Supersymmetry and Higgs Physics

g

Higgsino

SUSY 2013 Conference, ICTP, Trieste, Italy, August 27, 2013

Tuesday, August 27, 2013

A Standard Model-like Higgs particle has been discovered by the ATLAS and CMS experiments at CERN

We see evidence of this particle in multiple channels.

We can reconstruct its mass and we know that is about 125 GeV.

The rates are consistent with those expected in the Standard Model. But we cannot determine the Higgs couplings very accurately

Large Variations of Higgs couplings are still possible

As these measurements become more precise, they constrain possible extensions of the SM, and they could lead to the evidence of new physics.

It is worth studying what kind of effects one could obtain in well motivated extensions of the Standard Model, like SUSY.

Supersymmetry

fermions

Photino, Zino and Neutral Higgsino: Neutralinos

Charged Wino, charged Higgsino: Charginos

Particles and Sparticles share the same couplings to the Higgs. Two superpartners of the two quarks (one for each chirality) couple strongly to the Higgs with a Yukawa coupling of order one (same as the top-quark Yukawa coupling)

Two Higgs doublets necessary
$$\rightarrow \tan \beta = \frac{v_2}{v_1}$$

Why Supersymmetry ?

- Helps to stabilize the weak scale—Planck scale hierarchy: $\delta m_{\rm H}^2 \approx (-1)^{2S_i} \frac{n_i g_i^2}{16 \pi^2} \Lambda^2$
- Supersymmetry algebra contains the generator of space-time translations.
 Possible ingredient of theory of quantum gravity.
- Minimal supersymmetric extension of the SM : Leads to Unification of gauge couplings.
- Starting from positive masses at high energies, electroweak symmetry breaking is induced radiatively.
- If discrete symmetry, $P = (-1)^{3B+L+2S}$ is imposed, lightest SUSY particle neutral and stable: Excellent candidate for cold Dark Matter.

Minimal Supersymmetric Standard Model

$(\mathbf{S} = 1/2)$ $Q = (t, b)_L$ $L = (\nu, l)_L$ $U = (t^C)_L$ $D = (b^C)_L$ $E = (l^C)_L$	$egin{aligned} (\mathbf{S} = 0) \ (ilde{t}, ilde{b})_L \ (ilde{ u}, ilde{l})_L \ (ilde{ u}, ilde{l})_L \ ilde{t}_R^* \ ilde{b}_R^* \ ilde{b}_R^* \ ilde{l}_R^* \end{aligned}$	(3,2,1/6) (1,2,-1/2) $(\overline{3},1,-2/3)$ $(\overline{3},1,1/3)$ (1,1,1)
$(\mathrm{S}=1) \ B_{\mu} \ W_{\mu} \ g_{\mu}$	$(\mathrm{S}=1/2)$ $ ilde{B}$ $ ilde{W}$ $ ilde{g}$	(1,1,0) (1,3,0) (8,1,0)

In supersymmetric theories, there is one Higgs doublet that behaves like the SM one.

$$H_{SM} = H_d \cos\beta + H_u \sin\beta, \quad \tan\beta = v_u/v_d$$

The orthogonal combination may be parametrized as

$$H = \left(\begin{array}{c} H + iA \\ H^{\pm} \end{array}\right)$$

where H, H^{\pm} and A represent physical CP-even, charged and CP-odd scalars (non standard Higgs).

Strictly speaking, the CP-even Higgs modes mix and none behave exactly as the SM one.

$$h = -\sin \alpha \operatorname{Re}(H_d^0) + \cos \alpha \operatorname{Re}(H_u^0)$$

In the so-called decoupling limit, in which the non-standard Higgs bosons are heavy, $\sin \alpha = -\cos \beta$ and one recovers the SM as an effective theory.

Lightest SM-like Higgs mass strongly depends on:

* CP-odd Higgs mass m_A * tan beta * tan beta * the top quark mass * the stop masses and mixing $M_{\tilde{t}}^2 = \begin{pmatrix} m_Q^2 + m_t^2 + D_L & m_t X_t \\ m_t X_t & m_U^2 + m_t^2 + D_R \end{pmatrix}$

 M_h depends logarithmically on the averaged stop mass scale M_{SUSY} and has a quadratic and quartic dep. on the stop mixing parameter X_t . [and on sbotton/stau sectors for large tanbeta]

For moderate to large values of tan beta and large non-standard Higgs masses

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[\frac{1}{2} \tilde{X}_t + t + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3 \right) \left(\tilde{X}_t t + t^2 \right) \right]$$

$$t = \log(M_{SUSY}^2 / m_t^2) \qquad \tilde{X}_t = \frac{2X_t^2}{M_{SUSY}^2} \left(1 - \frac{X_t^2}{12M_{SUSY}^2}\right)$$

 $X_t = A_t - \mu/\tan\beta \rightarrow LR$ stop mixing

M.Carena, J.R. Espinosa, M. Quiros, C.W. '95 M. Carena, M. Quiros, C.W.'95

Analytic expression valid for $M_{SUSY} \sim m_Q \sim m_U$

Standard Model-like Higgs Mass

Long list of two-loop computations: Carena, Degrassi, Ellis, Espinosa, Haber, Harlander, Heinemeyer, Hempfling, Hoang, Hollik, Hahn, Martin, Pilaftsis, Quiros, Ridolfi, Rzehak, Slavich, C.W., Weiglein, Zhang, Zwirner

Carena, Haber, Heinemeyer, Hollik, Weiglein, C.W.'00

 $M_S = 1 \rightarrow 2 \text{ TeV} \Longrightarrow \Delta m_h \simeq 2 - 5 \text{ GeV nixing}; \quad X_t = \sqrt{6M_S} : \text{Max. Mixing}$

€

Corrections from the sbottom sector : Negative contributions to the Higgs mass

$$\Delta m_h^2 \simeq -\frac{h_b^4 v^2}{16\pi^2} \frac{\mu^4}{M_{\rm SUSY}^4}$$

Similar negative corrections, often ignored, appear from the stau sector

$$\Delta m_h^2 \simeq -\frac{h_\tau^4 v^2}{48\pi^2} \frac{\mu^4}{M_{\tilde{\tau}}^4} \,,$$

$$h_{\tau} \simeq \frac{m_{\tau}}{v \cos \beta (1 + \tan \beta \Delta h_{\tau})}$$

Large Mixing in the Stop Sector Necessary

P. Draper, P. Meade, M. Reece, D. Shih'II L. Hall, D. Pinner, J. Ruderman'II M. Carena, S. Gori, N. Shah, C. Wagner'II A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon'II S. Heinemeyer, O. Stal, G. Weiglein'II U. Ellwanger'II

...

Constraints on Different Minimal Models

Maximal Higgs mass in constrained MSSM scenarios

A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi' 12

Models which tend to predict small values of the stop mixing parameter are strongly constrained.

(see D. Shih's talk)

Soft supersymmetry Breaking Parameters

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv:1112.336, +L.T.Wang, arXiv:1205.5842

A_t and $m_{\tilde{t}}$ for 124 GeV < m_h < 126 GeV and Tan $\beta = 60$

Large stop sector mixing At > 1 TeV

No lower bound on the lightest stop One stop can be light and the other heavy or in the case of similar stop soft masses. both stops can be below 1TeV Intermediate values of tan beta lead to the largest values of m_h for the same values of stop mass parameters

At large tan beta, light staus/sbottoms can decrease mh by several GeV's via Higgs mixing effects and compensate tan beta enhancement

Light stop coupling to the Higgs

$$m_Q \gg m_U; \qquad m_{\tilde{t}_1}^2 \simeq m_U^2 + m_t^2 \left(1 - \frac{X_t^2}{m_Q^2} \right)$$

Lightest stop coupling to the Higgs approximately vanishes for $X_t \simeq m_Q$ Higgs mass pushes us in that direction Modification of the gluon fusion rate milder due to this reason.

Limits on the Stop Mass

Large Stop Masses ?

Giudice, Strumia'II

Predicted range for the Higgs mass

See also G. Kane, P. Kumar, R. Lu, B. Zheng'12 A.Arvanitaki, N. Craig, S. Dimoupoulos, G.Villadoro'12

....

Impact of higher loops :

G. Lee, C.W'I3

(See also S. Martin'07,

P. Kant, R. Harlander, L. Mihalla, M. Steinhauser'10 J. Feng, P. Kant, S. Profumo, D. Sanford.'13,)

Recalculation of RG prediction including up to 4 loops in RG expansion.

Agreement with S. Martin'07 and Espinosa and Zhang'00, Carena, Espinosa, Quiros, C.W.'00, Carena, Haber, Heinemeyer, Weiglein, Hollik and C.W.'00, in corresponding limits.

Two loops results agree w FeynHiggs and CPsuperH results

At moderate or large values of $\tan \beta$, an upper bound, $M_S < 10$ TeV (4 TeV) is obtained.

Upper bound becomes much weaker if X_t is large.

Higgs Boson Properties

The gauge boson masses still proceed from the kinetic terms $\mathcal{L} = (\mathcal{D}^{\mu}H_{u})^{\dagger} \mathcal{D}_{\mu}H_{u} + (\mathcal{D}^{\mu}H_{d})^{\dagger} \mathcal{D}_{\mu}H_{d} + \rightarrow g^{2}(H_{u}^{\dagger}W_{\mu}W^{\mu}H_{u} + H_{d}^{\dagger}W_{\mu}W^{\mu}H_{d})$

Therefore, the order parameter is $v = \sqrt{v_u^2 + v_d^2}$.

The fermion mass terms proceed from the Yukawa interactions

$$\mathcal{L} = -h_d \bar{D}_L H_d d_R - h_u \bar{U}_L H_u u_R + h.c.$$

Therefore, $m_d = h_d v \cos \beta$, and

$$\mathcal{L} \to -\frac{m_d}{v}(h + \tan\beta H)$$

and the down sector has $\tan\beta$ enhanced couplings to the non-standard Higgs bosons.

Hempfling '93 Hall, Rattazzi, Sarid'93 Carena, Olechowski, Pokorski, C.W.'93

Radiative Corrections to Flavor Conserving Higgs Couplings

• Couplings of down and up quark fermions to both Higgs fields arise after radiative corrections. $\Phi_2^{0*} = \Phi_2^{0*}$

$$\mathcal{L} = \bar{d}_L (h_d H_1^0 + \Delta h_d H_2^0) d_R \xrightarrow{\tilde{d}_L} \underbrace{\tilde{d}_R}_{\tilde{g} \quad \tilde{g} \quad \tilde{g} \quad d_R} \xrightarrow{\tilde{d}_R} \underbrace{\tilde{u}_L}_{y_u} \underbrace{\tilde{u}_R}_{y_u} \underbrace{\tilde{u}_R}_{\tilde{h}_1^- \quad \tilde{h}_2^- \quad d_R}$$

• The radiatively induced coupling depends on ratios of supersymmetry breaking parameters

$$m_b = h_b v_1 \left(1 + \frac{\Delta h_b}{h_b} \tan \beta \right) \qquad \left[\tan \beta = \frac{v_2}{v_1} \right]$$
$$\frac{\Delta_b}{\tan \beta} = \frac{\Delta h_b}{h_b} \simeq \frac{2\alpha_s}{3\pi} \frac{\mu M_{\tilde{g}}}{\max(m_{\tilde{b}_i}^2, M_{\tilde{g}}^2)} + \frac{h_t^2}{16\pi^2} \frac{\mu A_t}{\max(m_{\tilde{t}_i}^2, \mu^2)}$$
$$X_t = A_t - \mu / \tan \beta \simeq A_t \qquad \Delta_b = (E_g + E_t h_t^2) \tan \beta$$

Friday, August 19, 2011

Resummation : Carena, Garcia, Nierste, C.W.'00

Non-Standard Higgs Production

QCD: S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth, hep-ph/0603112

Searches for non-standard Higgs bosons

M. Carena, S. Heinemeyer, G. Weiglein, C.W, EJPC'06

• Searches at the Tevatron and the LHC are induced by production channels associated with the large bottom Yukawa coupling.

$$\sigma(b\bar{b}A) \times BR(A \to b\bar{b}) \simeq \sigma(b\bar{b}A)_{\rm SM} \frac{\tan^2\beta}{\left(1 + \Delta_b\right)^2} \times \frac{9}{\left(1 + \Delta_b\right)^2 + 9}$$

$$\sigma(b\bar{b}, gg \to A) \times BR(A \to \tau\tau) \simeq \sigma(b\bar{b}, gg \to A)_{\rm SM} \frac{\tan^2 \beta}{\left(1 + \Delta_b\right)^2 + 9}$$

• There may be a strong dependence on the parameters in the bb search channel, which is strongly reduced in the tau tau mode.

Validity of this approximation confirmed by NLO computation by D. North and M. Spira, arXiv:0808.0087 Further work by Mhulleitner, Rzehak and Spira, 0812.3815 In the MSSM, non-standard Higgs may be produced via its large couplings to the bottom quark, and searched for in its decays into bottom quarks and tau leptons

M. Carena, S. Heinemeyer, O. Stål, C.E.M. Wagner, G. Weiglein, arXiv:1302.7033

The m_h^{\max} scenario

Gives the lowest value of tan(beta) consistent with the measured Higgs mass

The m_h^{mod} scenario

Moderate values of the stop mixing allow for consistency with the Higgs mass value in a broad region of the mA-tan(beta) plane

Decays of the non-standard Higgs bosons into EWKinos in the

 $m_h^{
m mod}$ scenario

M. Carena, S. Heinemeyer, O. Stål,

Reach of non-standard Higgs bosons in tau decays modified Opportunity for dedicated search of these decays. Also $BR(H \rightarrow hh)$ may become important for small values of tan β

Tuesday, August 27, 2013

Couplings of SM Higgs to Fermions and Gauge Bosons

Down-type Fermions

$$g_{hbb,h\tau\tau} = -h_{b,\tau} \sin \alpha + \Delta h_{b,\tau} \cos \alpha$$

$$g_{hbb,h\tau\tau} = -\frac{m_{b,\tau}\sin\alpha}{v\cos\beta(1+\Delta_{b,\tau})} \left(1 - \frac{\Delta_{b,\tau}}{\tan\beta\tan\alpha}\right)$$

Up-type Fermions

$$g_{htt} = \frac{m_t \cos \alpha}{v \sin \beta}$$

 $g_{hWW,hZZ} \simeq \sin(\beta - \alpha)$

Gauge Bosons

For $M_A > 200$ GeV and $\tan \beta > 5$

$$\cos(\beta - \alpha) \simeq -\frac{M_Z^2 + M_h^2}{(M_A^2 - M_h^2)\tan\beta}$$

 $\frac{\cos\alpha}{\sin\beta} \simeq \sin(\beta - \alpha) \qquad \qquad -\frac{\sin\alpha}{\cos\beta} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$

The BR can still be affected by variations of the bottom and tau couplings.

Tuesday, August 27, 2013

LHC reach

ILC reach

Tuesday, August 27, 2013

Alignment in General two Higgs Doublet Models

H. Haber and J. Gunion'03

$$V = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \text{h.c.}) + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\},$$

In the MSSM, at tree-level, only the first four couplings are non-zero and are governed by Dterms in the scalar potential. At loop-level, all of them become non-zero via the trilinear and quartic interactions with third generation sfermions. Haber, Hempfling'93

$$\lambda_{1} = \lambda_{2} = \frac{1}{4}(g_{1}^{2} + g_{2}^{2}) = \frac{m_{Z}^{2}}{v^{2}} ,$$

$$\lambda_{3} = \frac{1}{4}(g_{1}^{2} - g_{2}^{2}) = -\frac{m_{Z}^{2}}{v^{2}} + \frac{1}{2}g_{2}^{2} ,$$

$$\lambda_{4} = -\frac{1}{2}g_{2}^{2} ,$$

$$\mathcal{M} = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ \mathcal{M}_{12} & \mathcal{M}_{22} \end{pmatrix} \equiv m_A^2 \begin{pmatrix} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{pmatrix} + v^2 \begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix}$$
$$L_{11} = \lambda_1 c_\beta^2 + 2\lambda_6 s_\beta c_\beta + \lambda_5 s_\beta^2 ,$$
$$L_{12} = (\lambda_3 + \lambda_4) s_\beta c_\beta + \lambda_6 c_\beta^2 + \lambda_7 s_\beta^2 ,$$
$$L_{22} = \lambda_2 s_\beta^2 + 2\lambda_7 s_\beta c_\beta + \lambda_5 c_\beta^2 .$$

CP-even Higgs Mixing Angle and Alignment

M. Carena, I. Low, N. Shah, C.W.' 13

$$\sin \alpha = \frac{\mathcal{M}_{12}^2}{\sqrt{\mathcal{M}_{12}^4 + (\mathcal{M}_{11}^2 - m_h^2)^2}}$$

$$-\tan\beta \ \mathcal{M}_{12}^2 = \left(\mathcal{M}_{11}^2 - m_h^2\right) \longrightarrow \sin\alpha = -\cos\beta$$

Condition independent of the CP-odd Higgs mass.

$$\begin{pmatrix} s_{\beta}^2 & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & c_{\beta}^2 \end{pmatrix} \begin{pmatrix} -s_{\alpha} \\ c_{\alpha} \end{pmatrix} = -\frac{v^2}{m_A^2} \begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix} \begin{pmatrix} -s_{\alpha} \\ c_{\alpha} \end{pmatrix} + \frac{m_h^2}{m_A^2} \begin{pmatrix} -s_{\alpha} \\ c_{\alpha} \end{pmatrix}$$

M. Carena, I. Low, N. Shah, C.W.' 13

Alignment Conditions

$$(m_h^2 - \lambda_1 v^2) + (m_h^2 - \tilde{\lambda}_3 v^2) t_{\beta}^2 = v^2 (3\lambda_6 t_{\beta} + \lambda_7 t_{\beta}^3) ,$$

$$(m_h^2 - \lambda_2 v^2) + (m_h^2 - \tilde{\lambda}_3 v^2) t_{\beta}^{-2} = v^2 (3\lambda_7 t_{\beta}^{-1} + \lambda_6 t_{\beta}^{-3})$$

• If fulfilled not only alignment is obtained, but also the right Higgs mass, $m_h^2 = \lambda_{\rm SM} v^2$, with $\lambda_{\rm SM} \simeq 0.26$ and $\lambda_3 + \lambda_4 + \lambda_5 = \tilde{\lambda}_3$

 $\lambda_{\rm SM} = \lambda_1 \cos^4 \beta + 4\lambda_6 \cos^3 \beta \sin \beta + 2\tilde{\lambda}_3 \sin^2 \beta \cos^2 \beta + 4\lambda_7 \sin^3 \beta \cos \beta + +\lambda_2 \sin^4 \beta$

• For $\lambda_6=\lambda_7=0~$ the conditions simplify, but can only be fulfilled if

$$\lambda_1 \geq \lambda_{\rm SM} \geq \tilde{\lambda}_3$$
 and $\lambda_2 \geq \lambda_{\rm SM} \geq \tilde{\lambda}_3$,
or
 $\lambda_1 \leq \lambda_{\rm SM} \leq \tilde{\lambda}_3$ and $\lambda_2 \leq \lambda_{\rm SM} \leq \tilde{\lambda}_3$

• Conditions not fulfilled in the MSSM, where both $\lambda_1, \tilde{\lambda}_3 < \lambda_{\rm SM}$

Down Fermion Couplings for small values of μ

 $v^{2}L_{11} = M_{Z}^{2}\cos^{2}\beta + \text{Loop11}$ $v^{2}L_{12} = -M_{Z}^{2}\cos\beta\sin\beta + \text{Loop1}$ $v^{2}L_{22} = M_{Z}^{2}\sin^{2}\beta + \text{Loop22}$

Suppression factor in the LHC channels at the 2012--2013 run

M. Carena, P. Draper, T. Liu, C. W. ,arXiv:1107.4354

For $\tan \beta \geq 5$ and $m_A \geq 200 \text{ GeV}$

$$\sin \alpha \simeq -\cos \beta \left(\frac{m_A^2 + M_Z^2}{m_A^2 - m_h^2}\right)$$

Wednesday, March 13, 2013

Enhancement of bottom quark and tau couplings independent of $\tan \beta$

Alignment in the NMSSM

(See Delgado and Quiros' 13 for similar case with triplets)

 ${\small \bigcirc}~$ In the NMSSM, one can get alignment at low values of $\,\tan\beta$, since the condition

$$\lambda_3 > \lambda_{\rm SM} > \lambda_1$$

may be fulfilled due to the tree-level corrections to λ_3 obtained after the integration of the singlet state, namely

$$\tilde{\lambda}_3 = -0.135 + \lambda^2$$

 $\begin{aligned} & \bigcirc \\ Observe that \quad \lambda < 0.7 & \text{in order to preserve perturbative} \\ & \text{consistency of the theory up to the GUT scale. At} \quad \lambda \simeq 0.63 \\ & \text{the above condition no longer fulfilled.} \end{aligned}$

NMSSM

X. Lu, H. Murayama, J. Ruderman, K. Tobioka '13

$$W \supset \lambda \, SH_u H_d + \frac{M}{2} S^2 + \mu \, H_u H_d \qquad V_{\text{soft}} \supset m_S^2 |S|^2$$

$$V \supset |F_S|^2 = |\lambda H_u H_d + MS|^2$$

M. Carena, I. Low, N. Shah, C.W.'13

Down Fermion Couplings in the NMSSM

Suppressions of down couplings become stronger for larger values of lambda and lower CP-odd Higgs masses, and can lead to an enhancement of the diphoton and VV BR's

Hall et al'11, Ellwanger et al'11 Hao et al'12, Gunion et al'12

M. Carena, I. Low, N. Shah, C.W.' 13

Need of Stop Radiative Corrections

Alignment close to the region leading to natural SUSY

MSSM at large values of μ

At large values of μ , corrections to the quartic couplings $\lambda_{5,6,7}$ become significant.

 \bigcirc For nonvanishing values of these couplings, a new condition of alignment at large $\tan\beta$ is obtained

$$\tan \beta = \frac{\lambda_{\rm SM} - \tilde{\lambda}_3}{\lambda_7}, \qquad \lambda_2 \simeq \lambda_{\rm SM}$$

 \bigcirc Alignment for $\tan \beta \simeq 10$ may be obtained, making difficult the test of the "wedge" by coupling variations.
M. Carena, I. Low, N. Shah, C.W.' 13

Impact and Size of Loop Corrections

Considering

$$\Delta L_{12} = \lambda_7, \qquad \Delta \tilde{L}_{12} = \Delta \left(\lambda_3 + \lambda_4\right), \qquad \Delta L_{11} = \lambda_5, \qquad \Delta L_{22} = \lambda_2.$$

The condition of alignment reads

$$\tan \beta \simeq \frac{\lambda_{\rm SM} - \tilde{\lambda}_3^{\rm tree} - \Delta \tilde{\lambda}_3}{\lambda_7} = \frac{120 - 32\pi^2 \left(\Delta L_{11} + \Delta \tilde{L}_{12}\right)}{32\pi^2 \Delta L_{12}}$$

where the loop corrections are approximately given by

$$v^{2}\Delta L_{12} \simeq \frac{v^{2}}{32\pi^{2}} \left[h_{t}^{4} \frac{\mu \tilde{A}_{t}}{M_{\text{SUSY}}^{2}} \left(\frac{A_{t} \tilde{A}_{t}}{M_{\text{SUSY}}^{2}} - 6 \right) + h_{b}^{4} \frac{\mu^{3} A_{b}}{M_{\text{SUSY}}^{4}} + \frac{h_{\tau}^{4}}{3} \frac{\mu^{3} A_{\tau}}{M_{\tilde{\tau}}^{4}} \right],$$

$$v^{2}\Delta\tilde{L}_{12} \simeq -\frac{v^{2}}{16\pi^{2}} \left[h_{t}^{4} \frac{\mu^{2}}{M_{\text{SUSY}}^{2}} \left(3 - \frac{A_{t}^{2}}{M_{\text{SUSY}}^{2}} \right) + h_{b}^{4} \frac{\mu^{2}}{M_{\text{SUSY}}^{2}} \left(3 - \frac{A_{b}^{2}}{M_{\text{SUSY}}^{2}} \right) + h_{\tau}^{4} \frac{\mu^{2}}{3M_{\tilde{\tau}}^{2}} \left(3 - \frac{A_{\tau}^{2}}{M_{\tilde{\tau}}^{2}} \right) \right] .$$

$$v^{2}\Delta L_{11} \simeq -\frac{v^{2}}{32\pi^{2}} \left(\frac{h_{t}^{4}\mu^{2}A_{t}^{2}}{M_{\text{SUSY}}^{4}} + \frac{h_{b}^{4}\mu^{2}A_{b}^{2}}{M_{\text{SUSY}}^{4}} + \frac{h_{\tau}^{4}\mu^{2}A_{\tau}^{2}}{3M_{\tilde{\tau}}^{4}} \right)$$

M. Carena, I. Low, N. Shah, C.W.' 13

Alignment value of $\tan \beta$ as a function of trilinear parameters

Bottom and tau Yukawa Couplings become or order one at $\tan \beta$ of order 50. Solutions with small $\tan \beta$ and down Yukawas of order one not possible. Similarly, solutions with large $\tan \beta$ and down Yukawas negligible not possible.

M. Carena, I. Low, N. Shah, C.W.' 13

Tuesday, August 27, 2013

The τ -phobic Higgs scenario

Suppression of down-type fermion couplings to the Higgs due to Higgs mixing effects. Staus play a relevant role. Decays into staus relevant for heavy non-standard Higgs bosons.

0.97

0.95

Tuesday, August 27, 2013

Loop Induced Couplings

Dominant Contributions to the Diphoton Width in the Standard Model

Similar corrections appear from other scalar, fermion or vector particles. Clearly, similarly to the top quark, chiral fermions tend to reduce the vector boson contributions

Higgs Diphoton Decay Width in the SM

$$\Gamma(h \to \gamma \gamma) = \frac{G_F \alpha^2 m_h^3}{128\sqrt{2}\pi^3} \left| A_1(\tau_w) + N_c Q_t^2 A_{1/2}(\tau_t) \right|^2 \qquad \qquad \tau_i \equiv 4m_i^2 / m_h^2$$
A. Djouadi'05

For particles much heavier than the Higgs boson

$$A_1 \to -7$$
, $N_c Q_t^2 A_{1/2} \to \frac{4}{3} N_c Q_t^2 \simeq 1.78$, for $N_c = 3, Q_t = 2/3$

In the SM, for a Higgs of mass about 125 GeV

$$m_h = 125 \text{ GeV}: A_1 = -8.32, N_c Q_t^2 A_{1/2} = 1.84$$

Dominant contribution from W loops. Top particles suppress by 40 percent the W loop contribution. One can rewrite the above expression in terms of the couplings of the particles to the Higgs as :

$$\Gamma(h \to \gamma \gamma) = \frac{\alpha^2 m_h^3}{1024\pi^3} \left| \frac{g_{hWW}}{m_W^2} A_1(\tau_w) + \frac{2g_{ht\bar{t}}}{m_t} N_c Q_t^2 A_{1/2}(\tau_t) + N_c Q_s^2 \frac{g_{hSS}}{m_S^2} A_0(\tau_S) \right|^2$$

Inspection of the above expressions reveals that the contributions of particles heavier than the Higgs boson may be rewritten as

$$\mathcal{L}_{h\gamma\gamma} = -\frac{\alpha}{16\pi} \frac{h}{v} \left[\sum_{i} 2b_i \frac{\partial}{\partial \log v} \log m_i(v) \right] F_{\mu\nu} F^{\mu\nu} \qquad \left\{ \begin{array}{l} b = \frac{4}{3} N_c Q^2 & \text{for a Dirac fermion}, \\ b = -7 & \text{for the } W \text{ boson}, \\ b = \frac{1}{3} N_c Q_S^2 & \text{for a charged scalar}. \end{array} \right.$$

where in the Standard Model

$$\frac{g_{hWW}}{m_W^2} = \frac{\partial}{\partial v} \log m_W^2(v) \ , \quad \frac{2g_{ht\bar{t}}}{m_t} = \frac{\partial}{\partial v} \log m_t^2(v)$$

This generalizes for the case of fermions with contributions to their masses independent of the Higgs field. The couplings come from the vertex and the inverse dependence on the masses from the necessary chirality flip (for fermions) and the integral functions.

$$\mathcal{L}_{h\gamma\gamma} = \frac{\alpha}{16\pi} \frac{h}{v} \left[\sum_{i} b_{i} \frac{\partial}{\partial \log v} \log \left(\det \mathcal{M}_{F,i}^{\dagger} \mathcal{M}_{F,i} \right) + \sum_{i} b_{i} \frac{\partial}{\partial \log v} \log \left(\det \mathcal{M}_{B,i}^{2} \right) \right] F_{\mu\nu} F^{\mu\nu}$$

M. Carena, I. Low, C.W., arXiv:1206.1082, Ellis, Gaillard, Nanopoulos'76, Shifman, Vainshtein, Voloshin, Zakharov'79

Similar considerations apply to the Higgs gluon coupling

Two Scalars with Mixing

Higgs Decay into two Photons in the MSSM

Charged scalar particles with no color charge can change di-photon rate without modification of the gluon production process

 $\mathcal{M}_{\tau}^{2} \simeq \begin{bmatrix} m_{L_{3}}^{2} + m_{\tau}^{2} + D_{L} & h_{\tau}v(A_{\tau}\cos\beta - \mu\sin\beta) \\ h_{\tau}v(A_{\tau}\cos\beta - \mu\sin\beta) & m_{E_{3}}^{2} + m_{\tau}^{2} + D_{R} \end{bmatrix}$ Light staus with large mixing [sizeable μ and tan beta]: \Rightarrow enhancement of the Higgs to di-photon decay rate

$$\delta \mathcal{A}_{h\gamma\gamma} / \mathcal{A}_{h\gamma\gamma}^{\rm SM} \simeq -\frac{2 m_{\tau}^2}{39 m_{\tilde{\tau}_1}^2 m_{\tilde{\tau}_2}^2} \left(m_{\tilde{\tau}_1}^2 + m_{\tilde{\tau}_2}^2 - X_{\tau}^2 \right)$$
$$X_{\tau} = A_{\tau} - \mu \tan \beta$$

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv:1112.336, +L.T.Wang, arXiv:1205.5842

For a more generic discussion of modified diphoton width by new charged particles, see M. Carena, I. Low and C. Wagner, arXiv:1206.1082

The Light Stau Scenario

Enhancement of diphoton decay rate at large values of tan(beta).

$$\delta \mathcal{A}_{h\gamma\gamma} / \mathcal{A}_{h\gamma\gamma}^{\rm SM} \simeq -\frac{2 m_{\tau}^2}{39 m_{\tilde{\tau}_1}^2 m_{\tilde{\tau}_2}^2} \left(m_{\tilde{\tau}_1}^2 + m_{\tilde{\tau}_2}^2 - X_{\tau}^2 \right) \qquad \qquad X_{\tau} = A_{\tau} - \mu \tan \beta$$

M. Carena, S. Heinemeyer, O. Stål,

C.E.M. Wagner, G. Weiglein,

arXiv:1302.7033

M. Carena, S. Gori, N. Shah, L. Wang, C.W.'12, Giudice et al'12

Neutralino Dark Matter in the Light Stau Scenario

• Effects of coannihilation with light staus very important. Final states : Higgs and taus.

For stau masses of order 90 to 100 GeV, neutralino masses of about 30 to 50 GeV are obtained. Also muon g-2 works for light sleptons. Any evidence of light sleptons ?

Probability for 1 out of 64 categories to have as large a fluctuation $\approx 50 \%$ Probability for all bins in 1 out of 64 categories to have as large a fluctuation $\approx 5 \%$

Given that we search for new physics in 64 different categories of multi-lepton events, it is not surprising that we find one category with a large deviation between observed yield and expected SM background.

Trieste, August 26th 2013

Andrea Gozzelino - CMS

Model with a four generation leptons and their vector pairs.

Model can lead to the presence of Dark Matter and an enhanced diphoton rate

M. Carena, I. Low, C. Wagner'12; A. Joglekar, P. Schwaller, C.W.'12, A. Hamed, K. Blum, T. D'Agnolo, J. Fan'12

Some other Interesting Models that lead to enhancement of the Diphoton rate

- In general, large enhancements at tree-level lead to new vacuua at the few TeV scale.
- In the lepton case, it can be improved by adding supersymmetry (two Dark Matter candidates could appear in this model) A. Joglekar, P. Schwaller, C.W. 13
- One can also use leptons of different charges M. Carena, M. Bauer, W. Altmannshofer' 13
- Alternatively, one could use charginos from strongly interacting sectors or lighter charginos that may escape LEP, Tevatron and LHC detection.
 R. Huo, G. Lee, C.W. 12, B. Batell, S. Hung, C.W. 13
 - In general, it is very difficult to obtain enhancements larger than about 50 percent at the loop level.

<u>M. Carena, S. Heinemeyer, O. Stål,</u> <u>C.E.M. Wagner, G. Weiglein,</u> arXiv:1302.7033

The Light Stop Scenario

Stop mixing large, lightest stop mass of order 320 GeV. Heaviest stop mass of order 650 GeV. Reduction of the gluon fusion process rate.

$$\delta \mathcal{A}_{hgg} / \mathcal{A}_{hgg}^{\rm SM} \simeq \frac{m_t^2}{4m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \left(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 - X_t^2 \right)$$

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

Light Stops, Light Staus and the 125 GeV Higgs

			0		0		
Cases	aneta	$m_{\tilde{\tau}_1} \; (\text{GeV})$	$m_{e_3} \; (\text{GeV})$	μ (GeV)	m_{Q_3} (TeV)	A_{τ} (TeV)	$m_A \ ({\rm TeV})$
(a) Shaded dashed	70	95	250	380	2	0	2
(b) Shaded dotted	70	95	230	320	2	1	1
(c) Horizontal hatch	105	95	240	225	2	1	1
(d) Vertical hatch	70	100	300	575	3	1.5	1

(a) to (c) : Consistent with vacuum stability constraints

M. Carena, S. Gori, I. Low, N. Shah, C.W., arXiv:1211.6136

Variation of Production Cross sections and Decay Rates

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

Case of heavy Staus

Only stop loop effects relevant in this case

M. Carena, S. Gori, N. Shah, L.T. Wang and C.W'13

Moderate enhancement of the Higgs to diphoton rate may be obtained in weak boson fusion. Gluon fusion induced rate tend to be smaller than in the SM.

Impact of Light staus on heavy Higgs Boson Searches

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

- Previous analysis performed under the assumption of no additional decays apart from the ones into bottom-quarks and tau-leptons.
- Light staus can lead to relevant extra contributions to the decay width.
- For large values of AT, the non-standard Higgs bosons couple strongly to staus at large tanβ.
- The additional width of the Higgs bosons leads to a reduction in the branching ratios into both bottoms and taus, and make searches more challenging.
- Searches for staus in decays of non-standard Higgs bosons should be also considered.

Branching Ratios and Widths of Non-Standard Higgs Decays into Staus

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

$$\sigma(pp \to (H, A) \to \tau^{+}\tau^{-}) \propto \frac{m_{b}^{2} \tan^{2} \beta}{\left[\left(3\frac{m_{b}^{2}}{m_{\tau}^{2}} + \frac{\left(M_{W}^{2} + M_{Z}^{2}\right)(1 + \Delta_{b})^{2}}{m_{\tau}^{2} \tan^{2} \beta} \right) (1 + \Delta_{\tau})^{2} + (1 + \Delta_{b})^{2} \left(1 + \frac{A_{\tau}^{2}}{m_{A}^{2}} \right) \right]}$$

Conclusions

- Resonance discovered at the LHC has properties consistent with SM Higgs ones.
- Precise production rates and branching ratios may be affected by new physics. As an example, we have studied the MSSM and NMSSM cases
- These models have a rich phenomenology that can led to large variations of the couplings and to new related signatures at colliders.
- Higher than two loop corrections should be considered at large Msusy.
- Down fermion couplings suffer variations in the wedge that vary from a few to a few tens of percent depending of mainly sign and magnitude of trilinear couplings.
- Third generation sfermions play a very relevant role and, if they are light, they can have a relevant impact on the loop induced couplings and Higgs phenomenology.
- Search for non-standard Higgs in new channels including electoweakinos, standard Higgs bosons and staus can provide alternative ways of checking the Higgs wedge.

Dirac NMSSM

$W \supset \lambda \, \mathbf{S} H_u H_d + M \mathbf{S} \bar{\mathbf{S}} + \mu \, H_u H_d$

$$V \supset |\mathbf{F}_{\mathbf{S}}|^2 = |\lambda H_u H_d + M\bar{\mathbf{S}}|^2$$

Higgs pheno of Dirac NMSSM

benchmark parameters						
$\lambda = 0.74$	$\tan\beta=2$	$\mu_{eff} = 150 \text{ GeV}$				
$b_{eff} = (190 \text{ GeV})^2$	$A_{\lambda} = 0$	$B_s = 100 \text{ GeV}$				
M = 1 TeV	$m_{\bar{S}} = 10 \text{ TeV}$	$m_S = 800 \text{ GeV}$				

Heavy Higgs decays

Higgs Mass in MSSM

 $m_h \approx 125 \text{ GeV}$

MSSM is fine-tuned at the 1% level or worse

Hall, Pinner, JTR 1112.2703 + many others

Phenomenological MSSM (pMSSM)

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

ightarrow 19 free parameters

10 sfermion masses: $M_{\tilde{e}_{L}} = M_{\tilde{\mu}_{L}}, M_{\tilde{e}_{R}} = M_{\tilde{\mu}_{R}}, M_{\tilde{\tau}_{L}}, M_{\tilde{\tau}_{R}}, M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}, M_{\tilde{q}_{3L}}, M_{\tilde{\mu}_{R}} = M_{\tilde{e}_{R}}, M_{\tilde{d}_{R}} = M_{\tilde{s}_{R}}, M_{\tilde{b}_{R}}$ 3 gaugino masses: M_{1}, M_{2}, M_{3} 3 trilinear couplings: $A_{d} = A_{s} = A_{b}, A_{u} = A_{c} = A_{t}, A_{e} = A_{\mu} = A_{\tau}$ 3 Higgs/Higgsino parameters: M_{A} , tan β , μ

A. Djouadi et al., hep-ph/9901246

7 / 27

Nazila Mahmoudi

Aspen, August 22nd, 2013

A. Arbey, M. Battaglia, A. Djouadi, F.M., J. Quevillon, Phys.Lett. B708 (2012) 162

 $M_h \sim 125$ GeV is easily satisfied in pMSSM No mixing cases ($X_t \approx 0$) excluded for small M_S

azila Mahmoudi

Aspen, August 22nd, 2013

Tuesday, August 27, 2013

Heavy Higgs search constraints

Searches for heavy Higgs bosons mainly relies on $H/A
ightarrow au^+ au^+$

8 TeV 14 TeV (150 fb^{-1})

A. Arbey, M. Battaglia, FM, Phys.Rev. D88 (2013) 015007

lines: limits corresponding to an exclusion of 99.9% of the points grey points: excluded by dark matter, flavour physics and Higgs mass constraints colour (blue) scale: fraction of excluded points

Tuesday, August 27, 2013

Particular benchmark scenario: maximal mixing $(X_t \approx \sqrt{6}M_S)$:

Decoupling regime: large M_A , $\cos^2(\beta - \alpha) \le 0.05$

Intermediate regime: intermediate M_A

Anti-decoupling regime: small M_A , $\cos^2(\beta - \alpha) \ge 0.95$

Intense coupling: h, A, H rather close in mass, g_{hbb}^2 and $g_{Hbb}^2 \ge 50$

Vanishing coupling: $g_{hbb}^2 \text{ or } g_{hVV}^2 \leq 0.05$

Green: LEP Higgs search limit

Solid black line: CMS $A/H \rightarrow \tau^+ \tau^-$ search limit at 7+8 TeV with 17/fb

Dotted cyan line: ATLAS $t \rightarrow H^+ b$ search limit at 7 TeV with 4.6/fb

Nazila Mahmoudi

Aspen, August 22nd, 2013

Coupling to Fermions and Weak Gauge Bosons

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

(iii)

Searches for staus in associated production with sneutrinos.

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

Final State in $pp \to Wh$, followed by $h \to \tau^+ \tau^-$ is similar to the one in

 $pp \to \tilde{\tau} \tilde{\nu}_{\tau}$, followed by $\tilde{\nu}_{\tau} \to \tilde{\tau} + \chi_1^0$.

Look for leptonic decay of the W, and one hadronic and one leptonic tau decay. Same selection cuts as in the Higgs search analysis.

> Cut in visible mass increase signal to background ratio, but very low statistics. Dedicated search with optimized selection cuts should be performed.

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

Light Stop Searches

- Light stops, mainly right handed, may be present without affecting the Higgs mass predictions and without affecting precision electroweak measurements.
- If present, they have an impact on both gluon fusion cross section as well as in $\gamma\gamma$ Higgs decay width. There are strong direct search constraints.
- Three body decay into staus may become the dominant stop decay mode, when three body decay into a neutralino, a W and a b is closed.
- For a neutralino mass of about 40 to 50 GeV, this happens for stop masses of about 130 GeV.
Stop Branching Ratios in Light Stau Scenario

M. Carena, S. Gori, N. Shah, C.W. and L.T. Wang, arXiv:1303.4414

of stops into staus open new possibilities

Vacuum stability

For large values of the mu parameter and the tau Yukawa coupling, one can generate new charge breaking minima deeper than the electroweak minimum

$$V = \left| \mu \frac{h_u}{\sqrt{2}} - y_\tau \tilde{\tau}_L \tilde{\tau}_R \right|^2 + \frac{g_2^2}{8} \left(|\tilde{\tau}_L|^2 + \frac{h_u^2}{2} \right)^2 + \frac{g_1^2}{8} \left(|\tilde{\tau}_L|^2 - 2|\tilde{\tau}_R|^2 - \frac{h_u^2}{2} \right)^2 + m_{H_u}^2 \frac{h_u^2}{2} + m_{L_3}^2 |\tilde{\tau}_L|^2 + m_{E_3}^2 |\tilde{\tau}_R|^2 + \frac{g_1^2 + g_2^2}{8} \delta_H \frac{h_u^4}{4} ,$$

This occures in this improved tree-level potential, but also occurs in the full one-loop effective potential we shall analyze

Vacuum Stability

Electroweak Minimum is in general metastable in this scenario Hisano, Sugiyama'l I

Metastability bound depends on tan(beta)

Effective values include one loop correction effects, and it is different for bottoms as for tau leptons. In the following, we refer to the tau one.

$$h_{b,\tau} \simeq \frac{m_b \tan \beta}{v(1+\Delta_{b,\tau})}, \qquad (\tan \beta_{\text{eff}})_{b,\tau} = \frac{\tan \beta}{(1+\Delta_{b,\tau})}$$

S. Gori, I. Low, N. Shah, M. Carena, C.E.M.W.'12

Inclusion of Mixing in the CP-even Higgs sector

CPsuperH : arXiv:1208.2212

S. Gori, I. Low, N. Shah, M. Carena, C.E.M.W.'12

$$\frac{g_{hbb}}{g_{h\tau\tau}} = \frac{m_b(1+\Delta_\tau)\left(1-\Delta_b/(\tan\beta\tan\alpha)\right)}{m_\tau(1+\Delta_b)\left(1-\Delta_\tau/(\tan\beta\tan\alpha)\right)}.$$

Branching ratio of decay into bottom quarks remain larger than 95 percent

Calculated with FeynHiggs (no Δ_{τ} but full one-loop corrections.)

New CPsuperH includes all Δ_f . Leads to similar gamma gamma rates, but slightly smaller τ suppressions.

Evolution of Yukawa Couplings

Large suppression of Higgs decay into taus, keeping metastability, may only be achieved at large values of the effective tan(beta) of tau leptons.

Values of effective tan(beta) larger than 90 imply the existence of a Landau pole before the GUT scale

An ultraviolet completion would be therefore necessary at high scales.

Non-Standard Higgs Production

QCD: S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth, hep-ph/0603112

Searches for non-standard Higgs bosons

M. Carena, S. Heinemeyer, G. Weiglein, C.W, EJPC'06

• Searches at the Tevatron and the LHC are induced by production channels associated with the large bottom Yukawa coupling.

$$\sigma(b\bar{b}A) \times BR(A \to b\bar{b}) \simeq \sigma(b\bar{b}A)_{\rm SM} \frac{\tan^2\beta}{\left(1 + \Delta_b\right)^2} \times \frac{9}{\left(1 + \Delta_b\right)^2 + 9}$$

$$\sigma(b\bar{b}, gg \to A) \times BR(A \to \tau\tau) \simeq \sigma(b\bar{b}, gg \to A)_{\rm SM} \frac{\tan^2 \beta}{\left(1 + \Delta_b\right)^2 + 9}$$

• There may be a strong dependence on the parameters in the bb search channel, which is strongly reduced in the tau tau mode.

Validity of this approximation confirmed by NLO computation by D. North and M. Spira, arXiv:0808.0087 Further work by Mhulleitner, Rzehak and Spira, 0812.3815

N. Shah, M. Carena, I. Low, C.W' 13

N. Shah, M. Carena, I. Low, C.W'13

$$\Delta_{b,\tau} = \epsilon \tan \beta$$

N. Shah, M. Carena, I. Low, C.W' 13

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv:1112.336

Mixing Effects in the CP- even Higgs Sector

• Mixing can have relevant effects in the production and decay rates

$$\mathcal{M}_{H}^{2} = \begin{bmatrix} m_{A}^{2} \sin^{2} \beta + M_{Z}^{2} \cos^{2} \beta & -(m_{A}^{2} + M_{Z}^{2}) \sin \beta \cos \beta + \text{Loop}_{12} \\ -(m_{A}^{2} + M_{Z}^{2}) \sin \beta \cos \beta + \text{Loop}_{12} & m_{A}^{2} \cos^{2} \beta + M_{Z}^{2} \sin^{2} \beta + \text{Loop}_{22} \end{bmatrix}$$

$$\text{Loop}_{12} = \frac{m_t^4}{16\pi^2 v^2 \sin^2 \beta} \frac{\mu \tilde{A}_t}{M_{\text{SUSY}}^2} \left[\frac{A_t \tilde{A}_t}{M_{\text{SUSY}}^2} - 6 \right] + \frac{h_b^4 v^2}{16\pi^2} \sin^2 \beta \frac{\mu^3 A_b}{M_{\text{SUSY}}^4} + \frac{h_\tau^4 v^2}{48\pi^2} \sin^2 \beta \frac{\mu^3 A_\tau}{M_\tau^4}$$

effects through radiative corrections to the CP-even mass matrix which defines the mixing angle alpha

$$\sin \alpha \cos \alpha = M_{12}^2 / \sqrt{(\text{Tr } M^2)^2 - 4 \text{ det } M^2)^2}$$

$$hb\bar{b}: \quad \frac{\sin\alpha}{\cos\beta} \left[1 - \frac{\Delta h_b \tan\beta}{1 + \Delta h_b \tan\beta} \left(1 + \frac{1}{\tan\alpha \tan\beta} \right) \right].$$

Small Variations in the Br(Hbb) can induce significant variations in the other Higgs Br's

Additional modifications of the Higgs rates into gauge bosons via stau induced mixing effects in the Higgs sector

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv:1112.336,+L.T. Wang, arXiv:1205.5842

Values of the soft parameters larger than 250 GeV tend to lead to vacuum stability problems

Small variations in BR [Hbb] induce significant variations in the other Higgs BR's

Gluon fusion production rate can be varied for light stops