Higgs properties in a softly broken Inert Doublet Model

Rikard Enberg

Uppsala University

SUSY 2013, Trieste, August 29

Based on work with Johan Rathsman and Glenn Wouda, JHEP 1308 (2013) 79, arXiv:1304.1714 + arXiv:1309.xxxx

Higgs discovered: very SM-like

And nothing else seen yet

Other Higgses

Discover other Higgs bosons \rightarrow sure sign we aren't dealing with the SM Higgs sector

For example: the **charged Higgs** in MSSM and 2HDMs has these standard main channels for production and decay:

	Light (m _{H+} < m _{top})	Heavy (m _{H+} > m _{top})
Main production	$t \rightarrow H^+b$	bg \rightarrow H ⁻ t or gg \rightarrow H ⁻ tb
Main decay	$H^+ \rightarrow \tau^+ v$, cs	$H^+ \rightarrow tb, \tau^+v$

All involve fermion couplings

H[±] searches assuming τν decay:

Produced in top decays

Produced with top

(New results at this conference)

Other possibilities

- But, the "standard" assumptions on decay channels of the scalars are of course model dependent.
- Examples:
 - In the NMSSM, could have $H^+ \rightarrow W^+A_1$
 - In models with triplets, can have $H^+ \rightarrow W^+Z$ ($H^+ \rightarrow W^+\gamma$ never allowed at tree level)

• It's important to not miss alternative models

One alternative: Inert Doublet Model (IDM)

- Inert Doublet Model: [Barbieri, Hall, Rychkov; Deshpande, Ma] two scalar doublets, Φ_1 gets a vev and couples to fermions: a Z_2 symmetry forbids mixing and Yukawas for Φ_2
- One SM-like Higgs boson; the other scalars are (exactly) fermiophobic and the lightest one is stable
- Thus: dark matter protected by the Z₂
- What if the Z_2 is broken by higher scale operators?

Stealth doublet model

We have introduced a generalization of the IDM: the Z_2 is softly broken — this leads to mixing of the CP-even scalars and loop-generated fermion couplings

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}G^{+} \\ v + \phi_{1} + iG^{0} \end{pmatrix}$$
$$\Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}H^{+} \\ \phi_{2} + iA \end{pmatrix}$$
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1} \\ \phi_{2} \end{pmatrix}, \quad 0 \le \alpha \le \frac{\pi}{2}$$

The scalars H⁺ and A⁰ from Φ_2 are **fermiophobic** at tree level₇ [R. Enberg, J. Rathsman, G. Wouda, 1304.1714]

$$\begin{split} & \mathcal{2}\text{-higgs doublet scalar potential} \\ \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &\quad + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &\quad + \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} \end{split}$$

- Many symmetries, e.g. U(2) rotations
- Freedom to choose basis for doublets: the physical basis is then fixed by Yukawa sector
- Our model: physical realization of Higgs basis

Stealth doublet model

$$\begin{aligned} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 \right] + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 \right\} + \text{h.c.} \right\} \end{aligned}$$

 $Z_2 \text{ symmetry } \Phi_1 \to \Phi_1, \ \Phi_2 \to -\Phi_2 \text{ would forbid } m_{12}, \ \lambda_6 \text{ and } \lambda_7$

Inert Doublet Model: Z_2 is conserved, lightest Higgs is stable, only one doublet has a vev

We break Z_2 : m_{12} , λ_6 and λ_7 are non-zero \rightarrow leads to mixing m_{12} : soft breaking $-\lambda_{6,7}$ hard breaking $_9$

Soft Z₂ breaking

Davidson-Haber formalism to find soft breaking conditions:

$$\begin{aligned} (\lambda_1 - \lambda_2) \left[\lambda_{345} (\lambda_6 + \lambda_7) - \lambda_2 \lambda_6 - \lambda_1 \lambda_7 \right] &- 2(\lambda_6 - \lambda_7) (\lambda_6 + \lambda_7)^2 = 0, \\ (\lambda_1 - \lambda_2) m_{12}^2 + (\lambda_6 + \lambda_7) (m_{11}^2 - m_{22}^2) \neq 0. \end{aligned}$$

black line allowed red line not allowed

$$\lambda_2 = \lambda_1, \lambda_7 = \lambda_6$$

always allowed

Masses etc

$$\begin{array}{l} \text{Minimization} \quad m_{11}^2 = -\frac{1}{2}v^2\lambda_1\\ \text{conditions:} \quad m_{12}^2 = -\frac{1}{2}v^2\lambda_6\\ \text{Masses for A and H^+:} \quad m_A^2 = m_{H^\pm}^2 - \frac{1}{2}v^2(\lambda_5 - \lambda_4)\\ m_{H^\pm}^2 = m_{22}^2 + \frac{1}{2}v^2\lambda_3.\\ \end{array}$$

$$\begin{array}{l} \text{Mixing angle of h and H:} \quad \sin 2\alpha = \frac{2v^2\lambda_6}{m_H^2 - m_h^2}\\ \text{Can use } m_{12} \text{ or } \lambda_6 \text{ to specify amount of } \mathbb{Z}_2 \text{ breaking - or mixing } \alpha \end{array}$$

Parameters: m_{h} , m_{H} , m_{A} , $m_{H\pm}$, s_{α} , λ_{3} , λ_{7}

П

Interactions

The h and H couple to fermions at tree level:

$$-\mathcal{L}_{\text{Yukawa}} = \frac{m_f}{v} \,\bar{\Psi}_f \Psi_f \left(H \,\cos\alpha - h \,\sin\alpha \right)$$

The H⁺ and A couple to scalars and gauge bosons E.g: we have the H⁺ vertex: $\sim \cos \alpha$ for h , $\sim \sin \alpha$ for H

H⁺ and A get fermion couplings at one-loop level, e.g. $\sim \sin \alpha \cos \alpha (\rightarrow 0 \text{ for no mixing})$

Constraints

• Theoretical constraints:

Positivity, perturbativity, (tree-level) unitarity

• Electroweak:

S,T,U parameters

• Flavor:

n/a (because of fermiophobicity. 2-loop FCNC only)

 Higgs discovery: allowed signal strengths no extra neutral Higgses

(Won't have time to discuss these, see 1304.1714)

h / H

Phenomenology

- Production mechanisms and decays are very different for the fermiophobic H⁺ and A⁰
- Instead of normal decays (e.g. $H^+ \rightarrow \tau^+ v$, cs, tb) we get
 - Loop-induced 2-body decays or
 - 4- or 6-fermion decays
- LHC motivated: define two cases:

I.
$$m_h$$
 = 125 GeV, $s_α \sim 0.9$, $m_H ≥ 300$ GeV
2. m_H = 125 GeV, $s_α \sim 0.1$, $m_h \sim 75$ GeV

One-loop decays are renormalized in an on-shell scheme

Example: $H^{\pm} \rightarrow W^{\pm} \gamma$ dominating

 $m_A = m_{H\pm} - 10 \text{ GeV}$ $m_A = m_{H\pm}$

$$m_{h} = 125 \text{ GeV}, m_{H} = 300 \text{ GeV}, s_{\alpha} = 0.9$$
$$\lambda_{3} = 2m_{H\pm}^{2} / v^{2}, \lambda_{2} = \lambda_{1}, \lambda_{7} = \lambda_{6}$$

Production

Drell-Yan pair production through Z or W:

Pair production or associated H⁺W through scalars also possible

Conclusions

Presented Stealth doublet model which generalizes the IDM:

- Softly broken Z₂
- No FCNC problems (diagonal couplings at one-loop)
- Predicts extra scalars with unusual properties

• LHC pheno study underway (with J. Rathsman, G. Wouda)