\mathcal{NMSSM} Higgs Boson Phenomenology at the \mathcal{LHC}

Milada Margarete Mühlleitner (Karlsruhe Institute of Technology)

> SUSY 2013 ICTP Trieste 26-31 Augustl 2013

The \mathcal{NMSSM} Higgs Sector

• Next-to-Minimal Supersymmetric Extension of the SM: NMSSM

Fayet; Kaul eal; Barbieri eal; Dine eal; Nilles eal; Frere eal; Derendinger eal; Ellis eal; Drees; Ellwanger eal; Savoy; Elliott eal; Gunion eal; Franke eal; Maniatis; Djouadi eal; Mahmoudi eal; ...

• The μ -problem of the MSSM:

Higgsino mass parameter μ must be of order of EWSB scale

• Solution in the NMSSM:

 μ generated dynamically through the VEV of scalar component of an additional chiral superfield field \hat{S} : $\mu = \lambda \langle S \rangle$ from: $\lambda \hat{S} \hat{H}_u \hat{H}_d$

• Enlarged Higgs and neutralino sector: 2 complex Higgs doublets \hat{H}_u, \hat{H}_d , 1 complex singlet \hat{S}

Kim, Nilles

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

• Significant changes of Higgs boson phenomenology

\mathcal{NMSSM} Higgs $\mathcal{M}ass$ in $\mathcal{V}iew$ of the \mathcal{LHC} Results

• Vast literature on NMSSM Higgs of $\sim 125\text{-}126$ GeV

Hall eal; Ellwanger; Gunion eal; King,MMM,Nevzorov; Albornoz Vasquez eal; Cao eal; Gabrielli eal; Ellwanger, Hugonie; Kang eal; Cheung eal; Jeong eal; Hardy eal; Kim eal; Arvanitaki eal; Cheng eal; Bélanger eal; Kowalska eal; Badziak eal; Moretti eal: Choi eal; Munir eal; Barbieri eal; Beskidt eal; Berg eal; Gherghetta eal; Cerdeno eal; Das eal; Christensen eal; Bhattacherjee eal; Guo eal; ...

• Compatibility of NMSSM Higgs mass with LHC Searches:

 \star Upper mass bounds + corrections to the MSSM, NMSSM Higgs boson mass:

 $\begin{array}{lll} \mathsf{MSSM:} & m_h^2 \,\approx\, M_Z^2 \cos^2 2\beta + \Delta m_h^2 \\ \\ \mathsf{NMSSM:} & m_h^2 \,\approx\, M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_h^2 \end{array}$

```
\Rightarrow M_H \approx 126 requires:
```

MSSM: $\Delta m_h \approx 85 \text{ GeV} (\tan \beta \text{ large}) \Rightarrow \text{ large corrections are needed } \rightarrow \text{ conflict with fine-tuning}$ NMSSM: $\Delta m_h \approx 55 \text{ GeV} (\lambda = 0.7, \tan \beta = 2)$

⇒ NMSSM requires less fine-tuning Hall,Pinner,Ruderman; Ellwanger; Arvanitaki,Villadoro; King,MMM,Nevzorov; Kang,Li,Li; Cao,Heng,Yang,Zhang,Zhu

NMSSM Higgs Boson Mass

Higgs mass prediction as precise as possible:

 distinguish between MSSM and NMSSM
 properly define scenarios with Higgs-to-Higgs decays
 correctly interpret experimental data

 Status of Higgs mass calculations:

 1-loop corrections in effective potential approach
 Ellwanger eal; E

- 1-loop corrections in Feynman-diagramatic approach
- 2-loop $\mathcal{O}(\alpha_t \alpha_s + \alpha_b \alpha_s)$
- 1-loop w/ CP violation in effective potential approach
- 1-loop w/ CP violation in Feynman-diagramatic approach

Ellwanger eal; Elliott eal; Pandita

Degrassi,Slavich Ender,Graf,MMM,Rzehak '11

Degrassi,Slavich

Ham eal; Cheung eal

Graf, Grober, MMM, Rzehak, Walz '12

\mathcal{NMSSM} Higgs Boson Mass

For 1-loop mass corrections in the complex NMSSM, see Graf, Grober, MMM, Rzehak, Walz '12

$\mathcal{L}oop \ \mathcal{C}orrected \ \mathcal{T}rilinear \ \mathcal{H}iggs \ \mathcal{S}elf\text{-}\mathcal{C}oupling$

- Higgs mass and self-couplings: determined from Higgs potential \rightsquigarrow consistent description of Higgs sector at higher order requires loop corrections to masses and self-couplings
 - \Rightarrow determination of higher order corrections to trilinear Higgs self-couplings

M.M.Mühlleitner, 29 July 2013, SUSY 2013, ICTP Trieste

* H_3 decays into SM-like Higgs bosons h: $h = H_{1,2}$ (case 1,2); H_1, H_2 degenerate in mass (case 3)

* Effect of higher order corrections on branching ratios can be up to 90% and higher

* Black points: excluded if only tree-level BR considered: loop corrections decrease *h* decays into pair of lighter Higgs bosons → signal rates into SM particles compatible w/ LHC results

\mathcal{L} oop \mathcal{C} orrected $\lambda_{\phi_i\phi_j\phi_k}$ and \mathcal{H} iggs \mathcal{P} air \mathcal{P} roduction

• Higgs Pair Production: Access to trilinear Higgs self-coupling

Djouadi,Kilian,MMM,Zerwas; Boudjema,Chopin; Barger eal; Osland eal; Asakwa eal; Baur eal; Grober, MMM; Dolan eal; Papaefstathiou eal; Goertz eal; Butterworth eal; Baglio,Djouadi,Grober,MMM,Quevillon,Spira; Gupta eal; De Florian eal; Cao eal; Shao eal; Dao,MMM,Walz; ...

• Dominant process at LHC: $gg \rightarrow \phi_i \phi_k$

Dao, MMM, Streicher, Walz '13

Measurement of Higgs self-couplings \Rightarrow reconstruction of Higgs potential.

 $\delta \equiv \frac{\sigma_L - \sigma_T}{\sigma_T}$

Large deviations (up to 90%) due to large deviations between tree-level and loop-corrected $BR(H_3 \rightarrow hh)$.

• SM-like NMSSM scalar boson of $\sim 126~{
m GeV}$

Can be either H_1 or H_2 (H_1 singlet-like, suppr. SM couplings)

- Enhanced Diphoton rate (now only ATLAS)
 - * Enhance branching ratio (enhance $\Gamma_{\gamma\gamma}$, suppress $\Gamma_{b\bar{b}}$)

$$BR(h^{126\,\text{GeV}} \to \gamma\gamma) = \frac{\Gamma(h^{126\,\text{GeV}} \to \gamma\gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + \dots)[h^{126\,\text{GeV}}]}$$

* Enhance gluon fusion production (enhanced for small stop mixing)

- $\star \tan\beta = 2$, 4
- $\star \; 0.55 \leq \lambda \leq 0.8$, $10^{-4} \leq \kappa \leq 0.4$
- $\star \; 100 \; {\rm GeV} \leq \mu_{\rm eff} \leq 200 \; {\rm GeV}$
- \star 500 GeV $\leq M_{Q_3} = M_{t_R} \leq 800$ GeV $A_t = 0 \text{ GeV}, 1 \text{ TeV}$
- * $-500 \text{ GeV} \le A_{\kappa} \le 0 \text{ GeV}$ $200 \text{ GeV} \le A_{\lambda} \le 800 \text{ GeV}$

- maximize tree-level mass of lightest Higgs boson
- validity of perturbativity 2-loop RGE's
- avoid finetuning
- avoid finetuning

* $M_{\tilde{u}_R} = M_{\tilde{c}_R} = M_{\tilde{D}_R} = M_{\tilde{Q}_{1,2}} =$ comply with LHC results $M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = M_{\tilde{L}_{1,2}} = 2.5 \text{ TeV}$ $M_{\tilde{\tau}_R} = M_{\tilde{L}_3} = 300 \text{ GeV} , \quad A_D = A_E = 1 \text{ TeV}$

* $M_1 = 150 \text{ GeV}$, $M_2 = 300 \text{ GeV}$, $M_3 = 1 \text{ TeV}$

\mathcal{NMSSM} Scan

• Typical mass values:

 $m_{\tilde{t}_1} \ = \ 400 - 820 \,\, {\rm GeV} \,, \quad m_{\tilde{t}_2} = 530 - 890 \,\, {\rm GeV} \,$

 $M_{H^{\pm}} = 200 - 500 \,\, {\rm GeV}\,, \quad M_{\tilde{\chi}_1^{\pm}} = 105 - 165 \,\, {\rm GeV}\,, \quad M_{\tilde{\chi}_2^{\pm}} = 345 - 360 \,\, {\rm GeV}\,$

\mathcal{NMSSM} Scan

• Conditions on the parameter scan:

- * At least one CP-even Higgs boson h with:
- * The reduced cross section for $\gamma\gamma$ must fulfill:

 $124 \text{ GeV} \lesssim M_h \lesssim 127 \text{ GeV}$

 $\mu_{\gamma\gamma}(h)\gtrsim 0.8$ with $124~{
m GeV}\,\lesssim M_h=M_{H}{
m SM}\lesssim 127~{
m GeV}$

- * No restriction on rates into WW, ZZ, $b\bar{b}$, $\tau^+\tau^-$
- * Higgs bosons outside 124...127 GeV: exclusion limits of LEP, Tevatron and LHC searches
- Signal can be superposition of two Higgs boson rates close in mass: h and $\Phi = H_i, A_j$

$$\mu_{XX}(h) \equiv R_{\sigma}(h) R_{XX}^{BR}(h) + \sum_{\substack{\Phi \neq h \\ |M_{\Phi} - M_h| \leq \delta}} R_{\sigma}(\Phi) R_{XX}^{BR}(\Phi) F(M_h, M_{\Phi}, d_{XX})$$

 δ : mass resolution in the respective XX final state $F(M_h, M_{\Phi}, d_{XX})$: Gaussian weighting function d_{XX} : experimental resolution of final state XX

NMSSMTools

 \star Upper/Lower: $A_t = 0$, 1 TeV $\star M_{H_3}, M_{A_2}$ between 300 and 500 GeV

* Possible degeneracy of $h - H_{1,2}$ $(H_{1,2} \neq h)$, $h - A_1$, possible decays $H_2 \rightarrow H_1 H_1, A_1 A_1, \chi_1^0 \chi_1^0$

${\cal E} xotic \ {\cal D} ecays$

King, MMM, Nevzorov, Walz

* $\tan \beta = 2$, $A_t = 1$ TeV

* $BR_{H_2}^{\max}(H_1H_1) \approx 0.36$, $BR_{H_2}^{\max}(A_1A_1) \approx 0.35$ and $BR_{H_2}^{\max}(\tilde{\chi}_1^0 \tilde{\chi}_1^0) \approx 0.43$

* $\sigma_{\rm prod}(H_2) \times BR(H_2 \rightarrow \chi_1^0 \chi_1^0) \approx 4 - 8.5 \ {\rm pb}$

* Decays $H_2 \to H_1 H_1$ $A_t = 0 \text{ TeV}$ * $BR(H_1 \to b\bar{b}) \approx 0.9$ $BR(H_1 \to \tau^+ \tau^-) \approx 0.07 - 0.085$ $BR(H_1 \to \mu^+ \mu^-) \lesssim 0.0006$

\mathcal{E} xpected \mathcal{S} ignal - \mathcal{R} esults by \mathcal{S} asha \mathcal{N} ikitenko

 \mathcal{E} xpected \mathcal{S} ignal - \mathcal{R} esults by \mathcal{S} asha \mathcal{N} ikitenko

Expected signal event yield for 20 fb⁻¹ at 8 TeV

σ x Br (ττττ) from theory: 3 pb	60 000
Two τ->μ, two τ->hadr: 0.17 ² x 0.65 ² x 6 = 0.0732	4392
$p_T^{\mu 1}$ >17 GeV, $ \eta^{\mu 1} $ <2.1, $p_T^{\mu 2}$ >10 GeV, $ \eta^{\mu 2} $ <2.4: 0.0713	313
p _T ^{τh} >10 GeV, η ^{τh} <2.4: 0.277	87
ΔR(μ–μ) > 1.0 : 0.579	50
Probably ask SS muons against DY, tt~, WW: 0.5	25
Probably ask only 1 track around muon against QCD: 0.75 ² = 0.56	14

• $\tau \tau \tau \tau \to \tau_{\mu} \tau_{h} \tau_{\mu} \tau_{h}$ from inclusive H_{2} production and $2m_{\tau} < M_{H_{1}} < 2m_{b}$ promising, but estimate of expected bkg needed

• Higher order corrections to masses and trilinear self-couplings

* Crucial to properly interpret experimental data

• SM-like Supersymmetric Higgs boson

- \star Possible at ~ 126 GeV, can be either H_1 , H_2
- \star In NMSSM with low fine-tuning
- * Can accommodate enhanced diphoton width (and also the non-enhanced one)
- \star Signal can be built up by two Higgs bosons close in mass

• Exotic decays

- \star Scenarios with $H_2 \rightarrow H_1 H_1$, $H_2 \rightarrow A_1 A_1$, $H_2 \rightarrow \chi_1^0 \chi_1^0$ decays
- \star Exotic final states: $E_T^{\rm miss}$, 4b , $2b2\tau$, \ldots

Thank you for your attention!

\mathcal{NMSSM} Higgs $\mathcal{M}ass$ in $\mathcal{V}iew$ of the \mathcal{LHC} Results

Hall, Pinner, Ruderman 1112.2703

- $\diamond m_h$ maximized for small values of aneta
- $\circ m_h pprox 126 \text{ GeV}$ can be achieved also for zero mixing $X_t = 0$ and $m_{\tilde{t}_1} \ge 500 \text{ GeV}$

\mathcal{U} pper \mathcal{L} imit on \mathcal{NMSSM} a_1 \mathcal{P} roduction

$\mathcal{R}enormalisation \ \mathcal{S}cheme$

• Mixed renormalisation scheme:

 $\underbrace{M_Z, M_W, M_{H^{\pm}}, t_{h_u}, t_{h_d}, t_{h_s}, e}_{\text{on-shell scheme}}, \underbrace{\tan \beta, \lambda, v_s, \kappa, A_\kappa}_{\overline{\text{DR}} \text{ scheme}}$

• SM-like NMSSM scalar boson of $\sim 126~{
m GeV}$

Can be either H_1 or H_2 (H_1 singlet-like, suppr. SM couplings)

• Enhanced Diphoton rate (now only ATLAS)

$$BR(h^{126\,\mathrm{GeV}} \to \gamma\gamma) = \frac{\Gamma(h^{126\,\mathrm{GeV}} \to \gamma\gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + \ldots)[h^{126\,\mathrm{GeV}}]}$$

- * Suppression of $\Gamma(h^{126 \text{ GeV}} \rightarrow b\bar{b})$ due to Hall,Pinner,Ruderman; Ellwanger; King,MMM,Nevzorov; Cao,Heng,Yang,Zhang,Zhu; Albornoz-Vasquez,Belanger,Boehm,DaSilva,Richardson,Wymant
 - \diamond strong singlet-doublet mixing \rightsquigarrow reduced coupling to $bar{b}$
 - $\diamond~\Delta_b$ corrections to $h^{126\,{\rm GeV}} b \bar{b}$ coupling

Carena eal

 \bullet SM-like NMSSM scalar boson of $\sim 126~{\rm GeV}$

Can be either H_1 or H_2 (H_1 singlet-like, suppr. SM couplings)

• Enhanced Diphoton rate (now only ATLAS)

$$BR(h^{126\,\mathrm{GeV}} \to \gamma\gamma) = \frac{\Gamma(h^{126\,\mathrm{GeV}} \to \gamma\gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + \dots)[h^{126\,\mathrm{GeV}}]}$$

- * Suppression of $\Gamma(h^{126 \text{ GeV}} \rightarrow b\bar{b})$ due to Hall,Pinner,Ruderman; Ellwanger; King,MMM,Nevzorov; Cao,Heng,Yang,Zhang,Zhu; Albornoz-Vasquez,Belanger,Boehm,DaSilva,Richardson,Wymant
- * Enhanced $\Gamma(h^{126\,{
 m GeV}} o \gamma\gamma)$ due to charged boson, chargino, stop loop contributions

$$h, H, A - \cdots \begin{pmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

• Enhancement on the production side

• Enhanced gluon fusion production

See e.g. King, MMM, Nevzorov, Walz

- * Stop, sbottom loop contributions in $gg \rightarrow H_i$ can enhance the production cxn for small mixing
- * Associated slight suppression in $BR(h^{126\,{\rm GeV}}\to\gamma\gamma)$ compensated by charged boson, chargino loop contributions
- $*\,\Rightarrow$ overall enhanced production in $\gamma\gamma$ final states, $\mu_{\gamma\gamma}>1$
- * Couplings to WW, ZZ must be suppressed in this case \rightsquigarrow overall production in VV final states \approx SM-like, $\mu_{ZZ,WW} \approx 1$

\mathcal{NMSSM} Scan

• Typical mass values:

 $m_{\tilde{t}_1} = 400 - 820 \text{ GeV}, \quad m_{\tilde{t}_2} = 530 - 890 \text{ GeV}$

 $M_{H^{\pm}} = 200 - 500 \text{ GeV}, \quad M_{\tilde{\chi}_1^{\pm}} = 105 - 165 \text{ GeV}, \quad M_{\tilde{\chi}_2^{\pm}} = 345 - 360 \text{ GeV}$

• Constraints from comparison w/ experimental signal rates:

$$\mu_{XX}(h) \equiv R_{\sigma}(h) R_{XX}^{BR}(h) \quad \text{with} \quad R_{\sigma}(h) = \frac{\sigma_{\text{prod}}^{\text{NMSSM}}}{\sigma_{\text{prod}}^{\text{SM}}} \text{ and } R_{XX}^{BR}(h) = \frac{BR_{XX}^{\text{NMSSM}}}{BR_{XX}^{\text{SM}}}$$
$$\sigma_{\text{prod}} = \sigma_{gg}^{\text{NNLO QCD}} + \sigma_{VV}^{\text{NNLO QCD}} + \sigma_{VH}^{\text{NNLO QCD}} + \sigma_{ttH}^{\text{NLO QCD}} \approx \sigma_{gg}^{\text{NNLO QCD}}$$

The NMSSM cxn $\sigma_{gg}^{\text{NMSSM}}$ @ NNLO QCD can be obtained from modified version of HIGLU Spira Note #1: EW corrections cannot be taken over from the SM or MSSM.

Note #2: $R_{gg}(h)$ approximation by $R_{\Gamma_{gg}}(h)$ at (N)NLO QCD has to be checked explicitly, can deviate!

M.M.Mühlleitner, 29 July 2013, SUSY 2013, ICTP Trieste

\mathcal{NMSSM} $\mathcal{S}can$ - $\mathcal{P}re\text{-}\mathcal{M}oriond$

King, MMM, Nevzorov, Walz

\mathcal{NMSSM} Scan - After-Moriond

King, MMM, Nevzorov, Walz

\mathcal{NMSSM} Scan - After Moriond

King, MMM, Nevzorov, Walz

\mathcal{NMSSM} Scan - After Moriond

King, MMM, Nevzorov, Walz

\mathcal{NMSSM} Scan - After Moriond

King, MMM, Nevzorov, Walz

Superposition of Signal Rates

$$R_{pp,H_i} = \frac{\sigma_{\text{incl}}^{\text{NMSSM}}}{\sigma_{\text{incl}}^{\text{SM}}} \cdot \frac{\text{BR}(H_i \to pp)^{\text{NMSSM}}}{\text{BR}(H_i \to pp)^{\text{SM}}} \quad \text{with} \quad i = 1..5.$$
$$R_{pp,H_i}^{\text{combined}} = \sum_{k=1}^{5} R_{pp,H_k} \cdot \exp\left(\frac{-(M_{H_k} - M_{H_i})^2}{2(d_p \cdot M_{H_k})^2}\right)_{F_p(M_{H_k})}$$

This weighting factor depends on the mass difference and on a factor d_p which is decay specific:

p	au au	WW	bb	ZZ	$\gamma\gamma$
d_p	0.2	0.2	0.1	0.02	0.02

