R-Symmetries from Heterotic Orbifolds

Damián K. Mayorga Peña

Based on arXiv: 1301.2322, 1308.5669 in collaboration with N. Cabo Bizet, T. Kobayashi, S. Parameswaran, M. Schmitz and I. Zavala

Trieste, August 27, 2013

Plan

- Motivation
- Orbifolds and their CFT
- R-Symmetries from Orbifold Isometries
- Universal R-Anomalies
- Conclusions and Prospects

Motivation

- Many MSSM like models can be obtained from the Heterotic orbifolds such as $\mathbb{Z}_{6 \mathrm{II}}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}, \ldots$
see e.g. talks by N. Cabo Bizet, S Ramos Sánchez
- Their success is mostly due to the many orbifold symmetries present in the effective field theory
- non-R-Symmetries:

Remnants of $U(1)$-symmetries, permutations of fixed points,...
\rightarrow Flavor symmetries, etc

- R-Symmetries:

Surviving components of the Lorentz group in compact space.
\rightarrow Well motivated in SUSY-pheno
\rightarrow Stringy R-symmetries could solve the μ-problem

Orbifolds CFTs

- Assume the target space of the heterotic string to be of the form

$$
\mathcal{M}_{10}=\mathcal{M}_{3,1} \times \frac{T^{6}}{P}=\mathcal{M}_{3,1} \times \frac{\mathbb{C}^{3}}{P \ltimes \Gamma_{6}}=\mathcal{M}_{3,1} \times \frac{\mathbb{C}^{3}}{S}
$$

P is an isometry of Γ_{6} which we take as \mathbb{Z}_{N}, with

$$
\theta=\left(e^{2 \pi \mathrm{i} v^{1}}, e^{2 \pi \mathrm{i} v^{2}}, e^{2 \pi \mathrm{i} v^{3}}\right)
$$

its generating element.

- String boundary conditions:

$$
Z(\sigma+\pi, \tau)=\theta^{k} Z(\sigma, \tau)+\lambda \quad\left(\theta^{k}, \lambda\right) \in S
$$

Orbifolds CFTs

- Assume the target space of the heterotic string to be of the form

$$
\mathcal{M}_{10}=\mathcal{M}_{3,1} \times \frac{T^{6}}{P}=\mathcal{M}_{3,1} \times \frac{\mathbb{C}^{3}}{P \ltimes \Gamma_{6}}=\mathcal{M}_{3,1} \times \frac{\mathbb{C}^{3}}{S}
$$

P is an isometry of Γ_{6} which we take as \mathbb{Z}_{N}, with

$$
\theta=\left(e^{2 \pi \mathbf{i} v^{1}}, e^{2 \pi \mathrm{i} v^{2}}, e^{2 \pi \mathrm{i} v^{3}}\right)
$$

its generating element.

- P has some fixed points z_{f}, which fall into conjugacy classes

$$
\left[z_{\mathrm{f}}\right]=\left\{z_{\mathrm{f}}^{\prime} \mid z_{\mathrm{f}}^{\prime}=h z_{\mathrm{f}} \text { for some } h \in S\right\}
$$

supporting twisted string states.

Orbifolds CFTs

- Assume the target space of the heterotic string to be of the form

$$
\mathcal{M}_{10}=\mathcal{M}_{3,1} \times \frac{T^{6}}{P}=\mathcal{M}_{3,1} \times \frac{\mathbb{C}^{3}}{P \ltimes \Gamma_{6}}=\mathcal{M}_{3,1} \times \frac{\mathbb{C}^{3}}{S}
$$

P is an isometry of Γ_{6} which we take as \mathbb{Z}_{N}, with

$$
\theta=\left(e^{2 \pi \mathbf{i} v^{1}}, e^{2 \pi \mathbf{i} v^{2}}, e^{2 \pi \mathbf{i} v^{3}}\right)
$$

its generating element.

- The space group also acts one the gauge coords.

$$
g=\left(\theta^{k}, n_{\alpha} e_{\alpha}\right) \hookrightarrow V_{g}=k V+n_{\alpha} W_{\alpha}
$$

the shift V and the Wilson lines W_{α} are fractional vectors from the $E_{8} \times E_{8}$ lattice.

Orbifolds CFTs

Building Blocks for Massless States

- Internal space coords.
\rightarrow Oscillators $\partial Z^{i}, \partial \bar{Z}$
- Gauge coords.
\rightarrow Gauge weights $e^{2 \pi \mathrm{i} p_{s h}^{I} X^{I}}, I=1, \ldots, 16$
- Right moving fermions
\rightarrow Reps. under the little group $e^{2 \pi \mathrm{i} q_{s h}^{b, f} \cdot H}$

$$
q_{s h}^{b}=q_{s h}^{f}+\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)
$$

- Space group
\rightarrow Twist fields creating vacua from the untwisted ones:

$$
\sigma=\sum_{z_{\mathrm{f}}^{\prime} \in\left[z_{\mathrm{f}}\right]} e^{-2 \pi \mathrm{i} r \tilde{\gamma}\left(z_{\mathrm{f}}^{\prime}\right)} \sigma_{z_{\mathrm{f}}^{\prime}}
$$

Orbifolds CFTs

Physical States

The physical vertices take the form:

$$
V_{b, f}=e^{-a \phi}\left(\prod_{i=1}^{3}\left(\partial X^{i}\right)^{\mathcal{N}_{\mathrm{L}}^{i}}\left(\partial \bar{X}^{i}\right)^{\overline{\mathcal{N}}_{\mathrm{L}}^{i}}\right) e^{\mathrm{i} q_{s h}^{b, f} \cdot H^{m}} e^{\mathrm{i} p_{s h}^{I} X^{I}} \sigma
$$

Hamidi, Vafa'87; Font, Ibanez, Nilles, Quevedo'88

- Any state must be invariant under the full space group. Take a generic $h=\left(\theta^{m}, \mu\right)$

$$
\partial Z^{i} \xrightarrow{h} e^{2 \pi \mathrm{i} v_{h}^{i}} \partial Z^{i} \quad X^{I} \xrightarrow{h} X^{I}+2 \pi V_{h}^{I}, \quad H^{i} \rightarrow H^{i}-v_{h}^{i} .
$$

- What about the twist fields? ...auxiliary pieces

$$
\sigma_{z_{\mathrm{f}}^{\prime}} \xrightarrow{h} e^{2 \pi \mathrm{i} \Phi\left(h, z_{\mathrm{f}}^{\prime}\right)} \sigma_{h z_{\mathrm{f}}^{\prime}} .
$$

$\Phi\left(h, z_{\mathrm{f}}^{\prime}\right)$ is a vacuum phase fixed by modular invariance.

Orbifolds CFTs

Physical States

The physical vertices take the form:

$$
V_{b, f}=e^{-a \phi}\left(\prod_{i=1}^{3}\left(\partial X^{i}\right)^{\mathcal{N}_{\mathrm{L}}^{i}}\left(\partial \bar{X}^{i}\right)^{\overline{\mathcal{N}}_{\mathrm{L}}^{i}}\right) e^{\mathrm{i} q_{s h}^{b, f} \cdot H^{m}} e^{\mathrm{i} p_{s h}^{I} X^{I}} \sigma
$$

Hamidi, Vafa'87; Font, Ibanez, Nilles, Quevedo'88

- Any state must be invariant under the full space group. Take a generic $h=\left(\theta^{m}, \mu\right)$

$$
\partial Z^{i} \xrightarrow{h} e^{2 \pi \mathrm{i} v_{h}^{i}} \partial Z^{i} \quad X^{I} \xrightarrow{h} X^{I}+2 \pi V_{h}^{I}, \quad H^{i} \rightarrow H^{i}-v_{h}^{i} .
$$

- Hence

$$
\sigma \xrightarrow{h} e^{2 \pi \mathrm{i}\left[\gamma(h)+\Phi\left(h, z_{\mathrm{f}}^{\prime}\right)\right]} \sigma .
$$

where $\gamma(h)=\tilde{\gamma}\left(h z_{\mathrm{f}}^{\prime}\right)-\tilde{\gamma}\left(z_{\mathrm{f}}^{\prime}\right)$

Orbifolds CFTs

Physical States

Putting all pieces together we get the following

- If $h z_{\mathrm{f}}^{\prime}=z_{\mathrm{f}}^{\prime} \Rightarrow \gamma(h)=0$. Thus

$$
p_{s h} \cdot V_{h}-v_{h}^{i}\left(q_{s h}^{b, f i}-\mathcal{N}_{L}^{i}+\overline{\mathcal{N}}_{L}^{i}\right)+\Phi\left(h, z_{\mathrm{f}}^{\prime}\right) \stackrel{!}{=} 0
$$

\Rightarrow these conds. project out some states

- ...otherwise

$$
\gamma(h)=-p_{s h} \cdot V_{h}+v_{h}^{i}\left(q_{s h}^{b, f i}-\mathcal{N}_{L}^{i}+\overline{\mathcal{N}}_{L}^{i}\right)-\Phi\left(h, z_{\mathrm{f}}^{\prime}\right)
$$

the values of $\gamma(h)$ fix all $\tilde{\gamma}\left(h z_{\mathrm{f}}^{\prime}\right)$ in σ up to an overall phase.

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: \mathbb{Z}_{4}

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: $\mathbb{Z}_{\mathbf{4}}$

- $\sqrt{ }$ rotation of 180° in the third plane

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: $\mathbb{Z}_{\mathbf{4}}$

- $\sqrt{ }$ rotation of 180° in the third plane
- $\sqrt{ }$ simultaneous rotations by 90° in the first two planes

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: $\mathbb{Z}_{\mathbf{4}}$

- $\sqrt{ }$ rotation of 180° in the third plane
- $\sqrt{ }$ simultaneous rotations by 90° in the first two planes

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: \mathbb{Z}_{4} The θ^{2} sector

- $\sqrt{ }$ rotation of 180° in the third plane
- $\sqrt{ }$ simultaneous rotations by 90° in the first two planes

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: \mathbb{Z}_{4} The θ^{2} sector

- $\sqrt{ }$ rotation of 180° in the third plane
- $\sqrt{ }$ simultaneous rotations by 90° in the first two planes

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: \mathbb{Z}_{4} The θ^{2} sector

- $\sqrt{ }$ rotation of 180° in the third plane
- $\sqrt{ }$ simultaneous rotations by 90° in the first two planes

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: \mathbb{Z}_{4} The θ^{2} sector

- $\sqrt{ }$ rotation of 180° in the third plane
- $\sqrt{ }$ simultaneous rotations by 90° in the first two planes
- X rotation by 90° in any of the first two planes

R-Symmetries from Orbifold Isometries

Orbifold Isometries: Lattice automorphisms which survive the orbifolding.
\rightarrow these are rotations which leave fixed points invariant

- For Example: \mathbb{Z}_{4}

- $\sqrt{ }$ rotation of 180° in the third plane
- $\sqrt{ }$ simultaneous rotations by 90° in the first two planes
- X rotation by 90° in any of the first two planes
- $\sqrt{ }$ rotations by 180° in any of the first two planes

R-Symmetries from the CFT

- L-point coupling $\psi \psi \Phi^{L-3} \subset \int \mathrm{~d} \theta^{2} \mathcal{W}$ given by the correlator of the emission vertices

$$
\mathcal{F}=\left\langle V_{1} V_{2} \ldots V_{L}\right\rangle
$$

- Given an orbifold isometry

$$
\varrho=\left(e^{2 \pi \mathrm{i} \xi^{1}}, e^{2 \pi \mathrm{i} \xi^{2}}, e^{2 \pi \mathrm{i} \xi^{3}}\right)
$$

\mathcal{F} vanishes unless $\sum_{\alpha=1}^{N} r_{\alpha}=R \bmod M$, where

$$
r_{\alpha}=\sum_{i=1}^{3} M \xi^{i}\left(q_{\alpha}-\mathcal{N}_{\mathrm{L}}^{i}+\overline{\mathcal{N}}_{\mathrm{L}}^{i}\right)-M \gamma\left(h_{\varrho}\right)
$$

M is the smallest integer s.t. $-M \sum_{i=1}^{3} \xi^{i}=R \in \mathbb{Z}$.

R-Symmetries from the CFT

- L-point coupling $\psi \psi \Phi^{L-3} \subset \int \mathrm{~d} \theta^{2} \mathcal{W}$ given by the correlator of the emission vertices

$$
\mathcal{F}=\left\langle V_{1} V_{2} \ldots V_{L}\right\rangle
$$

- Given an orbifold isometry

$$
\varrho=\left(e^{2 \pi \mathrm{i} \xi^{1}}, e^{2 \pi \mathrm{i} \xi^{2}}, e^{2 \pi \mathrm{i} \xi^{3}}\right)
$$

\mathcal{F} vanishes unless $\sum_{\alpha=1}^{N} r_{\alpha}=R \bmod M$, where

$$
r_{\alpha}=\sum_{i=1}^{3} M \xi^{i}\left(q_{\alpha}-\mathcal{N}_{\mathrm{L}}^{i}+\overline{\mathcal{N}}_{\mathrm{L}}^{i}\right)-M \gamma\left(h_{\varrho}\right)
$$

h_{ϱ} is a space group element s.t. $h_{\varrho} z_{\mathrm{f}}^{\prime}=\varrho z_{\mathrm{f}}^{\prime}$.

R-Symmetries from the CFT

- L-point coupling $\psi \psi \Phi^{L-3} \subset \int \mathrm{~d} \theta^{2} \mathcal{W}$ given by the correlator of the emission vertices

$$
\mathcal{F}=\left\langle V_{1} V_{2} \ldots V_{L}\right\rangle
$$

- Given an orbifold isometry

$$
\varrho=\left(e^{2 \pi \mathrm{i} \xi^{1}}, e^{2 \pi \mathrm{i} \xi^{2}}, e^{2 \pi \mathrm{i} \xi^{3}}\right)
$$

\mathcal{F} vanishes unless $\sum_{\alpha=1}^{N} r_{\alpha}=R \bmod M$, where

$$
r_{\alpha}=\sum_{i=1}^{3} M \xi^{i}\left(q_{\alpha}-\mathcal{N}_{\mathrm{L}}^{i}+\overline{\mathcal{N}}_{\mathrm{L}}^{i}\right)-M \gamma\left(h_{\varrho}\right)
$$

Now we have a \mathbb{Z}_{M}^{R} symmetry in the field theory.

Universal R-Anomalies

- Heterotic Orbifold model possess only one axion field.

All anomalies must be cancelled by the same axion shift (anomaly universality).

- For the \mathbb{Z}_{M}^{R}

The Anomaly coefficients read

$$
\begin{aligned}
& A_{G_{a}^{2}-\mathbb{Z}_{M}^{R}}=C_{2}\left(G_{a}\right) \frac{R}{2}+\sum_{\alpha}\left(r_{\alpha}-\frac{R}{2}\right) T\left(\mathbf{R}_{a}^{\alpha}\right) \\
& A_{\text {grav. }^{2}-\mathbb{Z}_{M}^{R}}=\left(-21-1-N_{T}-N_{U}+\sum_{a}\right.\left.\operatorname{dim}\left\{\operatorname{adj}\left(G_{a}\right)\right\}\right) \frac{R}{2} \\
&+\sum_{\alpha}\left(r_{\alpha}-\frac{R}{2}\right) \cdot \operatorname{dim}\left\{\mathbf{R}^{\alpha}\right\},
\end{aligned}
$$

for $G_{a} \subset E_{8} \times E_{8}$ a gauge factor and α running over all matter reps.

Universal R-Anomalies

- Heterotic Orbifold model possess only one axion field.

All anomalies must be cancelled by the same axion shift (anomaly universality).

- For the \mathbb{Z}_{M}^{R}

Anomaly universality implies

$$
A_{G_{a}^{2}-\mathbb{Z}_{M}^{R}} \bmod M T\left(\mathbf{N}_{a}\right)=A_{G_{b}^{2}-\mathbb{Z}_{M}^{R}} \bmod M T\left(\mathbf{N}_{b}\right),
$$

$$
A_{G_{a}^{2}-\mathbb{Z}_{M}^{R}} \bmod M T\left(\mathbf{N}_{a}\right)=\frac{1}{24}\left(A_{\text {grav. }{ }^{2}-\mathbb{Z}_{M}^{R}} \bmod \frac{M}{2}\right)
$$

for any pair of non-Abelian gauge factors G_{a} and G_{b}.

Universal R-Anomalies

- Results

orbifold	lattice	twist	ϱ			R	M
			ξ_{1}	ξ_{2}	ξ_{3}		
\mathbb{Z}_{4}	$S O(4)^{2} \times S U(2)^{2}$	($\left.\frac{1}{4}, \frac{1}{4},-\frac{2}{4}\right)$	1/4	1/4	0	-1	2
			1/2	0	0	-1	2
			0	0	1/2	+1	2
$\mathbb{Z}_{6 I}$	$G_{2} \times G_{2} \times S U(3)$	($\left.\frac{1}{6}, \frac{1}{6},-\frac{2}{6}\right)$	1/6	$1 / 6$	0	-1	3
			0	0	$-1 / 3$	+1	3
$\mathbb{Z}_{6 I I}$	$G_{2} \times S U(3) \times S U(2)^{2}$	$\left(\frac{1}{6}, \frac{2}{6},-\frac{3}{6}\right)$	1/6	0	0	-1	6
			0	$1 / 3$	0	-1	3
			0	-1/2	0	+1	2
$\mathbb{Z}_{8 I}$	$S O(9) \times S O(5)$	($\left.\frac{1}{8},-\frac{3}{8}, \frac{2}{8}\right)$	1/4	-3/4	0	-1	2
			0	0	1/2	-1	2

Universal R-Anomalies

- Results

orbifold	lattice	twist	ϱ			R	M
			ξ_{1}	ξ_{2}	ξ_{3}		
\mathbb{Z}_{4}	$S O(4)^{2} \times S U(2)^{2}$	$\left(\frac{1}{4}, \frac{1}{4},-\frac{2}{4}\right)$	$1 / 4$	$1 / 4$	0	-1	2
			$1 / 2$	0	0	-1	2
			0	0	$1 / 2$	+1	2
$\mathbb{Z}_{6 I}$	$G_{2} \times G_{2} \times S U(3)$	$\left(\frac{1}{6}, \frac{1}{6},-\frac{2}{6}\right)$	$1 / 6$	$1 / 6$	0	-1	3
			0	0	$-1 / 3$	+1	3
$\mathbb{Z}_{6 I I}$	$G_{2} \times S U(3) \times S U(2)^{2}$	$\left(\frac{1}{6}, \frac{2}{6},-\frac{3}{6}\right)$	$1 / 6$	0	0	-1	6
			0	$1 / 3$	0	-1	3
			0	$-1 / 2$	0	+1	2

- We constructed the models for all inequivalent shift embeddings, the symmetries of interest were found to give universal anomalies.

Universal R-Anomalies

- Results

orbifold	lattice	twist	ϱ			R	M
			ξ_{1}	ξ_{2}	ξ_{3}		
\mathbb{Z}_{4}	$S O(4)^{2} \times S U(2)^{2}$	$\left(\frac{1}{4}, \frac{1}{4},-\frac{2}{4}\right)$	1/4	1/4	0	-1	2
			1/2	0	0	-1	2
			0	0	1/2	+1	2
$\mathbb{Z}_{6 I}$	$G_{2} \times G_{2} \times S U(3)$	($\left.\frac{1}{6}, \frac{1}{6},-\frac{2}{6}\right)$	1/6	1/6	0	-1	3
			0	0	-1/3	+1	3
$\mathbb{Z}_{6 I I}$	$G_{2} \times S U(3) \times S U(2)^{2}$	$\left(\frac{1}{6}, \frac{2}{6},-\frac{3}{6}\right)$	1/6	0	0	-1	6
			0	1/3	0	-1	3
			0	-1/2	0	+1	2
$\mathbb{Z}_{8 I}$	$S O(9) \times S O(5)$	($\left.\frac{1}{8},-\frac{3}{8}, \frac{2}{8}\right)$	1/4	$-3 / 4$	0	-1	2
			0	0	1/2	-1	2

- For each shift embedding 10.000 Wilson line configurations were randomly generated, again we see universal anomaly coefficients.

Conclusions and Outlook

- Orbifold isometries were identified as symmetries of the worldsheet instantons, and thus explicit symmetries of the three point correlators.
- The universality of the anomalies found for these new R-charges in all models explored gives confidence on the robustness of these results.
- The new R-charges contain now gauge information, it is worth studying what is the counterpart of this phenomenon in the context of smooth CY manifolds, or the orbifold regime in GLSMs.
- From the Orbifold point there is a long way down to the (...N)MSSM. Phenomenologically viable R-symmetries from stringy models are to be found.

Conclusions and Outlook

- Orbifold isometries were identified as symmetries of the worldsheet instantons, and thus explicit symmetries of the three point correlators.
- The universality of the anomalies found for these new R-charges in all models explored gives confidence on the robustness of these results.
- The new R-charges contain now gauge information, it is worth studying what is the counterpart of this phenomenon in the context of smooth CY manifolds, or the orbifold regime in GLSMs.
- From the Orbifold point there is a long way down to the (...N)MSSM. Phenomenologically viable R-symmetries from stringy models are to be found.

Molte Grazie

