

The EDELWEISS dark matter search: Results and prospects

Benjamin Schmidt, KIT, EDELWEISS experiment, SUSY 2013 @ ICTP Trieste

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Direct Dark Matter search

- Evidence for dark matter: galaxy rotation curves, clusters, CMB, nucleosynthesis, bullet cluster
- Candidates: WIMPs supersymmetric neutralinos, KK particles, technibaryons...
- Search for elastic scattering
 - ~ 10 keV nuclear recoil
 - < 1 event/kg/year</p>
 - Need excellent background suppression

Cryogenic germanium phonon-ionization detectors

The EDELWEISS Collaboration

- CEA Saclay (IRFU and IRAMIS)
- CSNSM Orsay (CNRS/IN2P3 + Paris Sud)
- IPNLyon (CNRS/IN2P3 + Univ. Lyon 1)
- Néel Grenoble (CNRS/INP)
- Karlsruhe Inst. of Technology (IKP, EKP, IPE)
- JINR Dubna
- Oxford University
- University of Sheffield

- Experimental site: Laboratoire Souterrain de Modane (LSM) in Fréjus Tunnel
- 4800 mwe depth: ~ 5 muon/day/m²
- 10⁻⁶ neutrons/cm²/s (> 1 MeV)
- Deradonized air supply

(~ 10 Bq -> ~ 30 mBq)

EDELWEISS setup

Nuclear recoil event discrimination & Surface event rejection- principle

Event discrimination via simultaneous charge and phonon measurement

NTD Phonon/Heat sensor = calorimetric measurement of total energy (T = 18 mK, $\Delta T \sim 0.1 \ \mu K/keV$)

Al electrodes

Ionization measurement (sub-keV resolution)

Ionization yield

 $Q = E_I / E_{Rec}$ nuclear recoils have ~ 1/3 Q of e-recoils

Results from EDELWEISS-II 2011 (384 kgd)

Results EDELWEISS-II

EDELWEISS-II Low WIMPmass analysis results

EDELWEISS-II Low WIMPmass analysis results

Benjamin Schmidt, SUSY 2013-08-29

(~113 kgd) $\overline{\underbrace{50}_{40}} 10^{-40}$

1.4 – 1.9 keV Ionization threshold

4/10 ID detectors

data (4 ID detectors)

- 95% C.L. gamma cut
- Background expect.:
 γ + ion. threshold + n:
 2.9 evts / 1 observed

EDELWEISS-II Low WIMPmass analysis results

Low energy analysis of 2009-2010

Potential for significant progress in EDELWEISS-3

Axion results with EDELWEISS-II data

Best/Competitive axion limits (Primakoff, axio-electric, solar or dark matter scenarios with axion like particles)

arXiv:1307.1488

Low-threshold and high resolution electron recoil spectrum used for axion search Very low background due to fiducial selection

12

Increase totaland fiducial mass

Further remove background (3 expected events in Edw-II)

Lessons learned from EDELWEISS-II (384 kgd)

- \leq 1.2 γ rejection
- \leq 1.8 neutrons

Upgrades in EDELWEISS-3

1. Suppression of n-background

2. Improvement of γ discrimination

3. Confirmation of β -rejection with new detectors and improved resolutions

4. Enable upscaling towards 1ton-scale exp.

Upgrades towards EDELWEISS-3 1. Suppression of n background

- Additional cold PE shield
- New Kapton cabling
- Better radiopure connectors
- Redesign of copper shields

> 10 times better neutron suppression

2. Improvement of γ discrimination

EDELWEISS FID - 133Ba calibration (411663 y)

EDELWEISS-III FID 800 g with ~ 600 g fiducial mass

3. Surface rejection measurements – improved resolutions

- Measurement with ²¹⁰Pb β-source
- Surface rejection: < 4 x 10⁻⁵ misidentified events per kgd (above 15 keV)

Better than previous EDELWEISS detectors (< 6 x 10⁻⁵ misidentified events per kgd, above 20 keV)

3./4. Improvement of resolutions and thresholds

- Resolution improvement aimed at > 30% yields sensitivity < 5 keV, full sensitivity at ~ 10 keV
- New cables, electronics and integrated DAQ system

 Improved cryogenics system: New cryoline
 → better control over thermal shields and less microphonics

Timeline/Projection EDELWEISS-III

August 2013 (now)

EDELWEISS-III commissioning runs

- Upgraded cryogenics
- ~15 FID 800 g detectors largest cryogenic mass of heat + ion Ge detectors
- Upgraded readout electronics + Kapton cables
- Inner PE shield + new Cu screens
- End of 2013
 - Fully equipped cryostat
 ~40 FID 800 g detectors

