The XENON1T experiment

SUSY 2013 Trieste Italy

A.P.Colijn for the XENON collaboration colijn@nikhef.nl

XENON collaboration

XENON1T: Two orders of magnitude more sensitive

• Goal:

⇒find dark matter particle

→(improve the XENON100 limits by factor 100)

Rate for spin-independent coupling

• M_{target} ~2200 kg (XENON100 62kg)

Background < 1 event in 2 ton-year exposure (~100x lower than XENON100)

XENON: Calorimeter & 3D position detector

$(S2/S1)_{ER} > (S2/S1)_{NR}$

In XENON100 99.75% of electronic **n**, **WIMP** recoils (ER) are rejected, while keeping 50% of the nuclear recoils (NR).

- From "any" recoil in xenon:
 - S1 = scintillation
 - \Rightarrow S2 = ionization
- Energy from S1 and/or S2
- 3D position:
 - ➡ z-coordinate from t_{drift} = t_{S2}-t_{S1}
 - ➡ xy-coordinate from S2 pattern

 e^{\pm},γ

Laboratori Nazionali del Gran Sasso, Italy

LNGS 1400 m Rock (3100 w.m.e)

XENON1T: Design

- Dark matter detector inside cryostat
- Surrounded by 10m diameter Cerenkov active shield
- Cryostat suspended from 3 rods, like a marionette
- Infrastructure outside water shield
 - ⇒DAQ + HV + slow control
 - Cryogenics system
 - Xenon purification and handling

XENON1T: Cryostat & Cryogenics

Cryogenics

200W pulse tube refrigerator plant
Liquid N₂ backup for safety

Cryostat

- Two stainless steel vessels with vacuum insulation
- Feedthroughs for PMT signal/HV, detector HV, LXe recovery
- Connected to cryogenic system through big-pipe
- ➡Heat leak <50W</p>

XENON1T: Time Projection Chamber

Backgrounds

- External backgrounds
 - ➡cosmic muons
 - neutrons induced by cosmic muons
 - →U and Th in any material
 - neutrons from (α, n) reactions
 - •γ's
 - →neutrinos not a major background (yet)
- Internal backgrounds
 - ⇒⁸⁵Kr
 - ➡²²²Rn
 - ⇒2v2β decay of ¹³⁶Xe

muon

gas

i n

11110

... and how to 'eliminate' them

Strategy

- **1.External backgrounds**: Use self-shielding of LXe to reduce external backgrounds (Z=54, ρ_{LXe} =3 g/cm³)
- 2.Internal backgrounds:
 - Reduction of background atoms in LXe
- 3. "Screen everything"
- Advantage in **BIG** detector
 - ⇒can afford more self-shielding
 - extra neutron suppression

BG reduction: cosmic muon induced

Water shield

- Big difference / complication with respect to XENON100 is the ~4.5 m water shield surrounding the XENON1T cryostat
- Passive shield alone insufficient to reduce the high energy neutron flux

(i)sa

Active Cerenkov VETO

- 84 high QE Hamamatsu R5912 PMTs
 - Reject 99.5% of n with µ in veto
 - Reject 78% of n with µ outside veto
 - µ induced n background<0.05 ev/yr

BG reduction: ⁸⁵Kr and ²²²Rn

- ⁸⁵Kr : ^{nat}Kr ~ 10⁻¹¹
- beta / gamma emitter:

- ⁸⁵Kr
- reduce ^{nat}Kr to < 0.5 ppt < 25 atoms ⁸⁵Kr per kg xenon
- custom built distillation column
- 3kg / h @ 10⁻⁴ separation
- diagnostics: RGMS / atom trap < 1 ppt level Kr/Xe

- Noble gas produced in the ²³⁸U decay chain.
 - can originate from any surface (in unpredictable way)
 - dissolves well in LXe
 - \Rightarrow t_{1/2} = 3.8 days, with shortlived daughters and longlived ²¹⁰Pb
- Strategy for elimination
 - avoid surfaces that emanate a lot-> screening
 - ➡ ²²²Rn removal necessary

BG: XENON1T summary

- Fiducial 1.1ton of xenon
- Exposure 2 years

1 dru = 1 event / keV / kg /day

	ER (10 ⁻³ dru _{ee})	NR (10 ⁻⁷ dru _{nr})	
⁸⁵ Kr	0.01	-	
pp solar neutrino	0.01	_	
¹³⁶ Xe 2vββ	0.008 -		
n from rock and µ induced		0.05	
PM <mark>T</mark> with b <mark>a</mark> se	0.006	0.05	
PTFE	0.0001	0.02	
Cryostat	0.0002	0.0002 0.0007	
Total BG	0.03 0.12		
Total BG after S2/S1 cut	<0.0001		
expected BG events	0.8	0.2	

Calibration: strategy

- Response of detector
 - ➡Energy scale
 - Position reconstruction
- Strategy
 - →Use neutron + gamma sources
- Challenge
 - ⇒calibrate interior of the TPC

Impact on data-acquisition

- need dead-time less readout
- ➡no trigger decision in hardware
- continuous feeding of data to trigger farm
- ⇒starts to look like HEP triggers

XENONnT: The ultimate detector?

 If WIMPs / no WIMPs found with XENON1T, we could build a completely new detector.....

 or ... XENONnT = XENON1T + bigger inner cryostat + bigger TPC

XENONnT: 202x

	XENON100	XENON1T	XENONnT
status	running	construction	design
xenon	161 kg	3500 kg	6000 kg
Kr/Xe	(19±4) ppt	0.5 ppt	0.2 ppt
Rn/Xe	≈ 65 µBq/kg	≈ 1 µBq/kg	≈0.5 µBq/kg
drift	0.3 m	1m	1m
HV	-16 kV	-100 kV	-100 kV

Construction @ LNGS

preparing the foundation

<image>

structural elements for service building

Construction started: now low-tech, soon high-tech

Conclusion (6x)

- 1. XENON1T detector design phase has been finished
- 2. XENON1T construction has started
- 3. XENON1T will be completed end 2014
- 4. XENON1T dark matter run starts in 2015
- 5. XENON1T dark matter discovery or limits 2015-2017
- 6. XENONnT n=f(€,\$)? 2017-2021