backup

Production of two Higgses at the Large Hadron Collider in CP-violating MSSM

Priyotosh Bandyopadhyay University of Helsinki & Helsinki Institute of Physics

August 29, 2013 SUSY 13

in collaboration with Katri Huitu

arXiv:1106.5108v2 [hep-ph]

Priyotosh Bandyopadhyay, UH and HIP PTH@LHC

1 CP-violating MSSM

- 2 Experimental constraints
- 3 Benchmark Points
- 4 Collider analysis
- 5 Conclusion

6 backup

Conclusion

Sources of CP violating phases in MSSM

- \bullet In SM we have two CP-violating phases, θ_{QCD} and $\delta_{CKM}.$
- Unlike SM, MSSM is the source of many other CP-violating phases.
- In the MSSM, CP-violating phases appear in the μ term of the superpotential,

 $W \supset \mu H_u \cdot H_d$

• and in the soft-SUSY breaking terms as follows:

$$\begin{aligned} -\mathcal{L}_{\text{soft}} &\supset \\ \frac{1}{2} (M_3 \, \widetilde{g} \widetilde{g} + M_2 \, \widetilde{W} \widetilde{W} + M_1 \, \widetilde{B} \widetilde{B} + \text{h.c.}) \\ &+ \widetilde{Q}^{\dagger} \, \mathsf{M}^2_{\widetilde{\mathsf{Q}}} \, \widetilde{Q} + \widetilde{L}^{\dagger} \, \mathsf{M}^2_{\widetilde{\mathsf{L}}} \, \widetilde{L} + \widetilde{u}^*_R \, \mathsf{M}^2_{\widetilde{\mathsf{u}}} \, \widetilde{u}_R + \widetilde{d}^*_R \, \mathsf{M}^2_{\widetilde{\mathsf{d}}} \, \widetilde{d}_R + \widetilde{e}^*_R \, \mathsf{M}^2_{\widetilde{\mathsf{e}}} \, \widetilde{e}_R \\ &- m_1^2 H_d^* H_d - m_2^2 H_u^* H_u - (m_{12}^2 H_u H_d + \text{h.c.}) \\ &+ (\widetilde{u}^*_R \, \mathsf{A}_{\mathsf{u}} \, \widetilde{Q} H_u - \widetilde{d}^*_R \, \mathsf{A}_{\mathsf{d}} \, \widetilde{Q} H_d - \widetilde{e}^*_R \, \mathsf{A}_{\mathsf{e}} \, \widetilde{L} H_d + \text{h.c.}) \end{aligned}$$

CP violation in MSSM contd.

- CP violation in the Higgs potential of the MSSM leads to mixing terms between the CP-even and CP-odd Higgs fields at loop-level. Pilaftsis, et al.
- In the weak basis (G^0, a, ϕ_1, ϕ_2) , the neutral Higgs-boson mass matrix \mathcal{M}_0^2 may be cast into the form

$$\mathcal{M}_{0}^{2} = \begin{pmatrix} \widehat{\mathcal{M}}_{P}^{2} & \mathcal{M}_{PS}^{2} \\ \mathcal{M}_{SP}^{2} & \mathcal{M}_{S}^{2} \end{pmatrix}$$

where,

backup

CP violation in MSSM contd.

The mixing term :

$$\mathcal{M}_{SP}^2 = -\frac{T_a}{v} \begin{pmatrix} s_\beta & c_\beta \\ -c_\beta & s_\beta \end{pmatrix} \simeq \mathcal{O}\left(\frac{m_t^4}{v^2} \frac{|\mu||A_t|}{32\pi^2 M_{\rm SUSY}^2}\right) \sin\phi_{\rm CP}$$

where,

$$\phi_{ ext{CP}} = rg(m{A}_t \mu) + \xi \quad m{M}_{ ext{SUSY}}^2 = rac{1}{2} \Big(\, m_{ ilde{t}_1}^2 + m_{ ilde{t}_2}^2 \, \Big)$$

- CP-phases of gaugino mass parameter also contribute through the threshold corrections $\sim f(M^*\mu^*)$.
- Not all are independent, physical ovservables depend on some combinations.

CP violation in MSSM contd.

- G_0 is massless: Doesn't mix with other neutral fields.
- \mathcal{M}_0^2 reduces to a (3 × 3)-dimensional matrix, \mathcal{M}_N^2 in the basis (a, ϕ_1, ϕ_2) .
- \mathcal{M}_N^2 is symmetric, we can diagonalize it by means of an orthogonal rotation O as follows:

$$O^{\,T}\, \mathcal{M}^2_N\, O \;=\; \mathrm{diag}\, (M^2_{h_3},\; M^2_{h_2},\; M^2_{h_1}) \;.$$

Where,

$$M_{h_1} \leq M_{h_2} \leq M_{h_3}$$
.

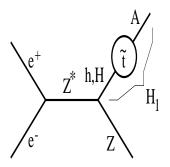
• Do not have any definite CP properties.

The CPX scenario

- The mixing become significant when $Im(\mu A_t/M_{SUSY}^2)$ is large.
- Motivated by this following CP-violating benchmark scenario CPX was introduced in the literature. Carena,Pilaftsis, Ellis, Wagner

$$\begin{split} & M_{\tilde{Q}_3} = M_{\tilde{U}_3} = M_{\tilde{D}_3} = M_{\tilde{L}_3} = M_{\tilde{E}_3} = M_{\rm SUSY} \,, \\ & |\mu| = 4 \, M_{\rm SUSY} \,, \ \ |A_{t,b,\tau}| = 2 \, M_{\rm SUSY} \,, \ \ |M_3| = 1 \ \ {\rm TeV}. \end{split}$$

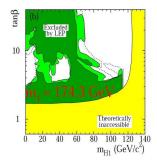
- The parameter $\tan\beta$, $M_{H^{\pm}}$, and $M_{\rm SUSY}$ can be varied.
- For CP phases, $\Phi_A = \Phi_{A_t} = \Phi_{A_b} = \Phi_{A_{\tau}}$, we have two physical phases to vary: Φ_A and $\Phi_3 = \operatorname{Arg}(M_3)$.
- Special case:


1 CP-violating MSSM

- 2 Experimental constraints
- 3 Benchmark Points
- 4 Collider analysis
- 5 Conclusion

6 backup

ion backup


The Experimental constraints

- $h_1 \sim \text{CP-odd}$.
- As h₁ ≃ A⇒ Z − Z − h₁ coupling goes down.
 ⇒ could not probe the channel in the CPX scenario at LEP.

The Experimental constraints

- LEP put a lower bound on SM Higgs: $m_H \ge 114.4$ GeV.
- The 'LEP hole' in CPX scenario

• Finally both CMS and ATLAS at LHC found a Higgs like particle around 125 GeV.

The Experimental constraints

- With $\sim 125~{\rm GeV}$ Higgs discovery at the LHC in July, 2012, we should have one Higgs boson around $\sim 125~{\rm GeV}.$
- This severely constrains the scenario of buried Higgs, i.e., light Higgs(es) below 100 GeV.
- There are also many indirect experimental bounds that put the scenario in the challenging situation.
- We need to deviate from so called 'CPX' scenario, to evade some of the experimental bounds.

- The Experimental constraints
 - The CP-violating phases are mostly constrained by the EDM bounds of different atoms.
 - EDM of Thallium with 2σ upper bound is $|d_{Tl}| < 1.3 \times 10^{-24}$ e cm.
 - This constrains the relative angles between M_1 and M_2 also ϕ_{A_t} , ϕ_{M_3} .
 - Though it is possible to get region where the one loop-SUSY contribution and light Higgs mediated two-loop contribution are comparable and tend to cancel each other. Cheung et al.
 - Very light Higgs $m_{h_1} < 8$ GeV is ruled out from bottomonium decay $\Upsilon(1S) \rightarrow \gamma h_1$ P. Franzini et al.

The constraints from *B*-observables

- Br(B_s → μμ), which recently has come down by two orders of magnitude can severely constrain this scenario. The 2σ bound from CMS is ~ 1.4 - 6 × 10⁻⁹.
- ${\sf Br}({\it B_s}
 ightarrow \mu\mu)$ grows high as tan eta grows.
- For the cancellation we use GIM operative point mechanism.
- So we vary $\rho = \frac{Q_{1,2}}{Q_3}$ the ratio of first two generation of the squark masses over the third generation squark masses. We see the cancellation happens when $\rho \sim 0.8 1.9$.

The constraints from *B*-observables

- This predicts very light first two generation masses for some cases.
- To evade such light mass bound coming from *jets*+ *p*/_T at the LHC, we have to take large LSP masses which would make the jets rather soft.
- Unlike B_s → μμ case Br(B_s → X_sγ) decreases as tan β increases. This is because the charged Higgs contribution is suppressed due to the threshold corrections at higher tan β. Carena et al., Degrassi et al.

Other bound from LHC

- We also included recent bounds on third-generation squark masses and LSP from 8 TeV LHC.
- We also choose $m_3 = 1.4$ TeV to satisfy recent gluino mass bound.
- For this choice of gluino mass we find it is very difficult to get $m_{h_3} \gtrsim 124$ GeV by using CPsuperH 1

 $^{1} There is \sim 2-3 \mbox{ GeV}$ uncertainty in Higgs mass calculated by CPsuperH and FeynHiggs \$

- 1 CP-violating MSSM
- 2 Experimental constraints
- 3 Benchmark Points
- 4 Collider analysis
- 5 Conclusion

6 backup

- For this paper we have used CPsuperH2.0 for the mass spectrum and the other observables. We varied tan β and m_{H[±]} as usual as we move to different points in the 'LEP hole'.
- Top mass was taken 173.2 GeV.

Mass	BP1	BP2	BP3	
	in GeV	in GeV	in GeV	
m_{h_1}	54.25	25.00	123.50	
m_{h_2}	95.00	94.70	490.70	
<i>m</i> _{<i>h</i>₃}	124.40	124.60	494.70	

- 1 CP-violating MSSM
- 2 Experimental constraints
- 3 Benchmark Points
- 4 Collider analysis
- 5 Conclusion

6 backup

Cross-sections

BPs	Cross-section in fb							
	$\sigma_{h_1h_2}$	$\sigma_{h_1h_3}$	$\sigma_{h_1h_1}$	$\sigma_{h_2h_2}$	$\sigma_{h_3h_3}$	$\sigma_{h_2h_3}$		
BP1	908.02	47.02	5393.50	24.11	7.83	6.92		
BP2	1858.89	45.23	33086.7	20.35	5.19	3.91		
BP3	$1.73 imes 10^{-2}$	$1.0 imes10^{-2}$	18.6	$8.6 imes10^{-3}$	$5.7 imes10^{-3}$	0.47		

Table: Cross-sections (in fb) of two Higgs productions ($h_{2,3}h_i = 1, 2, 3$) at the LHC with $E_{cm} = 14$ TeV for the benchmark points.

 \star $h_i Z$ processes also contribute in final states.

- The buried Higgs bosons h_1, h_2 mainly decay to $b\bar{b}$ and $\tau\bar{\tau}$.
- h_3 when around 125 GeV, can decay to h_1 pair.
- The heavier Higgs bosons, h_2 , h_3 can have off-shell or on-shell decay to h_1Z depending on benchmark points.
- We investigate the final states with b, τ -jets and leptons.

Conclusion

Set up for the numerical session

- Event generation: CalcHEP interfaced withCPsuperH.
- (Generated events + Relevant CPV-Brs) \Rightarrow passed to PYTHIA(via SLHA).
- ISR/FSR, hadronization and jet formation: from PYTHIA.
- We use Fastjet-3.0.3 for the jet formation
- $\bullet\,$ the calorimeter coverage is $|\eta| < 4.5$
- $p_{T,min}^{jet} = 20$ GeV and jets are ordered in p_T
- leptons ($\ell={
 m e},~\mu$) are selected with $p_T\geq 20$ GeV and $|\eta|\leq 2.5$
- no jet should match with a hard lepton in the event
- $\Delta R_{lj} \ge 0.4$ and $\Delta R_{ll} \ge 0.2$
- hadronic activity within a cone of $\Delta R = 0.3$ between two isolated leptons should be $\leq 0.5 p_T^{\ell}$ GeV in the specified cone.

nclusion bac

Kinematic distributions

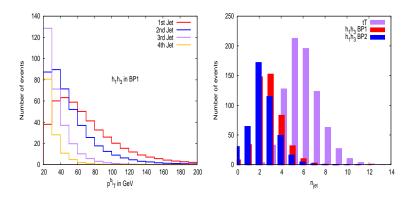


Figure: $p_T^{b_{jet}}$ distribution for h_1h_3 for BP1 and Jet multiplicity distributions for h_1h_3 for BP1, BP2 and $t\bar{t}$ at an integrated luminosity of $\mathcal{L} = 10$ fb⁻¹.

sion back

bb invariant mass distributions

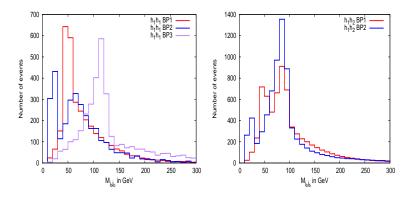


Figure: *b*-jet invariant mass distribution coming (a) from h_1h_1 , (b) from h_1h_2 for benchmark pints at an integrated luminosity of $\mathcal{L} = 10$ fb⁻¹.

ision back

$auar{ au}$ invariant mass distributions

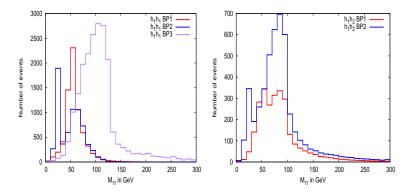


Figure: τ -jet invariant mass distribution coming (a) from h_1h_1 , (b) from h_1h_2 for benchmark pints at an integrated luminosity of $\mathcal{L} = 10$ fb⁻¹.

$3b + 2\tau$ final states at the LHC

٩

$$egin{array}{rcl} pp & o & h_1h_{2,3}, \ & o & h_1 \; Zh_1(h_1h_1) o 4b + 2 au. \end{array}$$

We investigate

 $\mathrm{sig1}: \mathbf{n}_{\mathrm{jets}} \leq 5+ \geq 3\mathbf{b} - \mathrm{jet} + \ \geq \ 2\tau - \mathrm{jet} + \mathbf{p}_{\mathrm{T}} \leq \ 30 \ \mathrm{GeV}.$

- We consider tt
 t t t Z, tt
 W, ZZ and tt
 b b as the main SM backgrounds.
- BP1 has 7.1σ significance over backgrounds at an integrated luminosity of 10 fb⁻¹.
- For BP2 and BP3 it is 4.5σ and 0.5σ , respectively.
- Higgs boson mass peaks can be extracted by putting window cuts around *bb* or $\tau\tau$ invariant mass mass at relatively higher luminosity.

$2b + 2\tau$ final states at the LHC

- Unlike for the other benchmark points, in BP3, $h_3 \rightarrow h_1 h_1$ is very small, and h_3 mostly decays to *b* or tau pairs.
- $2b + 2\tau$ looks promising and we choose sig2 : $n_{jets} \le 5 + \ge 2b - jet + \ge 2\tau - jet + p_T' \le 30 \text{ GeV}.$
- It has 13.5 σ , 10 σ and 0.6 σ significance at 10 fb⁻¹ for BP1, BP2 and BP3, respectively.
- h_1 peak as $|m_{bb} m_{h_1}| \le 10$ GeV has significance of 12σ and 10.4σ for BP1 and BP2 at 10 fb $^{-1}$.
- Even h_2 mass peak has 5σ significance at 10 fb⁻¹ for BP1 & BP2

onclusion

backup

$2b + 2\tau$ final states at the LHC

Signal	Benchmark Points			Backgrounds				
	BP1	BP2	BP3	tī	tτΖ	tŦW	ZZ	tītbb
sig2	501.30	350.80	19.00	812.10	0.30	0.50	57.70	0.20
$sig2+ m_{bb}-m_{h_1} \leq 10~GeV$	195.00	129.00	4.00	65.00 23.70 59.00	0.04 0.00 0.05	0.05 0.00 0.05	6.20 0.60 0.60	0.00 0.00 0.00
$\mathrm{sig2+} m_{bb}-m_{h_2} \leq 10~\mathrm{GeV}$	69.00	56.00	0.00	103.00 104.10 1.0	0.01 0.01 0.00	0.08 0.08 0.00	15.00 16.00 0.00	0.06 0.06 0.00
$\mathrm{sig2+} m_{bb}-m_{h_3} \leq 10~\mathrm{GeV}$	22.00	8.20	0.00	60.00 60.00 1.00	0.04 0.04 0.00	0.06 0.06 0.00	0.30 0.30 0.00	0.00 0.00 0.00
$ sig2+ m_{ au au}-m_{h1} \leq 10 \text{ GeV}$	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$sig2+ m_{\tau\tau}-m_{h2} \leq10GeV$	52.00	33.00	0.20	101.00 103.00 1.00	0.04 0.04 0.00	0.10 0.10 0.00	17.00 17.00 0.00	0.06 0.06 0.00
$sig2+ m_{\tau\tau}-m_{h3} \leq10~GeV$	4.00	3.00	0.10	105.00 104.00 1.00	0.01 0.03 0.00	0.07 0.07 0.00	0.30 0.20 0.00	0.06 0.00 0.00

Table: Number of signal events for the benchmark points and backgrounds at an integrated luminosity of 10 fb⁻¹ at the LHC with $E_{cm} = 14$ TeV.

2ℓ final states at the LHC

- Higgs bosons decay to lepton pair branching fraction is small.
- Final states with dilepton can be crucial for precision measurement in of invariant mass peak.
- We study, final states with 2μ or 2e.
- The signal significance is 5σ and 3σ for BP2 and BP1, respectively at 10 fb⁻¹.
- h_1 mass peak gets a significance of 7.6 σ for BP2 at 10 fb⁻¹ of luminosity and for other benchmark points one needs higher luminosity.

- 1 CP-violating MSSM
- 2 Experimental constraints
- 3 Benchmark Points
- 4 Collider analysis

5 Conclusion

- Higgs pair production is interesting in spite of being electroweak production process.
- Specially $2b + 2\tau$ (Sig2) final state looks promising.
- It is possible to reconstruct the Higgs mass peak, both via bb invariant mass and through $\tau\tau$ invariant mass distribution.
- leptonic final state can come handy for light (buried) Higgs search.
- LHC at 14 TeV has a great chance to explore these scenarios
- In particular for some benchmark points the hint could come earlier.

Thank you

Priyotosh Bandyopadhyay, UH and HIP PTH@LHC

æ

- ∢ ≣

< □ > < □ > < □

- ① CP-violating MSSM
- 2 Experimental constraints
- 3 Benchmark Points
- 4 Collider analysis
- 5 Conclusion

CPX:" LEP-hole" and Earlier works

• Sum rule:

$$g_{h_iVV}^2 + |g_{h_iH^-W^+}|^2 = 1$$

$$g^2_{h_iVV}\downarrow \Rightarrow g_{h_iH^-W^+}\uparrow$$

- New channel: $pp \rightarrow H^+h_1 \rightarrow h_1h_1W^+ \rightarrow b\bar{b}b\bar{b}l\nu$ Moretti, Gosh,
- New channel: $pp \rightarrow t\bar{t} + X \rightarrow bbbbqql\nu$ Gosh, Roy and Godbole
- As $g_{\tilde{t}_1\tilde{t}_1^*h_1} \uparrow$ and $g_{\tilde{t}_1\tilde{t}_1^*h_3} \downarrow$ Low $m_{h_1} (\leq 60 \text{ GeV})$ $\Rightarrow \tilde{t}_1\tilde{t}_1^*h_1 \rightarrow 4b + OSD + p_T'$ can be promising Bandyopadhyay, Datta, Datta, Mukhopadhyay

• Higgs production in third generation SUSY cascade, exploring $H^{\pm} \rightarrow h_1 W^{\pm}$ decay.

P. Bandyopadhyay