A Zip-code for Quarks, Leptons and Higgs Bosons

Paul-Konstantin Oehlmann

In collaboration with D. K. Mayorga and H. P. Nilles Based on Arxiv:1209.6041, ArXiv:1305.0566

21. Susy Conference, ICTP Trieste

August, 27, 2013

(日) (同) (日) (日)

The \mathbb{Z}_{6-II} Mini-Landscape

 ~ 200 realistic MSSM models based on the \mathbb{Z}_{6-II} orbifold geometry have been constructed in computer based searches $$_{\rm Lebedev,Nilles,Raby,Ramos-Sanchez,Ratz,Vaudrevange,Wingerter '06-08}$

Main features

- The Higgs system
 - Higgs doublets are untwisted (Gauge-Higgs-Unification) Fairlie, et. al.'79
 - Shift symmetry in Kahler potential solves vacuum instability Hebecker, et. al.'12
 - μ -term forbidden by R-Symmetry
- The Top-Quark
 - Top-Quark is untwisted with tree level Higgs Yukawa coupling
 - \hookrightarrow Gauge-Top-Unification

Hosteins, Kappl, Ratz, Schmidt-Hoberger et. al.'07

イロト イヨト イヨト イヨト

Lebedev et al., 2008; Kappl et al., 2009

- Third family is a patchwork, completed by fields from different locations.
- The light families
 - Twisted fields localized at fixed points
 - Form a complete 16 of SO(10)

Motivation

SUSY Breaking Pattern

Motivation

SUSY Breaking Pattern

Dilaton stabilization needs:

- Hidden sector gaugino condensation, favored [Lebedev et. al.'07]
- Own-lifting of vacuum energy

 \Rightarrow $m_{3/2}$ in multi-TeV range

- Fields at Fixed Points feel only $\mathcal{N} = 1$ SUSY
 - ightarrow Scalar masses $\sim m_{3/2}$
- Fields in Bulk and Fixed Tori feel remnants of $\mathcal{N} = 4,2$ SUSY
 - \rightarrow Superpartner masses suppressed by

 $\log(M_{\rm Pl}/m_{3/2})$

Natural SUSY

USY [Krippendorf et. al.'12]

Motivation

Motivation

- How general are these results?
- What can be expected in different geometries?

A Zip-code for Quarks, Leptons and Higgs Bosons

Outline:

- $\mathbb{Z}_2 \times \mathbb{Z}_4$ Orbifold Geometry
- $\mathbb{Z}_2 \times \mathbb{Z}_4$ Phenomenology and Examples
- Conclusion

(日) (同) (日) (日)

$\mathbb{Z}_2 \times \mathbb{Z}_4$ Geometry

Orbifold identification under twist $\theta(k_1, k_2)$ $\theta(k_1, k_2) = \text{Diag}(e^{2\pi i (k_1 v_2^i + k_2 w^i)})$

Geometric Definitions

- Choose factorizable lattice $SU(2)^2 \times SO(4) \times SO(4)$
- Choose the shifts $v_2 = (0, \frac{1}{2}, -\frac{1}{2}, 0)$ $v_4 = (0, 0, \frac{1}{4}, -\frac{1}{4})$
 - 8 sectors: $T_{(k_1,k_2)}$ $k_1 = 0, 1$ and $k_2 = 0, 3$
 - 4 Wilson lines of order two: W₁, W₂, W₃, W₄

<ロト < 回 > < 回 > < 回 > < 回 >

$\mathbb{Z}_2 \times \mathbb{Z}_4$ Geometry

Orbifold identification under twist $\theta(k_1, k_2)$ $\theta(k_1, k_2) = \text{Diag}(e^{2\pi i (k_1 v_2^i + k_2 w^i)})$

Twisted Sectors • $T_{(0,1)}/T_{(0,3)}$ Twisted sector • 4 Fixed Tori

$\mathbb{Z}_2\times\mathbb{Z}_4$ Geometry

Orbifold identification under twist $\theta(k_1, k_2)$ $\theta(k_1, k_2) = \text{Diag}(e^{2\pi i (k_1 v_2^i + k_2 w^i)})$

Twisted Sectors

- $T_{(1,0)}$ Twisted Sector
 - 12 = 8 + 4 Fixed Tori
 - \mathbb{Z}_4 identification: Gauge enhancement at special fixed tori
 - Broken degeneracy without Wilson lines

$\mathbb{Z}_2\times\mathbb{Z}_4$ Geometry

Orbifold identification under twist $\theta(k_1, k_2)$ $\theta(k_1, k_2) = \text{Diag}(e^{2\pi i (k_1 v_2^i + k_2 w^i)})$

Twisted Sectors

- $T_{(1,1)}/T_{(1,3)}$ Twisted Sector
 - 16 Fixed Points
 - Fixed points, high flexibility in breaking the degeneracy via Wilson lines

The Gauge Embedding

Modular invariance of the one-loop partition function

 \hookrightarrow Embedding of space group twist as translation in gauge lattice $\Lambda_{E_8 \times E_8}$

Construction of inequivalent Embeddings

Quotiening the automorphism group out of $\Lambda_{\textit{E}_8 \times \textit{E}_8}\text{,}$ we classified all

144 (61 in \mathbb{Z}_{6-II})

inequivalent models and their brother model

<ロト < 回 > < 回 > < 回 > < 回 >

The Gauge Embedding

Modular invariance of the one-loop partition function

 \hookrightarrow Embedding of space group twist as translation in gauge lattice $\Lambda_{E_8 \times E_8}$

Construction of inequivalent Embeddings

Quotiening the automorphism group out of $\Lambda_{E_8\times E_8},$ we classified all

144 (61 in \mathbb{Z}_{6-II})

inequivalent models and their brother model

Gauge Spectrum

- \bullet 35 embeddings with SO(10) gauge factors (13 in \mathbb{Z}_{6-II})
- 26 embeddings with E_6 gauge factors (16 in \mathbb{Z}_{6-II})
- 25 embeddings with SU(5) gauge factors (4 in \mathbb{Z}_{6-II})
 - $\hookrightarrow \mathsf{Seems} \mathsf{ more} \mathsf{ fertile} \mathsf{ for} \mathsf{ Model} \mathsf{ building}$

イロト 不得下 イヨト イヨト

Goal: Want to judge the fertility of this geometry and find preferred field localizations

Focus on SO(10) breaking via Wilson lines to SM

- Renormalizable Top-Yukawa from $16 \cdot 16 \cdot 10$
- Achieve doublet-triplet splitting via Wilson lines
- Steak the fixed point degeneracy via Wilson lines → Get three families as complete as possible

Which models are compatible with those constraints?

イロト 不得下 イヨト イヨト

Goal: Want to judge the fertility of this geometry and find preferred field localizations

Focus on SO(10) breaking via Wilson lines to SM

- Renormalizable Top-Yukawa from 16 · 16 · 10 String selection rules constrain field locations
- Achieve doublet-triplet splitting via Wilson lines
- Steak the fixed point degeneracy via Wilson lines → Get three families as complete as possible

Which models are compatible with those constraints?

イロト 不得下 イヨト イヨト

Goal: Want to judge the fertility of this geometry and find preferred field localizations

Focus on SO(10) breaking via Wilson lines to SM

- Renormalizable Top-Yukawa from 16 · 16 · 10 String selection rules constrain field locations
- Achieve doublet-triplet splitting via Wilson lines Constraints Higgs location to be Wilson line affected
- Steak the fixed point degeneracy via Wilson lines → Get three families as complete as possible

Which models are compatible with those constraints?

Goal: Want to judge the fertility of this geometry and find preferred field localizations

Focus on SO(10) breaking via Wilson lines to SM

- Renormalizable Top-Yukawa from 16 · 16 · 10 String selection rules constrain field locations
- Achieve doublet-triplet splitting via Wilson lines Constraints Higgs location to be Wilson line affected

Break the fixed point degeneracy via Wilson lines
 → Get three families as complete as possible
 Fixes Wilson configuration and family locations

Which models are compatible with those constraints?

Given by shifts
$$\begin{array}{c} V_2 = (1, -\frac{1}{2}, 0, 0, 0, -\frac{1}{2}, 0, 0)(\frac{5}{4}, -\frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, -\frac{1}{4}, \frac{1}{4})\\ V_4 = (\frac{1}{2}, 0, 0, 0, 0, 0, 0, 0)(\frac{5}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, -\frac{1}{2}) \end{array}$$

$\begin{array}{c c}1 & (16, 2, 1, 1)_{0,-1}\\1 & (16, 1, 2, 1)_{0,1}\end{array}$	$4(1,1,1,8)_{6,1}$	T(0,3)	$\begin{array}{c} 4 \ ({\bf 1},{\bf 1},{\bf 1},\overline{{\bf 8}})_{6,-1} \\ 4 \ ({\bf 1},{\bf 1},{\bf 1},{\bf 8})_{0,-1} \end{array}$	
$U \begin{bmatrix} 1 & (10, 2, 2, 1)_{0,0} \\ 1 & (1, 1, 1, 1)_{-12,0} \\ 1 & (1, 1, 1, 1)_{12,0} \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T(1,0) T(1,1) T(1,2)	$\frac{4 (1, 1, 2, 8)_{-3,0}}{\text{Empty}}$ $4 (1, 2, 1, \overline{8})_{-3,0}$	
$\begin{array}{c} 1 (1, 1, 1, 28)_{6,0} \\ 1 (1, 1, 1, \overline{28})_{6,0} \\ 1 (1, 1, 1, \overline{28})_{6,0} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T(1,3)	$\begin{array}{r} 16(16,1,1,1)_{3,0} \\ 16 \ (1,2,1,1)_{3,1} \\ 16 \ (1,1,2,1)_{3,-1} \end{array}$	

Given by shifts

$$V_{2} = (1, -\frac{1}{2}, 0, 0, 0, -\frac{1}{2}, 0, 0)(\frac{5}{4}, -\frac{1}{4}, \frac{3}{4}, \frac{3}{4},$$

Wilson line breaking

 $SO(10) \times SU(2) \times SU(2) \times SU(8) \times U(1)^2 \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(3) \times SU(2) \times U(1)^9$

Given by shifts $V_2 = (1)$ $V_4 = (1)$

and Wilson lines

$$\begin{split} V_2 &= (1, -\frac{1}{2}, 0, 0, 0, -\frac{1}{2}, 0, 0) (\frac{5}{4}, -\frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{4}, \frac{1}{4}) \\ V_4 &= (\frac{1}{2}, 0, 0, 0, 0, 0, 0, 0) (\frac{5}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{1}{2}) \\ W_2 &= (-\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -\frac{1}{2}, 0, -1, -1, 2) (-\frac{3}{4}, -\frac{7}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{7}{4}, \frac{3}{4}, \frac{3}{4}) \\ W_3 &= (-1, \frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, 0, 2) (-\frac{1}{2}, 1, -2, 0, \frac{3}{2}, -1, -\frac{3}{2}, -\frac{3}{2}) \\ W_4 &= (-\frac{5}{4}, \frac{5}{4}, \frac{1}{4}, -\frac{1}{4}, \frac{3}{4}, -\frac{1}{4}, \frac{5}{4}, \frac{9}{4}) (0, 1, 1, 2, -1, -\frac{1}{2}, 2, \frac{3}{2}) \end{split}$$

Break the degeneracy

Lower the degeneracy by factor of 8

Two local 16-plets unaffected

 \rightarrow Two light families

T(0,3)	$\begin{array}{c} 4 \ ({\bf 1},{\bf 1},{\bf 1},\overline{{\bf 8}})_{6,-1} \\ 4 \ ({\bf 1},{\bf 1},{\bf 1},{\bf 8})_{0,-1} \end{array}$	
T(1, 0)	$4 (1, 1, 2, 8)_{-3,0}$	
T(1, 1)	Empty	
T(1, 2)	$4 (1, 2, 1, \overline{8})_{-3,0}$	
T(1, 3)	$16(16, 1, 1, 1)_{3,0}$	
	16 $(1, 2, 1, 1)_{3,1}$	
	16 $(1, 1, 2, 1)_{3, -1}$	

Given by shifts

$$V_{2} = (1, -\frac{1}{2}, 0, 0, 0, -\frac{1}{2}, 0, 0)(\frac{5}{4}, -\frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, -\frac{1}{4}, \frac{1}{4})$$

$$V_{4} = (\frac{1}{2}, 0, 0, 0, 0, 0, 0, 0)(\frac{5}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{2}, -\frac{1}{2})$$
and Wilson lines

$$W_{2} = (-\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -\frac{1}{2}, 0, -1, -1, 2)(-\frac{3}{4}, -\frac{7}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{7}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4})$$

$$W_{3} = (-1, \frac{3}{2}, -\frac{7}{2}, \frac{1}{2}, 0, \frac{1}{2}, 0, 2)(-\frac{1}{2}, 1, -2, 0, \frac{3}{2}, -1, -\frac{3}{2}, -\frac{3}{2})$$

$$W_{4} = (-\frac{5}{4}, \frac{5}{4}, \frac{1}{4}, -\frac{1}{4}, \frac{3}{4}, -\frac{1}{4}, \frac{5}{4}, \frac{9}{4})(0, 1, 1, 2, -1, -\frac{1}{2}, 2, \frac{3}{2})$$

Project out unwanted tripletts

$U = 1 (16, 2, 1, 1)_{0, -1}$	$(16, 2, 1, 1)_{0, -1}$	\rightarrow	$(1,1,1,1)_{-1,\dots}+\underbrace{(\overline{3},1,1,1)_{1/3,\dots}}$
$\frac{1 (10, 2, 2, 1)_{0,1}}{1 (10, 2, 2, 1)_{0,0}}$ 1 (1, 1, 1, 1) _{-12,0}	$(16, 1, 2, 1)_{0,1}$	\rightarrow	$\underbrace{(3,2,1,1)_{-1/6,\cdots}}^{\overline{u}}$
$\begin{array}{c c} 1 & (1, 1, 1, 1)_{12,0} \\ 1 & (1, 1, 1, 28)_{6,0} \\ 1 & (1, 1, 1, \overline{28})_{6,0} \end{array}$	$(10, 2, 2, 1)_{0,0}$	\rightarrow	$(1,2,1,1)_{-1/2,}+(1,2,1,1)_{1/2,}$
			H_u H_d

<ロ> (四) (四) (注) (三) (三)

Yukawa Couplings

U	$\begin{array}{c} 1 \ ({\bf 16},{\bf 2},{\bf 1},{\bf 1})_{0,-1} \\ 1 \ ({\bf 16},{\bf 1},{\bf 2},{\bf 1})_{0,1} \\ 1 \ ({\bf 10},{\bf 2},{\bf 2},{\bf 1})_{0,0} \end{array}$
	$\begin{array}{c}1~({\bf 1},{\bf 1},{\bf 1},{\bf 1})_{-12,0}\\1~({\bf 1},{\bf 1},{\bf 1},{\bf 1})_{12,0}\end{array}$
	$\begin{array}{c c}1 & (1, 1, 1, 28)_{6,0}\\1 & (1, 1, 1, \overline{28})_{6,0}\end{array}$

Trilinear Top-Yukawa: $(10, 2, 2, 1) \cdot (16, 1, 2, 1) \cdot (16, 2, 1, 1) \xrightarrow{W_2, W_3, W_4} H_u Q \overline{U}$ Vector-like Higgs pair protected by R-Symmetry: $(10, 2, 2, 1) \cdot (10, 2, 2, 1) \xrightarrow{W_2, W_3, W_4} H_u H_d$

<ロ> (日) (日) (日) (日) (日)

Yukawa Couplings

Trilinear Top-Yukawa: $(10, 2, 2, 1) \cdot (16, 1, 2, 1) \cdot (16, 2, 1, 1) \xrightarrow{W_2, W_3, W_4} H_u Q \overline{U}$ Vector-like Higgs pair protected by R-Symmetry: $(10, 2, 2, 1) \cdot (10, 2, 2, 1) \xrightarrow{W_2, W_3, W_4} H_u H_d$

Specific Model Details

- Net MSSM spectrum
- Non-Anomalous Hypercharge
- One unique pair of Higgs doublets
- All MSSM Exotics are vector-like
- Hidden Sector must be completely broken
- VEV configuration breaks all symmetries, preventing $\mu\text{-term}$

The General Story

The Higgs System

- **1** Untwisted Higgs seems favored due to high flexibility to couple trilinearly
- **②** Same solution for μ -problem as in the $\mathbb{Z}_{6-\Pi}$ orbifold due to \mathbb{Z}_2 twist

The General Story

The Higgs System

- **1** Untwisted Higgs seems favored due to high flexibility to couple trilinearly
- **②** Same solution for μ -problem as in the $\mathbb{Z}_{6-\Pi}$ orbifold due to \mathbb{Z}_2 twist

The Three Families

- Models with three all local 16-plets, NOT incompatible with heavy top
- Odels with 2 local 16-plets favored
- A Heavy Top Quarks suggests its location in bulk as well.

<ロト < 回 > < 回 > < 回 > < 回 >

The General Story

The Higgs System

- **1** Untwisted Higgs seems favored due to high flexibility to couple trilinearly
- **②** Same solution for μ -problem as in the $\mathbb{Z}_{6-\Pi}$ orbifold due to \mathbb{Z}_2 twist

The Three Families

- Models with three all local 16-plets, NOT incompatible with heavy top
- Odels with 2 local 16-plets favored
- **③** A Heavy Top Quarks suggests its location in bulk as well.

Properties of Untwisted Sector crucial ingredient

Untwisted sectors with these features are frequent: \sim 75% of all embeddings

Conclusion

We investigated the MSSM matter properties found in the \mathbb{Z}_{6-II} and extended them to $\mathbb{Z}_2\times\mathbb{Z}_4$

What we did

- \bullet Considered the factorisable $\mathbb{Z}_2\times\mathbb{Z}_4$ geometry
- Constructed all gauge twist embeddings
- Setting a Strategy to find and then explored promising models

Our findings

The $\mathbb{Z}_2 \times \mathbb{Z}_4$ is an extension of the \mathbb{Z}_{6-II} Mini-Landscape with similar lessons:

- Higgs and Top Quark are favorably untwisted fields
- \mathbb{Z}_2 twist does two things at a time:
 - Induces a vector-like Higgs pair
 - Forbids μ -term by its R-Symmetry

P. Ochlmann (Universität Bonn) A Zip-Code for the MSSM

Conclusion

We investigated the MSSM matter properties found in the \mathbb{Z}_{6-II} and extended them to $\mathbb{Z}_2\times\mathbb{Z}_4$

What we did

- \bullet Considered the factorisable $\mathbb{Z}_2\times\mathbb{Z}_4$ geometry
- Constructed all gauge twist embeddings
- Setting a Strategy to find and then explored promising models

Thank you!

Our findings

The $\mathbb{Z}_2 \times \mathbb{Z}_4$ is an extension of the \mathbb{Z}_{6-II} Mini-Landscape with similar lessons:

- Higgs and Top Quark are favorably untwisted fields
- \mathbb{Z}_2 twist does two things at a time:
 - Induces a vector-like Higgs pair
 - Forbids μ -term by its R-Symmetry

P. Ochlmann (Universität Bonn) A Zip-Code for the MSSM

Example Model: Full Spectrum

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(3) \times SU(2) \times U(1)^9$

Hidden

#	Rep.	label	#	Rep.	label
3	$(\bar{3}, 1, 1, 1)_{\frac{2}{3}}$	ū	69	$(1, 1, 1, 1)_0$	n
3	$(1, 1, 1, 1)_{-1}^{3}$	ē	32	$(1, 1, 1, 1)_{-\frac{1}{2}}$	r
3	$(3, 2, 1, 1)_{-\frac{1}{6}}$	q	4	$(1, 1, 1, 2)_{-\frac{1}{2}}^{2}$	Ь
4	$(1, 2, 1, 1)_{\frac{1}{2}}^{0}$	1	30	$(1, 1, 1, 1)_{\frac{1}{2}}$	ī
1	$(1, 2, 1, 1)^{2}_{-\frac{1}{2}}$	Ī	4	$(1,1,\overline{3},1)_0^2$	s
9	$(\overline{3}, 1, 1, 1)_{-\frac{1}{2}}^{2}$	\overline{d}	10	$(1, 1, 1, 2)_0$	ĩ
6	$(3, 1, 1, 1)_{\frac{1}{2}}$	d	8	$(1, 1, 3, 1)_0$	5
6	$(3, 1, 1, 1)^{3}_{-\frac{1}{6}}$	f	2	$(1, 1, \overline{3}, 1)_{\frac{1}{2}}$	χ
8	$(1, 2, 1, 1)_0$	v	5	$(1, 1, 1, 2)^{\frac{2}{1}}$	b
1	$(3, 1, 1, 2)_{-\frac{1}{6}}$	m	2	$(1, 1, \overline{3}, 1)^{2}_{-\frac{1}{2}}$	$\tilde{\chi}$
8	$(\overline{3}, 1, 1, 1)_{\frac{1}{6}}^{\circ}$	\overline{f}		2	

(ロ) (回) (三) (三)