How constrained is the MSSM?

Farvah Nazila Mahmoudi CERN & LPC Clermont-Ferrand

In collaboration with A. Arbey, M. Battaglia & A. Djouadi

SUSY 2013, ICTP, Trieste, August 26-31, 2013

SUSY searches

Nazila Mahmoudi

SUSY searches

Summer 2011 (with ${\sim}1~\text{fb}^{-1}$ of data at 7 TeV) CMS Preliminary $\sqrt{s} = 7 \text{ TeV}$. (Ldt = 1.1 fb⁻¹ CDF g, g, tank-6, n_{1,2} (GeV/c² -2011 Limits 2010 Limits D0 g, q, tanj-9, LEP2 7 $tan\beta = 10, A = 0, \mu > 0$ LEP2 7 MHT m_n (GeV/c²) MSUGRA/CMSSM: tang = 10, A = 0, p>0 ATLAS episn 2011 combined CL_observed 95% C.L. Imit LEP2 2 * Fielenence peint - 2013 data PCL 691L C.L. linit 500 300 500 1000 1500 2000 2500 3000

m, [GeV]

Summer 2012 (with \sim 5 fb⁻¹ of data at 7 and 8 TeV)

SUSY searches

SUSY masses pushed to larger and larger values!

Nazila Mahmoudi

Two important points:

• What do these limits mean exactly?

Is low energy SUSY excluded??

Most of the experimental limits are given for constrained or simplified MSSM scenarios

Useful, but NOT representative of the whole MSSM!

• As a result of the current searches: the limits are pushed to larger masses

This does not provide any conclusive idea!

The only way to point to a specific SUSY scenario, or exclude SUSY would be to take advantage of **interplay with other sectors**

Phenomenological MSSM (pMSSM)

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

ightarrow 19 free parameters

10 sfermion masses: $M_{\tilde{\mathbf{e}}_{L}} = M_{\tilde{\mu}_{L}}$, $M_{\tilde{\mathbf{e}}_{R}} = M_{\tilde{\mu}_{R}}$, $M_{\tilde{\tau}_{L}}$, $M_{\tilde{\tau}_{R}}$, $M_{\tilde{\mathbf{q}}_{1L}} = M_{\tilde{\mathbf{q}}_{2L}}$, $M_{\tilde{\mathbf{q}}_{3L}}$, $M_{\tilde{\boldsymbol{u}}_{R}} = M_{\tilde{\boldsymbol{e}}_{R}}$, $M_{\tilde{\mathbf{t}}_{R}}$, $M_{\tilde{\boldsymbol{d}}_{R}} = M_{\tilde{\mathbf{s}}_{R}}$, $M_{\tilde{\boldsymbol{b}}_{R}}$ 3 gaugino masses: M_{1} , M_{2} , M_{3} 3 trilinear couplings: $A_{d} = A_{s} = A_{b}$, $A_{u} = A_{c} = A_{t}$, $A_{e} = A_{\mu} = A_{\tau}$ 3 Higgs/Higgsino parameters: M_{A} , $\tan \beta$, μ

A. Djouadi et al., hep-ph/9901246

Complete analysis in pMSSM:

- Calculation of masses, mixings and couplings (SoftSusy, Suspect)
- Computation of low energy observables (SuperIso)
- Computation of dark matter observables (SuperIso Relic, Micromegas, DarkSUSY)
- Determination of SUSY and Higgs mass limits (Superlso, HiggsBounds)
- Calculation of Higgs cross-sections and decay rates (HDECAY, Higlu, FeynHiggs, SusHi...)
- Calculation of SUSY decay rates (SDECAY)
- Event generation and evaluation of cross-sections (PYTHIA, Prospino, MadGraph)
- Determination of detectability with fast detector simulation (Delphes)

Parameter	Range (in GeV)	
$\tan \beta$	[1, 60]	
M _A	[50, 2000]	
M1	[-2500, 2500]	
M ₂	[-2500, 2500]	
M ₃	[50, 2500]	
$A_d = A_s = A_b$	[-10000, 10000]	
$A_u = A_c = A_t$	[-10000, 10000]	
$A_e = A_\mu = A_\tau$	[-10000, 10000]	
μ	[-3000, 3000]	
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[0, 2500]	
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[0, 2500]	
Μ _{τ̃L}	[0, 2500]	
M _{~~R}	[0, 2500]	
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[0, 2500]	
M _{q̃3L}	[0, 2500]	
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[0, 2500]	
M _{ĩt}	[0, 2500]	
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[0, 2500]	
M _{ĥp}	[0, 2500]	

Constraints from:

- LEP and Tevatron direct search limits
- Flavour precision limits, in particular from $BR(B \rightarrow X_s \gamma)$, $BR(B_s \rightarrow \mu^+ \mu^-)$, $BR(B \rightarrow \tau \nu)$
- Muon anomalous magnetic moment, $(g-2)_{\mu}$
- Dark matter relic density (neutralino LSP)
- Dark matter direct search limits
- Higgs mass limits
- Higgs production and decay rates
- LHC SUSY direct search limits
- LHC monojet limits

Statistics:

- more than 200M model points in general analyses
- more than 1B model points for dedicated analyses

Largest statistics in the MSSM so far.

How the limits on squark and gluino masses change in the pMSSM?

Squarks and gluinos below 1 TeV are still allowed!

The CMSSM results cannot be applied directly to general MSSM!

Alternative path to really constrain SUSY:

Using interplay with other sectors, in particular:

- Higgs searches at the LHC
- flavour physics
- dark matter searches

The Higgs search results play a crucial role in pointing to specific MSSM scenarios!

Implications of the Higgs mass determination

- In the SM, the Higgs mass is essentially a free parameter
- In the MSSM, the lightest CP-even Higgs particle is bounded from above: $M_h^{max} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 - 135 \text{ GeV}$
- Imposing M_h places very strong constraints on the MSSM parameters through their contributions to the radiative corrections

$$M_{h}^{2} \approx M_{Z}^{2} \cos^{2} 2\beta \left[1 - \frac{M_{Z}^{2}}{M_{A}^{2}} \sin^{2} 2\beta \right] + \frac{3m_{t}^{4}}{2\pi^{2}v^{2}} \left[\log \frac{M_{S}^{2}}{m_{t}^{2}} + \frac{X_{t}^{2}}{M_{S}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{S}^{2}} \right) \right]$$

- Important parameters for MSSM Higgs mass:
 - $\tan\beta$ and M_A
 - the SUSY breaking scale $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$
 - the mixing parameter in the stop sector $X_t = A_t \mu / \tan eta$

• M_h^{max} is obtained for:

- a decoupling regime with a heavy pseudoscalar Higgs boson, $M_A \sim O(\text{TeV})$
- large tan β , *i.e.* tan $\beta \gtrsim 10$
- heavy stops, *i.e.* large M_S
- maximal mixing scenario, *i.e.* $X_t \approx \sqrt{6}M_S$

Implications of the Higgs mass determination

- In the SM, the Higgs mass is essentially a free parameter
- In the MSSM, the lightest CP-even Higgs particle is bounded from above: $M_h^{max} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 - 135 \text{ GeV}$
- Imposing M_h places very strong constraints on the MSSM parameters through their contributions to the radiative corrections

$$M_{h}^{2} \approx M_{Z}^{2} \cos^{2} 2\beta \left[1 - \frac{M_{Z}^{2}}{M_{A}^{2}} \sin^{2} 2\beta \right] + \frac{3m_{t}^{4}}{2\pi^{2}v^{2}} \left[\log \frac{M_{S}^{2}}{m_{t}^{2}} + \frac{X_{t}^{2}}{M_{S}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{S}^{2}} \right) \right]$$

- Important parameters for MSSM Higgs mass:
 - tan β and M_A
 - the SUSY breaking scale $M_{S} = \sqrt{m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}}$
 - the mixing parameter in the stop sector $X_t = A_t \mu / \tan \beta$

• M_h^{max} is obtained for:

- a decoupling regime with a heavy pseudoscalar Higgs boson, $M_A \sim \mathcal{O}(\text{TeV})$
- large tan β , *i.e.* tan $\beta \gtrsim 10$
- heavy stops, *i.e.* large M_S
- maximal mixing scenario, *i.e.* $X_t \approx \sqrt{6}M_S$

Implications of the Higgs mass determination

- In the SM, the Higgs mass is essentially a free parameter
- In the MSSM, the lightest CP-even Higgs particle is bounded from above: $M_h^{max} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 - 135 \text{ GeV}$
- Imposing M_h places very strong constraints on the MSSM parameters through their contributions to the radiative corrections

$$M_{h}^{2} \approx M_{Z}^{2} \cos^{2} 2\beta \left[1 - \frac{M_{Z}^{2}}{M_{A}^{2}} \sin^{2} 2\beta \right] + \frac{3m_{t}^{4}}{2\pi^{2}v^{2}} \left[\log \frac{M_{S}^{2}}{m_{t}^{2}} + \frac{X_{t}^{2}}{M_{S}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{S}^{2}} \right) \right]$$

- Important parameters for MSSM Higgs mass:
 - tan β and M_A
 - the SUSY breaking scale $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$
 - the mixing parameter in the stop sector $X_t = A_t \mu / \tan \beta$

• M_h^{max} is obtained for:

- a decoupling regime with a heavy pseudoscalar Higgs boson, $M_A \sim \mathcal{O}(\text{TeV})$
- large tan β , *i.e.* tan $\beta \gtrsim 10$
- heavy stops, *i.e.* large M_S
- maximal mixing scenario, *i.e.* $X_t \approx \sqrt{6}M_S$

A. Arbey, M. Battaglia, A. Djouadi, F.M., J. Quevillon, Phys.Lett. B708 (2012) 162

 $M_h \sim 125$ GeV is easily satisfied in pMSSM No mixing cases ($X_t \approx 0$) excluded for small M_S

Signal strength is defined as:

$$\mu_{XX} = \frac{\sigma(pp \to h) \operatorname{BR}(h \to XX)}{\sigma(pp \to h)_{\operatorname{SM}} \operatorname{BR}(h \to XX)_{\operatorname{SM}}}$$

LHC results:

Parameter	Combined value	Experiment	
M_H (GeV)	125.7 ± 2.1	ATLAS+CMS	
$\mu_{\gamma\gamma}$	1.20 ± 0.30	ATLAS+CMS	
μ_{ZZ}	1.10 ± 0.22	ATLAS+CMS	
μ_{WW}	0.77 ± 0.21	ATLAS+CMS	
$\mu_{b\bar{b}}$	$\mu_{b\bar{b}}$ 1.12 ± 0.45 ATLAS+CMS+(CDF+D0)		
$\mu_{ au au}$	1.01 ± 0.36	ATLAS+CMS	

 \rightarrow diphoton decay mode \Rightarrow massive neutral boson with spin $\neq 1$

 \rightarrow rates are compatible with the SM Higgs

Modified couplings with respect to the SM Higgs boson (\rightarrow decoupling limit):

ϕ	₿¢uū	$g_{\phi dar{d}} = g_{\phi \ellar{\ell}}$	ØΦVV
h	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha / \cos \beta \rightarrow 1$	$\sin(\beta - \alpha) \rightarrow 1$
Н	$\sin \alpha / \sin \beta \to \cot \beta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$	$\cos(\beta - \alpha) \rightarrow 0$
A	$\cot eta$	aneta	0

where:

$$\alpha = \frac{1}{2} \arctan\left(\tan(2\beta) \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2}\right)$$

Higher order corrections to the tree level couplings can be large for light SUSY particles

Also at tree level:

$$M_{H^{\pm}}^2 = M_A^2 + M_W^2$$

Nazila Mahmoudi

Particular benchmark scenario: maximal mixing $(X_t \approx \sqrt{6}M_S)$:

Decoupling regime: large M_A , $\cos^2(\beta - \alpha) \le 0.05$

Intermediate regime: intermediate M_A

Anti-decoupling regime: small M_A , $\cos^2(\beta - \alpha) \ge 0.95$

Vanishing coupling: g_{hbb}^2 or $g_{hVV}^2 \le 0.05$

Green: LEP Higgs search limit Solid black line: CMS $A/H \rightarrow \tau^+ \tau^-$ search limit at 7+8 TeV with 17/fb Dotted cyan line: ATLAS $t \rightarrow H^+b$ search limit at 7 TeV with 4.6/fb

Particular benchmark scenario: maximal mixing $(X_t \approx \sqrt{6}M_S)$:

Decoupling regime: large M_A , $\cos^2(\beta - \alpha) \le 0.05$

Intermediate regime: intermediate M_A

Anti-decoupling regime: small M_A , $\cos^2(\beta - \alpha) \ge 0.95$

Vanishing coupling: g_{hbb}^2 or $g_{hVV}^2 \le 0.05$

Green: LEP Higgs search limit Solid black line: CMS $A/H \rightarrow \tau^+ \tau^-$ search limit at 7+8 TeV with 17/fb Dotted cyan line: ATLAS $t \rightarrow H^+ b$ search limit at 7 TeV with 4.6/fb

A. Arbey, M. Battaglia, A. Djouadi, FM, Phys. Lett. B720 (2013) 153

Black: all accepted points Dark green: points compatible at 90% CL with the Higgs rates Light green: points compatible at 68% CL with the Higgs rates

 $\rightarrow M_A < 350$ GeV disfavoured by the Higgs signal strengths (\rightarrow decoupling regime) \rightarrow Still possible to have $M_{\tilde{t}} < 500$ GeV! $\rightarrow |X_t| < 1.5$ TeV strongly disfavoured by the Higgs data

Favoured region: $\chi^{\rm 2}$ analysis and normalized distributions

A. Arbey, M. Battaglia, A. Djouadi, F.M., JHEP 1209 (2012) 107

Solid lines: accepted pMSSM points with $123 < M_{h} < 129$ GeV

Dashed lines: points favoured at 90% C.L. by M_h , BR($h \rightarrow \gamma \gamma$), BR($h \rightarrow ZZ$) and BR($h \rightarrow b\bar{b}$)

 \rightarrow Heavy stops favoured by the LHC Higgs results, but stops as light as 400 GeV still possible!

MSSM can be strongly constrained also by Heavy Higgs searches

ightarrow LHC experiments focussed mainly on $H/A
ightarrow au^+ au^-$ so far

However:

- limits are given for the M_h^{\max} scenario
- They can be falsified in case of light SUSY particles \rightarrow Higgs decays to MSSM particles open (i.e. decays to light staus)
- Important to use several channels

\rightarrow Look for other channels, with the largest strengths

Complementarity channels: $H \rightarrow ZZ, bb, tt, hZ, hh$

A. Arbey, M. Battaglia, FM, Phys.Rev. D88 (2013) 015007

lines: limits corresponding to an exclusion of 99.9% of the points grey points: excluded by dark matter, flavour physics and Higgs mass constraints colour (blue) scale: fraction of excluded points

- \rightarrow Some points inside the ${\it H} \rightarrow \tau \tau$ excluded region still survive
- \rightarrow Other channels ($H \rightarrow ZZ$, $H \rightarrow t\bar{t}$, ...) will help probing the small tan β region

Same region also probed by BR($B_s \rightarrow \mu^+ \mu^-$)...

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Black points: all the valid pMSSM points Gray points: 123 < M_h < 129 GeV Dark green points: in agreement with the latest BR($B_s \rightarrow \mu^+\mu^-$) Light green points: in agreement with the ultimate LHCb BR($B_s \rightarrow \mu^+\mu^-$) measurement Red line: excluded at 95% C.L. by the latest CMS $A/H \rightarrow \tau^+\tau^-$ searches

\rightarrow Strong constraints for small M_A and large tan β

... Same region also probed by dark matter direct detection

A. Arbey, M. Battaglia, FM, Eur.Phys.J. C72 (2012) 1906

Results and sensitivity similar to those from $B_s \rightarrow \mu^+ \mu^-$ and $A/H \rightarrow \tau^+ \tau^-$, with different couplings/sectors probed

 \rightarrow Strong constraints for small M_A and large tan β

Summary

- SUSY searches alone are not sufficient to exclude SUSY or to point to a specific scenario
- Alternative path to test the MSSM at the LHC is through the Higgs sector!
- Complementarity of the light and heavy Higgs searches
- Of importance are also consistency checks using data from flavour and dark matter sectors
- So far MSSM is doing fine!

 \rightarrow low energy SUSY is still alive!

Backup

$2.63 imes10^{-4} < { m BR}(B o X_s \gamma) < 4.23 imes10^{-4}$
$0.99 imes 10^{-9} < {\sf BR}(B_{s} o \mu^{+}\mu^{-}) < 6.47 imes 10^{-9}$
$0.40 imes 10^{-4} < {\sf BR}(B o au u) < 1.88 imes 10^{-4}$
$4.7 imes 10^{-2} < {\sf BR}(D_s o au u) < 6.1 imes 10^{-2}$
$2.9 imes 10^{-3} < {\sf BR}(B o D^0 au u) < 14.2 imes 10^{-3}$
$0.985 < R_{\mu 23}(K ightarrow \mu u) < 1.013$
$-2.4 imes 10^{-9} < \delta a_{\mu} < 4.5 imes 10^{-9}$
$10^{-4} < \Omega_\chi h^2 < 0.155$
+ sparticle mass upper bounds
+ Higgs search limits

Fraction of CMSSM points compatible with ${\sf BR}(B_s o \mu^+ \mu^-)$

Continuous line: ATLAS SUSY searches at 8 TeV with 5.8 $\rm fb^{-1}$ of data Dotted line: reach estimated at 14 TeV with 300 $\rm fb^{-1}$

Constraints from flavour physics, dark matter direct detection, SUSY and Higgs searches

A. Arbey, M. Battaglia, FM, Eur.Phys.J. C72 (2012) 1906

Once putting everything together the allowed region is really squeezed!

Nazila Mahmoudi

Impact of m_t on the Higgs mass:

 $m_t = 170, 173 \text{ and } 176 \text{ GeV}$

A. Arbey, M. Battaglia, A. Djouadi, F.M., JHEP 1209 (2012) 107

The variations in the top mass is directly transmitted to the Higgs mass! That can even resurrect mGMSB!

Particular benchmark scenarios:

No mixing: $X_t \approx 0$

Typical mixing: $X_t \approx M_S$

Maximal mixing: $X_t \approx \sqrt{6}M_S$

A. Arbey, M. Battaglia, A. Djouadi, FM, JHEP 1209 (2012) 107

Strong constraints from the neutral Higgs searches for individual scenarios!

A. Arbey, M. Battaglia, A. Djouadi, FM, Phys.Lett. B720 (2013) 153

ightarrow 126 GeV heavy Higgs scenario excluded by flavour constraints

A. Arbey, M. Battaglia, A. Djouadi, FM, Phys.Lett. B720 (2013) 153

27 / 20

ightarrow 126 GeV heavy Higgs scenario excluded by flavour constraints

A. Arbey, M. Battaglia, A. Djouadi, FM, Phys.Lett. B720 (2013) 153

ightarrow 126 GeV heavy Higgs scenario excluded by flavour constraints

Nazila Mahmoudi

SUSY13, Aug. 27th, 2013

27 / 20

A. Arbey, M. Battaglia, A. Djouadi, FM, Phys.Lett. B720 (2013) 153

ightarrow 126 GeV heavy Higgs scenario excluded by flavour constraints

Nazila Mahmoudi

SUSY13, Aug. 27th, 2013

27 / 20

Other future searches of interest: light Higgs production

14 TeV (150 fb⁻¹)

lines: limits corresponding to an exclusion of 99.9% of the points grey points: excluded by dark matter, flavour physics and Higgs mass constraints dark blue points: excluded by the other heavy Higgs searches

 \rightarrow These channels will probe the small to intermediate $\tan\beta$ region

8 TeV

QCD uncertainties (PDF, α_s , m_t , ...) limiting factor for the $H/A \rightarrow \tau^+ \tau^-$ constraints Additional H to SUSY particle decays also limiting factor

14 TeV

Existence of SUSY decays much more limiting than QCD uncertainties

 \rightarrow Exclusion limits should not be blindly applied

Dark Matter direct detection and pMSSM

pMSSM points and XENON dark matter exclusion limit

A. Arbey, M. Battaglia, A. Djouadi, FM, Phys.Lett. B720 (2013) 153

Black: all valid points

Dark green: points compatible at 90% C.L. with the LHC Higgs search results

Light green: points compatible at 68% C.L. with the LHC Higgs search results

Dotted line: 2012 XENON-100 limit at 95% C.L.

28% of the valid points are excluded by XENON-100

Nazila Mahmoudi

Can pMSSM provide solutions compatible with CoGeNT/CRESST/DAMA/CDMS data?

 \rightarrow Low mass neutralino of mass ~ 10 GeV?

Not possible in constrained MSSM...

Dedicated scans focusing on a region with $m_{\tilde{\chi}^0} < 50$ GeV

Nazila Mahmoudi