Holographic R-symmetric flows and the au_U -conjecture

Flavio Porri

SISSA

SUSY 2013

Credits

Based on:

M. Bertolini, L. Di Pietro and FP

• arXiv:1304.1481

Intro & Motivations

- Buican's conjecture: in a 4d R-symmetric QFT one can define a quantity, τ_U , which decreases along the RG-flow. This puts a bound on the amount of accidental symmetries. [Buican'11]
- Via holography monotonic quantities are expected to correspond to monotonic functions of the extra coordinate in 'domain wall' geometries.
- Our aim is to explore the existence of a *monotonically decreasing* function in the context of 5d SUGRA, both to test the conjecture and to refine the holographic dictionary outside the conformal regime.

Intro & Motivations

- Buican's conjecture: in a 4d R-symmetric QFT one can define a quantity, τ_U , which decreases along the RG-flow. This puts a bound on the amount of accidental symmetries. [Buican'11]
- Via holography monotonic quantities are expected to correspond to monotonic functions of the extra coordinate in 'domain wall' geometries.
- Our aim is to explore the existence of a *monotonically decreasing* function in the context of 5d SUGRA, both to test the conjecture and to refine the holographic dictionary outside the conformal regime.

Intro & Motivations

- Buican's conjecture: in a 4d R-symmetric QFT one can define a quantity, τ_U , which decreases along the RG-flow. This puts a bound on the amount of accidental symmetries. [Buican'11]
- Via holography monotonic quantities are expected to correspond to monotonic functions of the extra coordinate in 'domain wall' geometries.
- Our aim is to explore the existence of a monotonically decreasing function in the context of 5d SUGRA, both to test the conjecture and to refine the holographic dictionary outside the conformal regime.

In such theories one can always define an R-multiplet and often a Ferrara-Zumino multiplet

$$\bar{D}^{\dot{\alpha}} \mathcal{R}_{\alpha \dot{\alpha}} = \chi_{\alpha}$$

$$\bar{D}_{\dot{\alpha}} \chi_{\alpha} = D^{\alpha} \chi_{\alpha} - \bar{D}_{\dot{\alpha}} \bar{\chi}^{\dot{\alpha}} = 0$$

$$\bar{D}^{\dot{\alpha}} \mathcal{J}_{\alpha \dot{\alpha}} = D_{\alpha} X$$
$$\bar{D}_{\dot{\alpha}} X = 0$$

$$\bar{D}^{\dot{\alpha}} \mathcal{R}_{\alpha \dot{\alpha}} = \bar{D}^2 D_{\alpha} U$$
$$U^{\dagger} = U$$

In such theories one can always define an R-multiplet and often a Ferrara-Zumino multiplet

R-multiplet

$$ar{D}^{\dot{lpha}}\mathscr{R}_{\alpha\dot{lpha}}=\chi_{lpha} \ ar{D}_{\dot{lpha}}\chi_{lpha}=D^{lpha}\chi_{lpha}-ar{D}_{\dot{lpha}}ar{\chi}^{\dot{lpha}}=0$$

Ferrara-7 umino

$$\bar{D}^{\dot{\alpha}} \mathcal{J}_{\alpha \dot{\alpha}} = D_{\alpha} X$$
$$\bar{D}_{\dot{\alpha}} X = 0$$

$$\bar{D}^{\dot{\alpha}} \mathcal{R}_{\alpha \dot{\alpha}} = \bar{D}^2 D_{\alpha} U$$
$$U^{\dagger} = U$$

In such theories one can always define an R-multiplet and often a Ferrara-Zumino multiplet

R-multiplet

$$ar{D}^{\dot{lpha}}_{lpha\dot{lpha}}=\chi_{lpha} \ ar{D}_{\dot{lpha}}\chi_{lpha}=D^{lpha}\chi_{lpha}-ar{D}_{\dot{lpha}}ar{\chi}^{\dot{lpha}}=0$$

Ferrara-7 umino

$$ar{D}^{\dot{lpha}} \mathscr{J}_{lpha \dot{lpha}} = D_{lpha} X \ ar{D}_{\dot{lpha}} X = 0$$

R-multiplet (II)

$$\bar{D}^{\dot{\alpha}}\mathscr{R}_{\alpha\dot{\alpha}} = \bar{D}^2 D_{\alpha} U$$

$$U^{\dagger} = U$$

In such theories one can always define an R-multiplet and often a Ferrara-Zumino multiplet

$$ar{D}^{\dot{lpha}} \mathcal{R}_{\alpha \dot{lpha}} = \chi_{lpha} \ ar{D}_{\dot{lpha}} \chi_{lpha} = D^{lpha} \chi_{lpha} - ar{D}_{\dot{lpha}} ar{\chi}^{\dot{lpha}} = 0$$

$$\bar{D}^{\dot{\alpha}} \mathcal{J}_{\alpha \dot{\alpha}} = D_{\alpha} X$$
$$\bar{D}_{\dot{\alpha}} X = 0$$

R-multiplet (II)

$$ar{D}^{\dot{lpha}}\mathscr{R}_{\alpha\dot{lpha}}=ar{D}^2D_{lpha}U$$

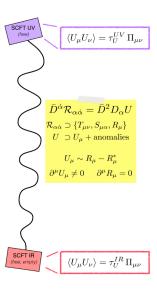
$$U^{\dagger}=U$$

When the theory is superconformal

- There is a special conserved R-current R^*_μ that can be found by a-maximization.
- U becomes linear $D^2 U = \bar{D}^2 U = 0$: contains a conserved flavor current U_{μ} .
- $\bullet \ U_{\mu}=R_{\mu}-R_{\mu}^*$
- 2-point fns of conserved currents are fixed by Cl up to a positive definite hermitian matrix

$$\left\langle J_{\mu}^{I}J_{\nu}^{J}\right
angle =\mathbf{ au}^{IJ}\,\Pi_{\mu\nu}$$

The QFT conjecture



- **SCFT UV**: $U = R R_{UV}^*$ is conserved.
- UV + deformation: R_{IIV}^* and U are broken. One picks a particular R performing a-maximization within the subset of preserved R-symmetries.

• SCFT IR: $U = R - R_{IR}^*$ conserved. There can be accidental symmetries, if there are none $U = R - R_{IR}^* = 0$.

Dictionary

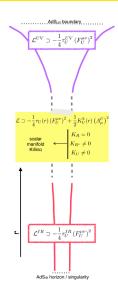
Boundary: $\mathscr{N}=1$ 4d QFT	Bulk: $\mathcal{N} = 2$ 5d SUGRA
$\mathscr{R}_{lpha\dot{lpha}}^{st}$	$\{g,\Psi,A^*\}$ gravity multiplet
U	$\{q,\zeta\}\!+\!\{A,\lambda, ho\}$ hyper+vector
currents J_{μ}	gauge fields A_{μ}
$ au_{IJ}$	gauge kinetic terms @ AdS cp's

Holographic picture

• near boundary: A^*, A^U massless gauge fields.

• bulk: A^U gets an r-dependent mass. Gauge kinetics terms also acquire a dependence on the extra coordinate.

• near horizon: A^U becomes again massless.

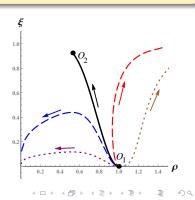


Flavio Porri (SISSA)

$\mathcal{N}=2$ 5d SUGRA with $U(1)\times U(1)_R$ gauging

The model

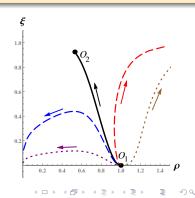
- $\mathcal{N} = 2$ SUGRA coupled to 1 hyper + 1 vector multiplets.
- Admits a two-parameter family of smooth AdS-to-AdS solns in addition to a large class of singular solns.
- All solutions have the same near
- singular solns of 2 kinds:
 - dual to confining gauge
 - run into bad



$\mathcal{N}=2$ 5d SUGRA with $U(1)\times U(1)_R$ gauging

The model

- $\mathcal{N}=2$ SUGRA coupled to 1 hyper + 1 vector multiplets.
- Admits a two-parameter family of smooth AdS-to-AdS solns in addition to a large class of singular solns.
- All solutions have the same near boundary geometry, two scalars running, one massive vector in the bulk.
- singular solns of 2 kinds:
 - dual to confining gauge
 - run into bad

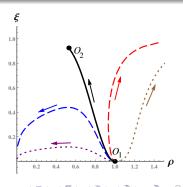


$\mathcal{N}=2$ 5d SUGRA with $U(1)\times U(1)_R$ gauging

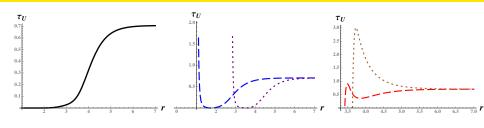
The model

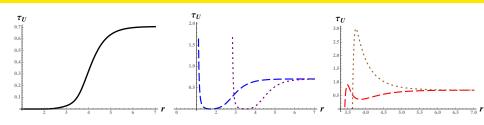
- $\mathcal{N}=2$ SUGRA coupled to 1 hyper + 1 vector multiplets.
- Admits a two-parameter family of smooth AdS-to-AdS solns in addition to a large class of singular solns.
- All solutions have the same near boundary geometry, two scalars running, one massive vector in the bulk.
- singular solns of 2 kinds:
 - dual to confining gauge theories with mass gap
 - run into bad singularity

[Gubser '00]



Results





Ads-to-Ads

 τ_U decreases monotonically to zero. As expected for the dual of RG-flow without emergent symmetries.

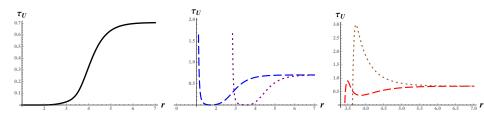
admissible sing.

 τ_U is monotonic untilit reaches zero. Below such point SUGRA approx. is no more reliable. Dual to confining theory with mass gap.

non-admissible sing.

 τ_U violates monotonicity. We did not expect the conjecture to hold in these cases.

Results



Ads-to-Ads

 τ_U decreases monotonically to zero. As expected for the dual of RG-flow without emergent symmetries.

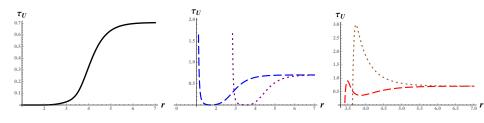
admissible sing.

 τ_U is monotonic until it reaches zero. Below such point SUGRA approx. is no more reliable. Dual to confining theory with mass gap.

non-admissible sing.

τυ violates monotonicity. We did not expect the conjecture to hold in these cases.

Results



Ads-to-Ads

 τ_U decreases monotonically to zero. As expected for the dual of RG-flow without emergent symmetries.

admissible sing.

 τ_U is monotonic until it reaches zero. Below such point SUGRA approx. is no more reliable. Dual to confining theory with mass gap.

non-admissible sing.

 $\tau_{\mathcal{U}}$ violates monotonicity. We did not expect the conjecture to hold in these cases.

Summary

- Explored the existence of a monotonic function in 5d SUGRA associated to a QFT conjecture.
- Found general consequences of the presence of an R-symmetry in the dual solns.
- ullet Tested our proposed au_U -function in a simple set up: it works!
- Outlook
 - test in flows with accidental symmetries.
 - uplift analysis to 10d.
 - formal analysis of the SUGRA dual of FZ- and R-multipets.

Summary

- Explored the existence of a monotonic function in 5d SUGRA associated to a QFT conjecture.
- Found general consequences of the presence of an R-symmetry in the dual solns.
- Tested our proposed τ_U -function in a simple set up: it works!
- Outlook
 - test in flows with accidental symmetries.
 - uplift analysis to 10d.
 - formal analysis of the SUGRA dual of FZ- and R-multipets.

Thank you!

