Searches for Supersymmetry in the CMS Experiment

Jeffrey D. Richman (UC Santa Barbara) Representing the CMS Collaboration

21st International Conference on Supersymmetry and Unification of Fundamental Interactions International Center for Theoretical Physics, Trieste, August 26–31, 2013

Outline

- Big themes and challenges for SUSY searches
- **Inclusive (generic) searches**
- Naturalness-inspired searches: $\tilde{t}, \tilde{b}, \tilde{g}$
- Search for EWKinos & sleptons $ilde{\chi}^0_i,\ ilde{\chi}^\pm_j, ilde{\ell}$
- SUSY decays with Higgs
- Multi-lepton & R-parity violating signatures
- **Conclusions**

Drawing courtesy Sergio Cittolin

CMS PUBLIC SUSY RESULTS https://twiki.cern.ch/twiki/bin/ view/CMSPublic/ PhysicsResultsSUS

New results in all of these areas. Most use 19.5 fb⁻¹ ($\sqrt{s} = 8$ TeV).

CMS SUSY talks in the parallel sessions (I)

- 1. Search for SUSY in hadronic final states at CMS (Mon.) Joshua THOMPSON
- 2. Search for SUSY in the single and di-lepton final state at CMS (Mon.) Marco-Andrea BUCHMANN
- 3. Search for SUSY in multilepton final states at CMS (Mon.) Andrea GOZZELINO
- 4. Search for SUSY in final states with photons at CMS (Tues.) David MORSE
- 5. Interpretation of CMS SUSY results and outlook to 14 TeV data taking (Tues.)

Frank GOLF

6. Dark matter searches in monojet and monophoton events at CMS (Tues.) Tai SAKUMA

CMS SUSY talks in the parallel sessions (II)

- 7. Search for direct stop and sbottom production at CMS (Thurs.) *Mariarosaria D'ALFONSO*
- 8. Search for EWK production of gauginos and sleptons at CMS (Thurs.) Ben HOOBERMAN
- 9. Interpretations of CMS SUSY searches in the context of R-parity violation (Fri.)
 - Matthew WALKER

My talk: just a small sampling of the many CMS SUSY results.

OTHER CMS PLENARY SESSION TALKS

Recent results on Higgs physics from CMS (Tues.)

Sridhara DASU

Recent results from exotic searches from CMS (Fri.)

Sunil SOMALWAR

CMS SUSY overview: a broad program Summary of CMS SUSY Results* in SMS framework **SUSY 2013** m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV \rightarrow qq $\tilde{\chi}^{\prime}$ SUS-13-012 SUS-12-028 L=19.5 11.7 /fb ⇒ qq χ̃ SUS-12-005 SUS-11-024 L=4.7 /fb ⇒ bb γ̃ SUS-13-004 SUS-12-024 SUS-12-028 L=19.3 19.4 /fb SUS-13-004 SUS-13-007 SUS-13-008 SUS-13-013 L=19.4 19.5 /fb gluino productio $\tilde{g} \rightarrow qq (\tilde{\chi})$ SUS-11-011 L=4.98 /fb $\widetilde{g} \rightarrow qq(\widetilde{\chi}) \rightarrow \tau \tau \widetilde{\chi}^{0} \widetilde{\chi}^{0}$ SUS-12-004 L=4.98 /fb $\tilde{q} \rightarrow qq(\tilde{\tilde{\chi}}^{\dagger})$ SUS-12-010 L=4.98 /fb **Gluino production** SUS-13-008 SUS-13-013 L=19.5 /fb $\tilde{g} \rightarrow qq(\tilde{\chi}^{\pm} \rightarrow l^{\pm}\nu \ \tilde{\chi})$ SUS-11-010 L=4.98 /fb \rightarrow qq ($\tilde{\chi}_{.}^{\circ}$ SUS-11-021 SUS-12-002 L=4.98 4.73 →Zĩ → qq(χ[±] ⇒ Wγ̃ SUS-13-013 | =19 5 /fb $\widetilde{g} \rightarrow qq(\widetilde{\chi}_{0}^{*} \rightarrow \gamma \widetilde{\chi}^{*} | \widetilde{\chi}^{*}$ SUS-12-001 | =4 93 /fb $\tilde{g} \rightarrow qq(\tilde{\chi}) \rightarrow \gamma \tilde{\chi}$ $\widetilde{g} \rightarrow b(b \rightarrow t(\widetilde{\chi}^{\pm} \rightarrow W\widetilde{\chi}^{\circ}))$ Squark production q̃→q χ̃՝ squar $\widetilde{q} \rightarrow q \widetilde{\chi}^{0}$ $\tilde{t} \rightarrow t \tilde{\chi}^0$ $\tilde{t} \rightarrow t \tilde{\chi}^0$ SUS-11-024 SUS-12-005 L=4.7 /fb Stop production $\tilde{t} \rightarrow b(\tilde{\chi}^+ \rightarrow W\tilde{\chi}^0)$ SUS-13-011 L=19.5 /fb stop $\tilde{t} \rightarrow b \; (\tilde{\chi}^{\pm} \rightarrow W \; \tilde{\chi}^{0})$ SUS-11-030 L=4.98 /fb $\tilde{t} \rightarrow t b \tilde{\chi}^{0} (\tilde{\chi}^{0} \rightarrow H G)$ s = 7 TeV $\tilde{b} \rightarrow b \tilde{\chi}$ sbottom SUS-12-028 L=11.7 /fb **Sbottom** production ⇒ tW γ̃ SUS-13-008 SUS-13-013 L=19.5 /fb ls = 8 TeV SUS-13-006 L=19.5 /fb EWK gauginos EWK Gaugino production iminary SUS-13-006 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-13-017 L=19.5 /fb $m_{intermediate} = x \cdot m_{mother} - (1 - x) \cdot m_{lsp}$ Slepton production $\tilde{I} \rightarrow I \tilde{\chi}^0$ 1200 1000 200 400 600 800 1400 *Observed limits, theory uncertainties not included Mass scales [GeV] Only a selection of available mass limits Mass scale (GeV) Probe *up to* the guoted mass limit 5

Big themes: background measurement

Big themes: background measurement

July 2013

CMS

Big themes: $pp \rightarrow t\overline{t}$ key SUSY background

- Heaviest SM particle $\sigma(pp \rightarrow t\bar{t}) = (227 \pm 3 \pm 11 \pm 10)$ pb at 8 TeV
- Jets, b-jets, leptons, missing transverse momentum (MET)
- Now have many detailed studies of kinematic distributions.

Big themes: tails of SM kinematic distributions

- SUSY processes usually do not have narrow features in observed distributions.
- Search is performed in the <u>extreme tails</u> of SM processes. Narrow kinematic region of phase space; possible rare detector effects also.

- As far as possible, use data-driven methods based on control samples → use <u>multiple, complementary</u> <u>approaches.</u> MC/theory plays key role in validating our understanding of these control samples.
- Multiple methods: critical for discovery scenarios!

The pentaquark phenomenon, 2002-2005

Slide courtesy of R. Schumacher From Particles and Nuclei International Conference, Santa Fe, 2005

Let's not do this! (I don't think we will.)

Big themes: many (& complex) signatures

SUSY cascade starting from gluino decay

14

Decays of $\sim t_1 \rightarrow$ neutralinos, charginos

Decays of $\tilde{\chi}_2^0$: here come the leptons!

Decays of $\tilde{\ell}_{L,R}^{\pm}$, $\tilde{\tau}_{1,2}^{\pm}$, \tilde{v}_{L} : more leptons!

Decays of $\tilde{\ell}_{L,R}^{\pm}$, $\tilde{\tau}_{1,2}^{\pm}$, \tilde{v}_{L} : more leptons!

Big themes: Interpretation(s) Frank Golf parallel talk

- Early LHC running: heavy use of cMSSM to connect with results from Tevatron. (Not sufficiently general.)
- Today: Extensive use of simplified models. Reasonably well suited to natural SUSY spectra. Big assumption: BF=100%.
- Alternatives: pMSSM and efficiency models.

Outline

- Big themes and challenges for SUSY searches
- Inclusive (generic) searches
- Naturalness-inspired searches: $\tilde{g}, \tilde{t}, \tilde{b}$
- Search for EWKinos & sleptons $\tilde{\chi}_i^0$, $\tilde{\chi}_j^{\pm}$, $\tilde{\ell}$
- SUSY decays with Higgs
- Multi-lepton & R-parity violating signatures
- Conclusions

Drawing courtesy Sergio Cittolin

CMS PUBLIC SUSY RESULTS https://twiki.cern.ch/twiki/bin/ view/CMSPublic/ PhysicsResultsSUS

New results in all of these areas. Analyses use 19.5 fb⁻¹ ($\sqrt{s} = 8$ TeV).

Generic searches for jets + MET

For dark matter results, see Sunil Somalwar plenary & Tai Sakuma parallel talk.

SUS-13-012 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13012 J. Thompson parallel talk

- Signature: Jets + MHT; events with leptons are vetoed
 - − Jets: ≥3 jets with p_{τ} > 50 GeV, <u>no b-tagging</u>.
 - Veto event if MHT vector is ≈aligned with any of 3 leading jets.
- Bin data in
 - HT
 - missing HT (MHT)
 - Jet multiplicity $(3-5, 6-7, \ge 8 \text{ jets})$
- Background estimation: largely data driven.

Generic hadronic SUSY search using MHT

 $H_T = \sum \left| \vec{p}_T^j \right|$ $\mathcal{H}_{T} = \left| \vec{\mathcal{H}}_{T} \right| = \left| -\sum_{j=jets} \vec{p}_{T}^{j} \right|$

Distribution in bins of N(jets), H_T , and \mathcal{M}_T

CMS PAS SUS-13-012

Statistical interlude

- Consider the bin with
 - N(observed) = 9 events
 - N(background) = 0.8 ± 1.7 events

See CMS PAS SUS-13-012, Table 1, p. 10 Njets: 6-7 HT: 500-800 GeV MHT>450 GeV

- First, let's ignore the uncertainty on the background. What is the probability for a Poisson with μ=0.8 to fluctuate to at least 9 events?
 - − Prob(n≥9 | μ =0.8) = 1.8 × 10⁻⁷

Have we discovered new physics?

• NO! The uncertainty is crucial!

− Prob(n≥9 | μ = 0.8 ± 1.7) ≈ 0.15

• This example highlights the importance of <u>quantifying the</u> <u>uncertainties on the SM backgrounds.</u>

Search for generic jets and MET: results

Simplified model exclusion plots

CMS PAS SUS-13-012

- 1. Compute excluded cross section for each model in param space
- 2. Compare to reference cross section to see if model excluded
 - Assume 100% branching fraction for stated process!

Search for generic jets and MET: results

Simplified model exclusion plots

- CMS PAS SUS-13-012
- 1. Compute excluded cross section for each model in param space
- 2. Compare to reference cross section to see if model excluded
 - Assume 100% branching fraction for stated process!

CMS

Outline

- Big themes and challenges for SUSY searches
- Inclusive (generic) searches
- Naturalness-inspired searches: $\tilde{t}, \tilde{b}, \tilde{g}$
- Search for EWKinos & sleptons $\tilde{\chi}_i^0$, $\tilde{\chi}_j^{\pm}$, $\tilde{\ell}$
- SUSY decays with Higgs
- Multi-lepton and R-parity violating signatures
- Conclusions

Drawing courtesy Sergio Cittolin

CMS PUBLIC SUSY RESULTS https://twiki.cern.ch/twiki/bin/ view/CMSPublic/ PhysicsResultsSUS

New results in all of these areas. Analyses use 19.5 fb⁻¹ (\sqrt{s} =8 TeV). 28

The focus on natural SUSY signatures

- With the discovery of the/a Higgs boson, the problem of the stability of m(H) against radiative corrections has become urgent.
- Many searches designed for signatures motivated by a "natural SUSY" solution to the gauge hierarchy problem.

N. Arkani-Hamed, http://indico.cern.ch/getFile.py/access? contribId=7&sessionId=2&resId=0&materiaIId=slid es&confId=157244

M. Papucci, J.T. Ruderman, and A. Weiler, *Natural SUSY Endures*, <u>http://arxiv.org/abs/1110.6926</u>

Search for direct stop: initial state radiation

SUS-13-011

- The effects of initial-state radiation are important for the signal efficiency in the region where MET is small.
- Does the simulation get this right (MADGRAPH) ?
- Study in Z+jets and ttbar.

Search for direct stop: initial state radiation

SUS-13-011 The effects of initial-state radiation are important for the signal efficiency in the region where MET is small.

• Does the simulation get this right (MADGRAPH) ?

Search for direct stop: dependence on BF

37

Same-sign dileptons: search for $pp \rightarrow b_1b_1$

) Test how the exclusion region) depends on $m(\tilde{\chi}_1^+) - m(\tilde{\chi}_1^0)$

 $m(\tilde{\chi}_1^0) = 50 \text{ GeV} \quad m(\tilde{\chi}_1^0) / m(\tilde{\chi}_1^+) = 0.5 \quad m(\tilde{\chi}_1^0) / m(\tilde{\chi}_1^+) = 0.8$

Examples for $pp \to \tilde{g}\tilde{g}$, $\tilde{g} \to b\overline{b}\,\tilde{\chi}_1^0, \tilde{g} \to t\overline{t}\,\tilde{\chi}_1^0$

- For many SUSY searches, ttbar is the dominant background.
- Lots of real MET from W decays
- b-tagging suppresses Z + jets, W + jets.

SUSY search for b-jets, 1 lepton, and MET

CMS PAS SUS-13-007

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13007 Parallel talk: Marco-Andrea Buchmann

<u>Lepton spectrum method</u>: for leptons produced in W decay, the lepton spectrum can be used to measure the ν spectrum.

Makes use of W helicity fractions in $t \rightarrow bW$

PHYSICAL REVIEW D 81, 111503(R) (2010)

Helicity fractions of W bosons from top quark decays at next-to-next-to-leading order in QCD

Andrzej Czarnecki* Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada and CERN Theory Division, CH-1211 Geneva 23, Switzerland

> Jürgen G. Körner[†] Institut für Physik, Universität Mainz, 55099 Mainz, Germany

Jan H. Piclum[‡] Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada (Received 13 May 2010; published 18 June 2010)

Decay rates of unpolarized top quarks into longitudinally and transversally polarized W bosons are calculated to second order in the strong coupling constant α_s . Including the finite bottom quark mass and electroweak effects, the standard model predictions for the W-boson helicity fractions are $\mathcal{F}_L = 0.687(5)$, $\mathcal{F}_+ = 0.0017(1)$, and $\mathcal{F}_- = 0.311(5)$.

...and W helicity fractions in W+jets

PHYSICAL REVIEW D 84, 034008 (2011)

Left-handed W bosons at the LHC

Z. Bern,¹ G. Diana,² L. J. Dixon,^{3,4} F. Febres Cordero,⁵ D. Forde,^{3,6} T. Gleisberg,⁴
 S. Höche,⁴ H. Ita,¹ D. A. Kosower,² D. Maître,^{3,7} and K. Ozeren¹

The production of W bosons in association with jets is an important background to new physics at the LHC. Events in which the W carries large transverse momentum and decays leptonically lead to large missing energy and are of particular importance. We show that the left-handed nature of the W coupling, combined with valence quark domination at a pp machine, leads to a large left-handed polarization for both W^+ and W^- bosons at large transverse momenta. The polarization fractions are very stable with

Search for b-jets and MET with razor variables

SUS-13-004 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13004

- "Razor" kinematic variables C. Rogan, arXiv:1006.2727 $M_R \equiv \sqrt{(p_{j_1} + p_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$ $M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}} \qquad R \equiv \frac{M_T^R}{M_R}$
- Variables defined in terms of a dijet topology. For higher multiplicity, cluster jets into 2 pseudojets. Signal has high R²

Strongest limit: $m(\sim g) \ge 1375$ GeV.

45

CMS

Outline

- Big themes and challenges for SUSY searches
- Inclusive (generic) searches
- Naturalness-inspired searches: $\tilde{t}, \tilde{b}, \tilde{g}$
- Search for EWKinos & sleptons $\widetilde{\chi}_i^0$, $\widetilde{\chi}_j^\pm$, $\widetilde{\ell}$
- SUSY decays with Higgs
- Multi-lepton and R-parity violating signatures
- Conclusions

Drawing courtesy Sergio Cittolin

CMS PUBLIC SUSY RESULTS https://twiki.cern.ch/twiki/bin/ view/CMSPublic/ PhysicsResultsSUS

New results in all of these areas. Analyses use 19.5 fb⁻¹ (\sqrt{s} =8 TeV)₄₆

EWK production of $\tilde{\chi}^{\pm}, \tilde{\chi}^{0}$: Higgs final states

SUS-13-017

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13017
Parallel talk: Ben Hooberman

Natural SUSY models suggest higgsinos are light. Search for WH +MET in three channels (1 lepton, SS dilepton, multilepton)

EWK production of $\tilde{\chi}^{\pm}, \tilde{\chi}^{0}$: Higgs final states								
SUS-13-017 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13017 Parallel talk: Ben Hooberman								
1-lepton channel W(/ nu) + H(bb) + MET	Same-sign dileptons W(l n) + H(WW) + MET	Multilepton channels W(I nu) + H(WW, ZZ, $ au au$)+MET						
1 lepton, <u>exactly 2 jets,</u> both b jets, kinematic cuts, MET, SIGNAL: m(bb)	2 same-sign leptons, 2-3 jets, no b-jets, kin. cuts, SIGNAL m(l, J1, J2) <120	Mainly: 3 leptons, low HT, and no b-tagged jets.						

- Up until now, CMS searches for GMSB photon signatures have been searches for inclusive Jets + MET + 1-2 photons.
- Now look for naturalness motivated signature in GMSB

- $\sigma \times B(H \rightarrow \gamma \gamma)$ can lead to significant number produced events!
- QCD background: $\gamma\gamma$ + bb & 1γ + bb + jet faking γ .

Search for \tilde{t} and $\tilde{\chi}^0$ in H $\rightarrow \gamma\gamma$ final states

SUS-13-014 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13014 Parallel talk: David Morse

- Selection: 2 photons (isolated, ET>40, 25 GeV), ≥2 b-jets (pT>30 GeV).
- Use $H \rightarrow \gamma \gamma$ mass sidebands to predict background MET distrib.
- Normalize to number of events obtained from fit to $M(\gamma\gamma)$.
- 3 samples: 2 b-jets with M(bb)~M(H); ≥3 b-jets; other.

CMS

Outline

- Big themes and challenges for SUSY searches
- Inclusive (generic) searches
- Naturalness-inspired searches: $\tilde{t}, \tilde{b}, \tilde{g}$
- Search for EWKinos & sleptons $\tilde{\chi}_i^0$, $\tilde{\chi}_j^{\pm}$, $\tilde{\ell}$
- SUSY decays with Higgs
- Multi-leptons and R-parity violating signatures
- Conclusions

Drawing courtesy Sergio Cittolin

CMS PUBLIC SUSY RESULTS https://twiki.cern.ch/twiki/bin/ view/CMSPublic/ PhysicsResultsSUS

New results in all of these areas. Analyses use 19.5 fb⁻¹ (\sqrt{s} =8 TeV).

Multi-lepton and R-parity violating processes

SUS-13-002, 13-008Andrea Gozzelino (multilepton)SUS-13-003, 13-010, 13-013, EXO-12-049Matthew Walker (R-parity violating)

Multi-lepton and R-parity violating processes

SUS-13-002, 13-008Andrea Gozzelino (multilepton)SUS-13-003, 13-010, 13-013, EXO-12-049Matthew Walker (R-parity violating)

Common theme: powerful signatures that strongly suppress ttbar and other SM backgrounds. Typically have loose/no MET cuts! → Access to compressed spectra and R-PV SUSY. 55

Multilepton searches: general

SUS-13-002

Search for anomalous lepton production

- \geq 3 leptons (e, μ , τ)
- Binning in N(lep), N(τ), N(b-jet)=0, ≥1, MET, HT, OSSF pairs, on Z/off Z

SUS-13-008Andrea Gozzelino talkSearch for events with≥3 leptons, ≥2 jet, ≥1 b-jet.

- 3(e, µ)
- Binning in
- N(lep), N(jets), N(b-jets), MET, HT, on Z/off Z

Sbottom pair production $b_{CMS \text{ Preliminary, 19.5 fb}^{-1}, \sqrt{s} = 8 \text{ TeV}^{-1}$ $\rightarrow t \chi_1^-$ 350 200 m_{LSP} (GeV) $pp \rightarrow \tilde{b}_1 \tilde{b}_1^*, \tilde{b}_1 \rightarrow tW \tilde{\chi}_1^0$ NLO+NLL exclusion section (fb) 180 $_{300}$ Observed $\pm 1\sigma_{\text{theory}}$ Expected $\pm 1\sigma_{experiment}$ 160 250 140 cross 120 200 upper limit on 100 150 80 60 100 ز۔ ن 40 50 95% 20 300 350 400 450 500 550 600 650 m_{sbottom} (GeV)

Conclusions

- Over the first 3 years of LHC running, we have developed a broad SUSY program, with an extensive set of searches.
- There is no evidence for a signal in any search.
- The overall behavior of SM backgrounds in the data sample appears to be well understood.
- Searches for gluinos and squarks are highly developed.
- There is significant progress in developing searches for EWKinos.
- Compressed spectra represent a challenge.
- Interpretation is complex; much ongoing work.
- We expect very substantial gains in the discovery reach for the upcoming run.

Backup slides

from Frank Golf talk

Snowmass Projections

- Scale signal and background by cross section ratios ($\sigma_{14 \text{ TeV}}/\sigma_{8 \text{ TeV}}$) and luminosity (300/20 ~ 15).
- Estimate 5σ discovery reach for two scenarios:
 - Scenario A (conservative): Scale background uncertainty by ratio of $\sigma \times L$.
 - Scenario B (optimistic): Reduced background uncertainty relative to conservative scenario.
- <u>Caveat emptor</u>: Projections assume constant performance. We have not attempted any optimization nor accounted for potential degradation due to effects such as increased pile-up.

	Process	Decay	Search	Current (TeV)	Scenario A (TeV)	Scenario B (TeV)
	$pp \rightarrow \tilde{a}\tilde{a}$	$\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$	$\ell + b + \not\!\!E_T$	$1.1 { m TeV}$	$1.9~{ m TeV}$	-
FF ' 35	$\tilde{g} \rightarrow b \overline{b} \tilde{\chi}_1^0$	$b + \not\!\!\! E_T$	$1.1 { m ~TeV}$	$1.9~{ m TeV}$	-	
	$pp \to \tilde{b} \tilde{b}^*$	$\tilde{b} \rightarrow t \tilde{\chi}_1^- \rightarrow t W^- \tilde{\chi}_1^0$	$\ell^\pm\ell^\pm + b + \not\!\!\!E_T$	0.45	0.6	0.75
	$pp \to \tilde{t}\tilde{t}^*$	$\tilde{t} \rightarrow t \tilde{\chi}_1^0$	$\ell + b + \not\!\!\! E_T$	0.25 - 0.5	0.75	0.95
	$m \rightarrow \tilde{v}^{\pm} \tilde{v}_{0}^{0}$	$WZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$	$3\ell + E_T$	0.25	0.45	0.6
	$PP \leftarrow \lambda_1 \lambda_2$	$WH \tilde{\chi}_1^0 \tilde{\chi}_1^0$	$\ell + b + \not\!\!\!E_T$	0.2	0.4	>0.5
27 August 2013			SUSY	2013		

from Frank Golf talk

Electroweak production: $\tilde{\chi}_{i}^{0}, \tilde{\chi}_{j}^{\pm}, \tilde{\ell}$

SUS-13-006 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13006

WZ+MET: search complementarity

Slepton exclusion region

