New Regions in the NMSSM with a 125 GeV Higgs

Marcin Badziak

Institute of Theoretical Physics, University of Warsaw

SUSY 2013, ICTP Trieste 29 August 2013

based on:

MB, M. Olechowski and S. Pokorski, JHEP 1306 (2013) 043 [arXiv:1304.5437]

This project is co-funded by Foundation for Polish Science

Motivation

- $\bullet\,$ Higgs boson mass in NMSSM with moderate or large $\tan\beta$
 - contribution from mixing with the light singlet scalar
- Production and decays of the 125 GeV Higgs
- Signatures of the light singlet-like scalar at the LHC
 - strongly enhanced decays to $\gamma\gamma$
- Conclusions

Good news for SUSY:

a Higgs-like particle with the mass below the upper bound predicted in the simplest SUSY models has been apparently discovered at the LHC

Not so good news for SUSY:

Higgs mass of 125-126 GeV is rather big for MSSM

$$m_h^2 \approx M_Z^2 \cos^2 2\beta + \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln\left(\frac{M_{\rm SUSY}^2}{m_t^2}\right) + \frac{X_t^2}{M_{\rm SUSY}^2} - \frac{1}{12} \frac{X_t^4}{M_{\rm SUSY}^4} \right]$$

Higher SUSY scale $M_{\rm SUSY}$ is not very appealing from the phenomenological (prospects for SUSY discovery) and theoretical (hierarchy problem) points of view

Perhaps, the LHC Higgs data tells us that SUSY is non-minimal...

Higgs sector in NMSSM

NMSSM is MSSM extended by a singlet superfield S that couples to H_u and H_d generating effective μ -term:

 $W_{\rm NMSSM} = \lambda S H_u H_d + f(S)$

$$\hat{M}^2 = \begin{pmatrix} \hat{M}_{hh}^2 & \frac{1}{2}(m_Z^2 - \lambda^2 v^2)\sin 4\beta & \lambda v(2\mu - \Lambda\sin 2\beta) \\ \frac{1}{2}(m_Z^2 - \lambda^2 v^2)\sin 4\beta & \hat{M}_{HH}^2 & \lambda v\Lambda\cos 2\beta \\ \lambda v(2\mu - \Lambda\sin 2\beta) & \lambda v\Lambda\cos 2\beta & \hat{M}_{ss}^2 \\ \Lambda = A_\lambda + \langle \partial_s^2 f(S) \rangle \end{pmatrix}$$

Mass of the SM-like Higgs:

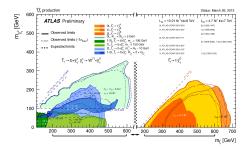
$$m_h^2 = M_Z^2 \cos^2(2\beta) + (\delta m_h^2)^{\text{rad}} + \lambda^2 v^2 \sin^2 2\beta + (\delta m_h^2)^{\text{mix}}$$

The Higgs mass can be strongly enhanced with big λ and small aneta

Higgs sector in NMSSM

NMSSM is MSSM extended by a singlet superfield S that couples to H_u and H_d generating effective μ -term:

 $W_{\rm NMSSM} = \lambda S H_u H_d + f(S)$


$$\hat{M}^2 = \begin{pmatrix} \hat{M}_{hh}^2 & \frac{1}{2}(m_Z^2 - \lambda^2 v^2)\sin 4\beta & \lambda v(2\mu - \Lambda\sin 2\beta) \\ \frac{1}{2}(m_Z^2 - \lambda^2 v^2)\sin 4\beta & \hat{M}_{HH}^2 & \lambda v\Lambda\cos 2\beta \\ \lambda v(2\mu - \Lambda\sin 2\beta) & \lambda v\Lambda\cos 2\beta & \hat{M}_{ss}^2 \\ \Lambda = A_\lambda + \langle \partial_s^2 f(S) \rangle \end{pmatrix}$$

Mass of the SM-like Higgs:

$$m_h^2 = M_Z^2 \cos^2(2\beta) + (\delta m_h^2)^{\rm rad} + \lambda^2 v^2 \sin^2 2\beta + (\delta m_h^2)^{\rm mix}$$

The Higgs mass can be strongly enhanced with big λ and small aneta

Do we really need large correction to the MSSM Higgs mass?

For typical SUSY spectra the stop masses below about 600 - 700 GeV are ruled out by the LHC

One is forced to accept some fine-tuning and hope that stop masses are just below 1 TeV. For such stop masses:

• $\mathcal{O}(5)$ GeV correction to the MSSM Higgs is enough to get 125 GeV \Rightarrow big λ is not necessary if the Higgs mixes with the light singlet and $\tan \beta$ is **not** small

In this talk: NMSSM with small λ and moderate or large aneta

$$\hat{M}^{2} = \begin{pmatrix} \hat{M}_{hh}^{2} & \hat{M}_{hs}^{2} \\ \hat{M}_{hs}^{2} & \hat{M}_{ss}^{2} \end{pmatrix}$$

where \hat{M}_{hh}^2 is the SM-like Higgs mass squared without mixing taken into account $\hat{M}_{hh}^2 = M_Z^2 \cos^2 2\beta + (\delta m_h^2)^{\rm rad}$

With the mixing
$$m_h = \hat{M}_{hh} + \Delta_{\min}$$

$$\Delta_{\text{mix}} = m_h - \sqrt{m_h^2 - \overline{g}_s^2 \left(m_h^2 - m_s^2\right)} \approx \frac{\overline{g}_s^2}{2} \left(m_h - \frac{m_s^2}{m_h}\right) + \mathcal{O}(\overline{g}_s^4)$$

where \overline{g}_s is a coupling of s to Z bosons

In order to obtain big positive $\Delta_{\rm mix}$ one prefers

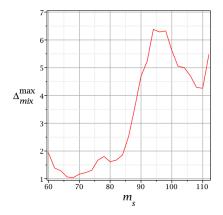
ullet large singlet-doublet mixing i.e. large \overline{g}_s

•
$$m_s \ll m_h$$

It is not possible to have simultaneously big mixing and light singlet

Light scalar with a substantial mixing with the SM-like Higgs would have been discovered by the LEP experiments

$$\overline{BR}(s \to b\bar{b}) \equiv \frac{BR(s \to b\bar{b})}{BR(h^{SM} \to b\bar{b})}$$


$$\xi_{b\bar{b}}^2 \equiv \overline{g}_s^2 \times \overline{BR}(s \to b\bar{b})$$
For $\hat{h} - \hat{s}$ mixing only: $\xi_{b\bar{b}}^2 = \overline{g}_s^2$
stronger LEP constraints on \overline{g}_s^2 for lighter singlet-dominated scalars
$$I_s = \frac{1}{20} + \frac{1}{20} +$$

2

_

Mixing with the singlet only

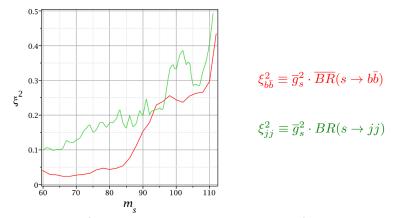
For a given m_s^2 we have upper bound on $\overline{g}_s^2 \Rightarrow$ upper bound on Δ_{\min}

- $\Delta_{
 m mix}$ up to 6 GeV in a few-GeV interval for m_s around 95 GeV
- $\Delta_{
 m mix}^{
 m max}$ drops down very rapidly for $m_s \lesssim 90$ GeV

Mixing with (very) heavy doublet has little impact on the masses of two other scalars

However, even small admixture of the heavy doublet may change substantially the couplings of s to b and τ if $\tan\beta$ is **not** small

$$C_{b_s} = C_{\tau_s} = \overline{g}_s + \beta_s^{(H)} \tan \beta$$

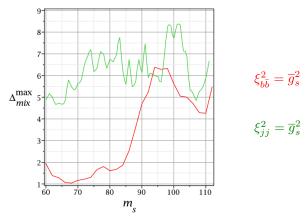

where $s = \overline{g}_s \hat{h} + \beta_s^{(H)} \hat{H} + \beta_s^{(s)} \hat{s}$ is the light scalar eigenvector

For large an eta and $\overline{g}_s eta_s^{(H)} < 0$, $\overline{BR}(s o b ar{b})$ can be strongly suppressed

 $\xi_{b\bar{b}}^2 \ll \overline{g}_s^2$ can be obtained relaxing the constraints from the *b*-tagged LEP searches!

LEP constraints on $s \rightarrow jj$

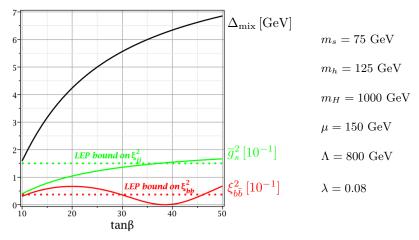
If $\overline{BR}(s \to b\bar{b})$ is suppressed the $s \to c\bar{c}$ and $s \to gg$ decays dominate Flavour-independent LEP searches for $s \to jj$ provide the main constraint



Constraints on ξ_{jj}^2 are typically much weaker than on $\xi_{b\bar{b}}^2$, in particular for smaller m_s , so larger values of \overline{g}_s^2 are allowed

Marcin Badziak

Upper bound on Δ_{mix}


For suppressed $\overline{BR}(s\to b\bar{b})$ larger corrections to the Higgs mass from mixing are consistent with the LEP data

• $\Delta_{
m mix}\gtrsim 5~{
m GeV}$ for m_s between 60 and 110 GeV

• $\Delta_{
m mix}\gtrsim 8~{
m GeV}$ for m_s around 100 GeV

Numerical example: $m_s = 75$ GeV

- \bullet the LEP bounds satisfied for $30 \lesssim \tan\beta \lesssim 40 \Rightarrow$ no new fine-tuning needed
- $\bullet\,$ Correction to the SM-like Higgs mass is $\Delta_{\rm mix}\sim 6\,$ GeV
 - It would be below 2 GeV if mixing with H was neglected

Predictions for the branching ratios of the SM-like Higgs

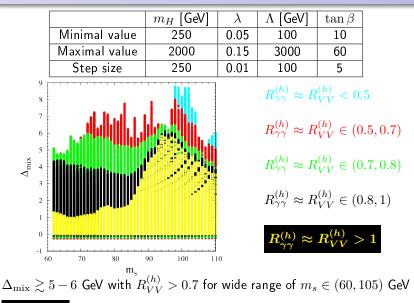
Mixing with \hat{H} changes also the properties of the SM-like Higgs

Production and decays of the 125 GeV Higgs

$$R_i^{(h)} \equiv \frac{\sigma(pp \to h) \times \text{BR}(h \to i)}{\sigma^{\text{SM}}(pp \to h) \times \text{BR}^{\text{SM}}(h \to i)}$$

Mixing with the singlet reduces production cross-section of the 125 GeV Higgs:

$$\frac{\sigma(pp \to h)}{\sigma^{\rm SM}(pp \to h)} \approx 1 - \overline{g}_s^2$$

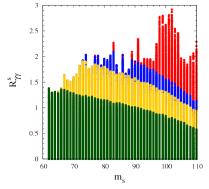

Anti-correlation between the branching ratios of h and s:

$$\overline{BR}(s o bar{b})$$
 suppressed (enhanced)
 \downarrow
 $\overline{BR}(h o bar{b})$ enhanced (suppressed)

For the SM 125 GeV Higgs: $BR(h^{SM} \rightarrow b\bar{b}) \approx 60\%$ \Downarrow modification of $\overline{BR}(h \rightarrow b\bar{b})$ affects all channels:

$$\overline{\mathrm{BR}}(\mathrm{s}
ightarrow \mathrm{b} ar{\mathrm{b}})$$
 suppressed $\Rightarrow \mathbf{R}_{\gamma\gamma}^{(\mathrm{h})} pprox \mathbf{R}_{\mathbf{VV}}^{(\mathrm{h})} < 1 - \overline{\mathbf{g}}_{\mathrm{s}}^2$

Numerical scan



 $\Rightarrow \Delta_{
m mix}$ up to 6 GeV but only for m_s around 95 GeV

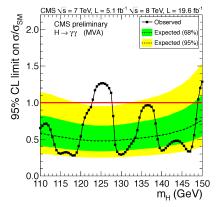
Enhanced $s \rightarrow \gamma \gamma$

In the region with suppressed $sb\bar{b}$ coupling the branching ratios to up-type fermions and gauge bosons are enhanced by a factor that may exceed 10.

The $s \to \gamma \gamma$ channel is very promising for the s discovery at the LHC

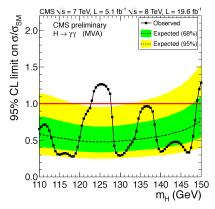
Constraints from the 125 GeV Higgs data:

excluded at 3σ


consistent within 3σ

consistent within 2σ

consistent within 1σ


• Maximal $\Delta_{
m mix}$ predicts $R^s_{\gamma\gamma}>1$ for (almost) all values of m_s .

• The signal in $\gamma\gamma$ channel 2 times stronger than in the SM is viable!

For $m_s = 110$ GeV:

- CMS upper bound $R^s_{\gamma\gamma} \lesssim 0.6$
- $\Delta_{
 m mix}^{
 m max}$ more constrained by the LHC than the LEP s
 ightarrow jj searches

For $m_s = 110$ GeV:

- CMS upper bound $R^s_{\gamma\gamma} \lesssim 0.6$
- $\Delta_{\rm mix}^{\rm max}$ more constrained by the LHC than the LEP $s \to jj$ searches

s could have already been discovered at the LHC if the already collected data were analysed for $m_s < 110~{\rm GeV}$

125 GeV Higgs mass may be much easier to obtain in NMSSM with large $\tan\beta$ due to mixing in the Higgs sector:

Correction from mixing $\Delta_{
m mix}$ up to 5-8 GeV for $m_s \in (60,110)$ GeV

The signal for s in the $\gamma\gamma$ channel is typically stronger than for the SM Higgs, even by a factor of 2.

125 GeV Higgs mass may be much easier to obtain in NMSSM with large $\tan\beta$ due to mixing in the Higgs sector:

Correction from mixing $\Delta_{
m mix}$ up to 5-8 GeV for $m_s \in (60,110)$ GeV

The signal for s in the $\gamma\gamma$ channel is typically stronger than for the SM Higgs, even by a factor of 2.

Message to the CMS and ATLAS collaborations:

It is worth to extend the Higgs searches in the $\gamma\gamma$ channel to masses below 110 GeV, down to 60 GeV.