

Comparison of the Higgs sectors of the MSSM and NMSSM for a 126 GeV Higgs boson using GUT scale parameters

C. Beskidt, W. de Boer, D. Kazakov

Institut für Experimentelle Kernphysik

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

arXiv:1308.1333

- Supersymmetry predicts Higgs < 130 GeV</p>
- SUSY provides several Higgs bosons dependent on the model

Problem I: Which Higgs boson has been found?

Problem II: What do we know about the heavier/lighter Higgs bosons?

Status of NMSSM

- Many papers on NMSSM after M_H=126 GeV and hint of non SM BR, see arXiv: 1306.1291, arXiv:1304.5437, arXiv:1301.6437, arXiv:1301.1325, arXiv:1301.0453, arXiv:1212.5243, arXiv:1211.5074, arXiv:1211.1693, arXiv:1211.0875, arXiv:1209.5984, arXiv:1209.2115, arXiv:1208.2555, arXiv:1207.1545, arXiv:1206.6806, arXiv:1206.1470, arXiv:1205.2486, arXiv:1205.1683, arXiv:1203.5048, arXiv:1203.3446, arXiv:1202.5821, arXiv:1201.2671, arXiv:1201.0982, arXiv:1112.3548, arXiv:1111.4952, arXiv:1109.1735, arXiv:1108.0595, arXiv:1106.1599, arXiv:1105.4191, arXiv:1104.1754, arXiv:1101.1137, arXiv:1012.4490,
- Differences to other analysis comparing MSSM and NMSSM e.g.
- Comparison without GUT scale relations Cao, Heng, Yeng et al. arXiv:1202.5821
- More tight GUT scale relations in Higgs sector Kowalska, Munir, Roszkowski et al. arXiv:1211.1693

NMSSM versus MSSM

 $H_{1} =$

NMSSM has one additional singlet

MSSM

NMSSM

$H_{1} = S_{1,d} H_{d} + S_{1,u} H_{u} + S_{1,s} S$		MSSM	NMSSM
$H_{2} = S_{2,d}H_{d} + S_{2,u}H_{u} + S_{2,s}S$	\longrightarrow	2 CP even	3 CP even
$H_{3} = S_{3,d}H_{d} + S_{3,u}H_{u} + S_{3,s}S$		1 CP odd	2 CP odd
	,		

$$W_{NMSSM} = \lambda \hat{S} \hat{H}_{u} \cdot \hat{H}_{d} + \frac{\kappa}{3} \hat{S}^{3} + \dots$$

NMSSM

- Pros of NMSSM
 - ✓ Increase light Higgs mass
 - ✓ Modified couplings to up-/down-type fermions (if $R_{\gamma\gamma} \neq 1$)
 - ✓ Solves μ-Problem (Kim, Nilles Phys. Lett. B 138, 150 (1984))

Cons

× More free parameters:

couplings λ, κ trilinear couplings A_{κ} , A_{λ} mixing parameter $\mu_{eff} = \lambda < S >$

(in addition to m_0 , $m_{1/2}$, A_0 , $tan\beta$) NMSSM review:Ellwanger, Phys.Rept. 496 (2010)1

Masses for scalar Higgs Bosons in NMSSM

3x3 Higgs mass matrix

$$\begin{split} \mathcal{M}_{11}^{2} &= M_{A}^{2} + (m_{Z}^{2} - \lambda^{2}v^{2})\sin^{2}2\beta, \quad \textbf{~H3} \\ \mathcal{M}_{12}^{2} &= -\frac{1}{2}(m_{Z}^{2} - \lambda^{2}v^{2})\sin 4\beta, \quad M_{A}^{2} \equiv \underbrace{\mu(A_{\lambda} + \kappa s)}{\sin 2\beta} \\ \mathcal{M}_{13}^{2} &= -\frac{1}{2}(M_{A}^{2}\sin 2\beta + \frac{2\kappa\mu^{2}}{\lambda})\frac{\lambda v}{\mu}\cos 2\beta, \\ \mathcal{M}_{22}^{2} &= m_{Z}^{2}\cos^{2}2\beta + \lambda^{2}v^{2}\sin^{2}2\beta, \quad \textbf{~H2} \\ \mathcal{M}_{23}^{2} &= 2\lambda\mu v \left[1 - (\frac{M_{A}\sin 2\beta}{2\mu})^{2} - \frac{\kappa}{2\lambda}\sin 2\beta\right], \\ \mathcal{M}_{33}^{2} &= \frac{1}{4}\lambda^{2}v^{2}(\frac{M_{A}\sin 2\beta}{\mu})^{2} + \frac{\kappa\mu}{\lambda}(A_{\kappa} + \frac{4\kappa\mu}{\lambda}) - \frac{1}{2}\lambda\kappa v^{2}\sin 2\beta, \quad \textbf{~H1} \end{split}$$

Conny Beskidt, IEKP

BMP II (H₂=126 GeV, H₃ mass around 1 TeV)

Input	m_0	$m_{1/2}$	A_0	aneta	A_{κ}	A_{λ}	κ_{SUSY}	λ_{SUSY}	μ
MSSM	2500	2375	-4999	48.11	-		-	-	3330
BMP I	2400	550	-976	2.69	-848	-509	0.38	0.65	120
BMP II	2450	550	-1840	4.18	2549	1774	0.12	0.68	229

Conny Beskidt, IEKP

Different signatures for MSSM and NMSSM

H₃ decays preferentially into Higgses and gauginos

BRs for heavy H_3 mass \rightarrow more decay channels $(t\bar{t})$ where the line is the technologies

- Smaller BR for double Higgs production for higher values of H3 mass
- High masses will require high luminosity

	NN	NMSSM (BMP II)					
Mass [GeV]	$\begin{array}{c c} H_1 \\ 103 \end{array}$	H_2 126	H ₃ 1001	$A_1 \\ 91$	$\begin{array}{c c} A_2 \\ 1001 \end{array} \right\ $		
$b\overline{b}$	90.5	61.9	0.0	90.9	0.9		
$t \overline{t}$	0.0	0.0	9.6	0.0	10.4		
au au	9.1	6.4	01	8.8	0.1		
W^+W^-	1.2e-4	20.6	1.7e-4	-	-		
$\chi^0_1\chi^0_1$	-	-	10.7	-	11.8		
$\chi^0_1\chi^0_3$	-	-	5.1	-	6.3		
$\chi_1^+\chi_1^-$	-	-	3.2	-	5.9		
H_1H_2	-	-	14.8	-	-		
A_1H_2	-	-	\succ	-	13.5		
ZA_1	-	-	12.3	-	-		
ZH_1	-	-		-	13.6		
A_1H_1	-	-	-	-	0.3		
ZH_2	-	-	-	-	8.1e-4		
$\sigma_{prod} \; [pb]$	0.33	19.3	1.6e-3	0.13	1.9e-3		

Conny Beskidt, IEKP

Multistep fitting approach

- Consider not only BMPs but scan whole m₀-m_{1/2} plane
- Fit to accelerator and cosmological data (see list in backup)
- Use NMSSM with 9 free GUT/SUSY scale parameter

(GUT scale parameter implies including complete rad. corr. between GUT and SUSY scale via RGEs, incl. fixed point solutions (forbids max. mixing in stop sector, so requires large values of stop masses)

- Challenging to deal with so many free parameters → multistep fitting technique: Fit the strongly correlated parameters first for fixed other parameters
- In the NMSSM case: start minimizing λ,κ and tan $\beta \rightarrow$ study influence on the lightest Higgs mass
- (assuming first m_{H2}=126 GeV)
- For more details see CB et al., EPJ C
- Used Software NMSSMTools3.2.4, Ulrich Ellwanger, John F. Gunion, Cyril Hugonie
 MicrOMEGAs2.4.1 G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati, A. Semenov

Combination of all constraints - What does this mean for m₀-m_{1/2} plane? arXiv:1308.1333

Within the MSSM the excluded region is dominated by Higgs mass (126 \pm 2) GeV

Within the NMSSM the excluded region is dominated by LHC limit

What does this mean for squark and gluino masses?

Limits on heavier/lighter Higgses

- $m_{H1} \sim A_{\kappa}$, but for $m_{H1} < 60 \text{ GeV}$ $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow ZH_{1} / H_{1}H_{1}$ kinematically allowed \rightarrow Neutralino annihilation XS \uparrow relic density \downarrow
- Lower limit on m_{H1} because of relic density constraint (assuming all relic density from neutralinos)
- $m_{H3} \sim A_{\lambda} \rightarrow No$ upper limit on H_3 mass

Conny Beskidt, IEKP

Lower limit for H_3 because of limit on μ_{eff} (chargino limit)

Summary arXiv:1308.1333

- 126 GeV Higgs within the MSSM only possible for large SUSY masses
- Within the NMSSM one can get a 126 GeV Higgs for light SUSY masses because of the mixing with the additional Higgs singlet
- Excluded region is dominated by

- m_{H_3} allows $H_3 \rightarrow H_1 H_2$ (two Higgs bosons in ONE event!)
- H_3 , $A_1 \rightarrow \chi_i \chi_j$ (invisible Higgs decays)
- Lower limit on m_{H1} because of relic density constraint

BACKUP

Conny Beskidt, IEKP

126 GeV Higgs within NMSSM \Rightarrow couplings?

- **126** GeV allows large range of λ and κ
- LSP is typically higgsino, so annihilation cross section (∞1/Ω) restricts couplings!

 χ^2 -distribution for M₂=125 GeV

 χ^2 -distribution for M₂=125 GeV and relic density Ωh^2 constraint

Comparison of CMSSM – NMSSM: Optimized tanβ values

High values (except for coannihilation region) of tanβ needed to fulfill relic density constraint

Small values of tanβ are preferred to get the 126 GeV Higgs for light SUSY masses.

 \rightarrow Fulfills B-physics constraints

Lower limit on m_{H1} mass

- m_{H1} ~ A_κ, but one cannot choose any arbitrary value for A_κ because of radiative corrections from RGEs
- A_{λ} at SUSY scale \rightarrow same range

Lower limit on m_{H1} because of relic density constraint

Large excluded region within the CMSSM

Influence of g-2

Preferred region by g-2 for g-2 gives light preference for light SUSY masses but light quadratic and linear addition of the **SUSY Massen are already** errors 1000 excluded by the LHC direct searches \rightarrow errors underestimated or additional m_{1/2} [GeV] loop corrections 500 LHC direct searches $\left|a_{\mu}^{SUSY}\right| \approx 13 \cdot 10^{-10} \,\mu \left(\frac{100 \,\text{GeV}}{m_{\text{sugg}}}\right)^2 \,\tan\beta$ preferred ov a-2 excluded at 95% CL lin. quad. 1500 2500 500 1000 2000 3000 m_0 [GeV] Deviation compared to SM 2-3 σ : $\chi^2 = \left(\frac{D-T}{\sigma}\right)^2 \approx 5$ for heavy m_{SUSY}

Mass range for m_{H3}

I m_{H3} : linear dependence on A_{λ} and μ_{eff}

For strong deviations between A_0 and A_{λ}/A_{κ} one can get masses up to 1TeV

Other constraints (in addition to m_h=126 GeV)

- **Define** χ^2 -function to find the allowed parameter space
- Relic density
- $B \rightarrow \tau v$
- Myon g-2
- ∎ b →sγ
- B_s→μμ
- LHC direct searches
- XENON100
- Pseudo-scalar Higgs m_A
 - For more details see CB et al., EPJ C
- Used Software

MicrOMEGAs2.4.1 G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati, A. Semenov NMSSMTools3.2.4, Ulrich Ellwanger, John F. Gunion, Cyril Hugonie

 $Oh^2 = 0.1131 + 0.0034$

 $\sigma_{had} < 0.001 - 0.03 \text{ pb}$

 $BR^{exp}(B \rightarrow \tau v) = (1.68 \pm 0.31) \cdot 10^{-4}$

 $BR^{exp}(b \rightarrow s\gamma) = (3.55 \pm 0.24) \cdot 10^{-4}$

 $BR^{exp}(B_s \rightarrow \mu\mu) = (3.2 \pm 1.2) \cdot 10^{-9}$

 $\Delta a_{\mu} = (30.2 \pm 6.3 \pm 6.1) \cdot 10^{-11}$

 $\sigma_{\gamma N} < 1.8 \cdot 10^{-45} - 6 \cdot 10^{-45} \text{ cm}^2$

 $m_{\Delta} > 510 \text{ GeV}$ für tan $\beta \sim 50$

126 GeV Higgs within NMSSM

- 126 GeV Higgs within NMSSM for small SUSY masses possible for many different combinations of λ and κ
- Combined with relic density constraints possible $\lambda \kappa$ solution

125 GeV Higgs within the CMSSM

- A 125 GeV light Higgs is possible within the CMSSM if the SUSY masses are heavy enough and if the trilinear coupling A₀ is negative
- The allowed parameter space is largely determined by the assigned error → strong dependence on the theoretical error
- Exp. ~ 2GeV, theo. ~ 3GeV, non-Gaussian \rightarrow lin. addition \rightarrow 5GeV

Benchmark points in NMSSM

- Analyses have been done e.g. Ellwanger, Hugonie (arXiv:1203.5048 using GUT scale parameters), Mühlleitner et al. (arXiv:1201.2671 using low energy values of parameters)
- Benchmark points fulfill Higgs mass and couplings, but one needs very specific singlet mixing to obtain simultaneously m_{H} =125 GeV, large branching into $\gamma\gamma$, small branching into $\tau\tau$

E.g. Benchmark points from Ellwanger, Hugonie, arXiv:1203.5048

Input at M _{GUT}	M ₀	m _{1/2}	A ₀	Α _κ	Α	tanβ	λ	к	μ_{eff}	Input at M _{SUSY}
BM I	600	600	-1550	-275	-625	2.40	0.545	0.253	120	
BM II	960	525	-1140	-360	-575	2.29	0.600	0.321	122	
		_								27

Typical Higgs masses and couplings

Lightest Higgs H₁

$M_{_{H_1}}$	100	121
Components of H_1		
H _d	0.39	0.50
H _u	0.34	0.74
S	0.86	0.45

Second lightest Higgs H₂

BM I II

M_{H_2}	126	126
Components of H_2		
H _d	0.26	0.04
H _u	0.85	-0.54
S	-0.45	0.84

Strong mixing with singlet $\rightarrow R_{\gamma\gamma}$ can be enchanced It is possible that 126 GeV is not the lightest Higgs

Fit to SM couplings (scale factors)

Details on χ^2 -function

- Relic Density
- B → TV
- Myon g-2
- ∎ b →sγ
- B_s→µµ
 Higgs Mass m_h

Experimental Values

Defined in a straight forward way:

$$\chi^2 = \frac{\left(X_{SUSY} - X_{exp}\right)^2}{\sigma^2}$$

 $BR^{exp}(B_s \rightarrow \mu\mu) < 4.5 \cdot 10^{-9}$ m_h > 114.4 GeV

LHC direct searches $\sigma_{had} < 0.003 - 0.03 \text{ pb}$ DDMS $\sigma_{\chi N} < 8 \cdot 10^{-45} - 2 \cdot 10^{-44} \text{ cm}^2$ Pseudo-scalar Higgs m_A $m_A > 480 \text{ GeV for tan}\beta \sim 50$

Details on χ^2 -function?

Relic Density

 $\blacksquare B \rightarrow TV$

Myon g-2

∎ b →sγ

■ B_s→µµ ■ Higgs Mass m_h $\Omega h^{2} = 0.1131 \pm 0.0034$ BR^{exp}(B \rightarrow TV) = (1.68 ± 0.31)·10⁻⁴ Δa_{μ} =(30.2 ± 6.3 ± 6.1) ·10⁻¹¹ BR^{exp}(b \rightarrow sγ) = (3.55 ± 0.24)·10⁻⁴

95% CL

only added if $X_{SUSY} > X_{95\%}$ X_{SUSY} = model value of BR($B_s \rightarrow \mu\mu$) or m_h $X_{95\%}$ can be determined from requirement $\Delta\chi^2$ =5.99 at 95% CL exclusion limit

LHC direct searchesDDMS

Conny Beskidt, IEKP

 $\sigma_{had} < 0.003 - 0.03 \text{ pb}$ $\sigma_{\chi N} < 8.10^{-45} - 2.10^{-44} \text{ cm}^2$ $m_{\chi N} > 480 \text{ GeV}/\text{ for tang} \sim 500$

Seudo-scalar Higgs $m_A = m_A > 480$ GeV for tan $\beta \sim 50$

Details on χ^2 -function?

- Relic Density
- $\blacksquare B \rightarrow TV$
- Myon g-2
- ∎ b →sγ
- B_s→µµ
 Higgs Mass m_h

- LHC direct searchesDDMS
- Pseudo-scalar Higgs m_A

 $\Omega h^{2} = 0.1131 \pm 0.0034$ BR^{exp}(B \rightarrow TV) = (1.68 ± 0.31)·10⁻⁴ Δa_{μ} =(30.2 ± 6.3 ± 6.1) ·10⁻¹¹ BR^{exp}(b \rightarrow sγ) = (3.55 ± 0.24)·10⁻⁴

95% CL exclusion contours Define $\chi^2 = (\chi_{SUSY} - \chi_{95\%})^2 / \sigma_{95\%}^2 \chi_{SUSY}$ = model value of m_A or hadronic cross section or χ N elastic scattering cross section $\sigma_{95\%}$ can be determined from 1 σ band given by experiments $\chi_{95\%}$ determined from requirement $\Delta\chi^2$ =5.99 at 95% CL exclusion contour

Typical Sparticle masses and LSP mixing (NMSSM)

Sparticle masses		
$m_{\tilde{g}}$	1388	1254
$m_{\widetilde{q}}$	1318	1397
$m_{\tilde{t}_1}$	359	463
$m_{\widetilde{b}_1}$	1001	1060
$m_{\widetilde{ au}_1}$	528	900
$m_{\chi_1^\pm}$	108	108
$m_{\chi^0_1}$	77	78

BM I II

BM I II

Components of χ_1^0		
\widetilde{B}	0.20	0.25
\widetilde{W}	-0.16	-0.20
${\widetilde H}_d$	0.48	0.52
${ ilde H}_u$	-0.70	-0.70
\widetilde{S}	0.46	0.37
Ωh^2	0.10	0.10

Start with Relic Density Constraint

Problem: for excluded $m_{\tilde{q}}$ first diagram too small. Last diagram also small \rightarrow can get correct relic density by m_A s-channel annihilation

 m_A can be tuned with tan β for any $m_{1/2} \rightarrow tan\beta \approx 50$ (see next slide)

Conny Beskidt, IEKP

$$V_{tree}(H_{1}, H_{2}) = m_{1}^{2} |H_{1}|^{2} + m_{2}^{2} |H_{2}|^{2} - m_{3}^{2} (H_{1}H_{2} + h.c.) + \frac{g^{2} + g'^{2}}{8} (|H_{1}|^{2} - |H_{2}|^{2})^{2} + \frac{g^{2}}{2} |H_{1}^{+}H_{2}^{-}|^{2}$$

$$m_{A}^{2} = m_{1}^{2} + m_{2}^{2} \quad \text{(Tree Level)}$$

$$m_{1} \text{ running } \propto h_{t}$$

$$m_{2} \text{ running } \propto h_{b}$$

$$\text{running } < 0 \rightarrow \text{ if } h_{t} \text{ and } h_{b} \text{ similar}$$

$$\rightarrow \text{ small } m_{A} \text{ for } \tan\beta = m_{t}/m_{b} \approx 50$$

Fit of Ω h² determines m_{A} and $\tan\beta$

Conny Beskidt, IEKP

Examples for high correlation

For given m₀ only very For given tanβ only very specific values of tan^β specific values of A₀ focus point region χ^2 for $B_s \rightarrow \mu\mu$ and Ωh^2 10 50 2000 m_A exchange 8 40 6 tanβ 30 a^o 1500 $m_{1/2}=500$ $m_{1/2}=200$ 22 4 20 2 10 1000 500 1000 1500 2000 0 0 m₀ [GeV] 49 42 43 44 45 47 48 50 46 tanβ co-annihilation region **Both strongly** $B_s \rightarrow \mu\mu$ Ωh^2 **Origin of correlation:** dependent on tanβ

Conny Beskidt, IEKP

Origin of correlation

 $arXiv:hen_nh/0203060v2$

Reason for strong A_0 dependence of $B_s \to \mu \mu$

$$Br[B_{s} \rightarrow \mu^{+}\mu^{-}] = \frac{2\tau_{B}M_{B}^{5}}{64\pi}f_{B_{s}}^{2}\sqrt{1-\frac{4m_{l}^{2}}{M_{B}^{2}}} \left[\left(1-\frac{4m_{l}^{2}}{M_{B}^{2}}\right)\left|\frac{(C_{S}-C_{S}')}{(m_{b}+m_{s})}\right|^{2}+\left|\frac{(C_{P}-C_{P}')}{(m_{b}+m_{s})}+2\frac{m_{\mu}}{M_{B_{s}}^{2}}(C_{A}-C_{A}')\right|^{2}\right]$$

$$C_{S} \simeq \frac{G_{F}\alpha}{\sqrt{2\pi}}V_{tb}V_{ts}^{*}\left(\frac{\tan^{3}\beta}{4\sin^{2}\theta_{W}}\right)\left(\frac{m_{b}m_{\mu}m_{t}\mu}{M_{W}^{2}M_{A}^{2}}\right)\frac{\sin 2\theta_{l}}{2}\left(\frac{m_{t_{1}}^{2}\log\left[\frac{m_{t_{1}}^{2}}{\mu^{2}}\right]}{\mu^{2}-m_{t_{1}}^{2}}-\frac{m_{t_{2}}^{2}\log\left[\frac{m_{t_{2}}^{2}}{\mu^{2}}\right]}{\mu^{2}-m_{t_{2}}^{2}}\right)$$
Becomes small, if $\tilde{t}_{1} \approx \tilde{t}_{2}$
can be achieved by adjusting A_{t} , till mixing term $\sim (A_{t}-\mu/\tan\beta)$ becomes small. Important only for light SUSY masses (see blue region)

Combination of $B_s^{} \to \mu \mu$ and Ωh^2

Conny Beskidt, IEKP

How to treat theoretical errors?

- Theoretical errors can be treated as nuisance parameters and integrated over in the probability distribution (=convolution for symm. distr.)
- If errors Gaussian, this corresponds to adding the experimental and theoretical errors in quadrature
- Assume $\sigma_{\text{theo}} \sim \sigma_{\text{exp}}$ (only then important)

Adding errors linearly more conservative approach for theory errors.

Direct search for dark matter (DDMS)

- Assume Neutralino is LSP and therefore perfect WIMP candidate
- Direct detection of WIMPs through elastic scattering on heavy nuclei

Coherent scattering: $\sigma \sim N^2$ and effective coupling on proton/neutron f_p/f_n

Including DDMS constraint into χ^2

Uncertainties

- Local DM density (0,3/1,3 GeV/cm³)
- Effective coupling (especially s-quark) because of different calculations

Excluded parameter space by XENON100

- Scattering cross section is proportional to the product of gaugino und higgsino component → Increase of the cross section if higgsino component is increasing
- Higgsino component increases for high values of $m_0 \rightarrow DDMS$ is sensitive for high m_0 in contrast to the direct searches at the LHC

