
- Constraints on simplified models are implemented through SmodelS*

*(see pseudo-W. Waltenberger's talk on SmodelS)

• Why are the LHC constraints "weak"?

- Why are the LHC constraints "weak"?
- DM \rightarrow Higgsino $\tilde{\chi}_1^0$ or $\tilde{\tau}$ coannihilation

- Why are the LHC constraints "weak"?
- DM \rightarrow Higgsino $\tilde{\chi}^{\rm 0}_1$ or $\tilde{\tau}$ coannihilation
 - Higgsino $\tilde{\chi}_1^0$:
 - * Compressed spectra ($m_{\tilde{\chi}_1^{\pm}} \simeq m_{\tilde{\chi}_2^0} \simeq m_{\tilde{\chi}_1^0}$)
 - * Small (Higgsino) production cross-sections

- Why are the LHC constraints "weak"?
- DM \rightarrow Higgsino $\tilde{\chi}_1^0$ or $\tilde{\tau}$ coannihilation
 - Higgsino $\tilde{\chi}_1^0$:
 - * Compressed spectra ($m_{\tilde{\chi}_1^\pm} \simeq m_{\tilde{\chi}_2^0} \simeq m_{\tilde{\chi}_1^0}$)
 - Small (Higgsino) production cross-sections
 - - * Compressed spectra ($m_{ ilde{ au}}\simeq m_{ ilde{\chi}_1^0}$)
 - * τ -dominated signal
 - * Light Bino solutions can be indirectly probed by \tilde{g} decays (if $M_3 = 6M_1$)

- Why are the LHC constraints "weak"?
- DM \rightarrow Higgsino $\tilde{\chi}_1^0$ or $\tilde{\tau}$ coannihilation
 - Higgsino $\tilde{\chi}_1^0$:
 - * Compressed spectra ($m_{\tilde{\chi}_1^{\pm}} \simeq m_{\tilde{\chi}_2^0} \simeq m_{\tilde{\chi}_1^0}$)
 - Small (Higgsino) production cross-sections
 - - * Compressed spectra ($m_{ ilde{ au}} \simeq m_{ ilde{\chi}_1^0}$)
 - * τ -dominated signal
 - * Light Bino solutions can be indirectly probed by \tilde{g} decays (if $M_3 = 6M_1$)

Andre Lessa (USP - Sao Paulo)

• Two new experiments are planned (2016-):

- JPARC (Japan)
- Muon g-2 (Fermilab)

$$ightarrow \Delta a_{\mu} \sim 1.5 imes 10^{-10}$$

• Two new experiments are planned (2016-):

- JPARC (Japan)
- Muon g-2 (Fermilab)

$$ightarrow \Delta a_{\mu} \sim 1.5 imes 10^{-10}$$

• Xe1T will exclude all the \tilde{H} and most of the \tilde{B} solutions (2015-)

- Indirect Detection constraints start to exclude W LSP
- Collider searches are complementary:
 - Light \tilde{B}, \tilde{W} ($m_{\tilde{\chi}_1^0} \lesssim 350$ GeV)
 - Challenging scenarios (compressed spectra, $\tilde{\tau}$ dominated signal)

- Indirect Detection constraints start to exclude W LSP
- Collider searches are complementary:
 - Light \tilde{B}, \tilde{W} ($m_{\tilde{\chi}_1^0} \lesssim 350$ GeV)
 - Challenging scenarios (compressed spectra, $\tilde{\tau}$ dominated signal)

Xe1T+LHC-Run II will likely test the MSSM solution to g-2

- Indirect Detection constraints start to exclude W LSP
- Collider searches are complementary:
 - Light \tilde{B}, \tilde{W} ($m_{\tilde{\chi}_1^0} \lesssim 350$ GeV)
 - Challenging scenarios (compressed spectra, $\tilde{\tau}$ dominated signal)

Xe1T+LHC-Run II will likely test the MSSM solution to g-2

- Possible caveats:
 - Non-thermal DM scenarios are possible → only collider searches apply (see S. Iwamoto's talk)
 - Fine-tuned MSSM: heavy 3rd generation squarks \rightarrow no flavor constraints

- Indirect Detection constraints start to exclude W LSP
- Collider searches are complementary:
 - Light $ilde{B}, ilde{W}$ ($m_{ ilde{\chi}_1^0} \lesssim$ 350 GeV)
 - Challenging scenarios (compressed spectra, $\tilde{\tau}$ dominated signal)

Xe1T+LHC-Run II will likely test the MSSM solution to g-2

- Possible caveats:
 - Non-thermal DM scenarios are possible → only collider searches apply (see S. Iwamoto's talk)
 - Fine-tuned MSSM: heavy 3rd generation squarks \rightarrow no flavor constraints

In these cases non-compressed scenarios are possible and more easily testable... ...but it will be much more difficult to fully test the MSSM as a solution to g_{-2} at the Run II

