Implication of 126 GeV Higgs boson for Planck scale physics - naturalness and stability of SM -

Satoshi Iso (KEK & Sokendai)

based on collaborations

N.Okada (Alabama), Y.Orikasa (Osaka), SI
"Classically conformal B-L extension of the SM"

"Revisiting the Naturalness problem"

Y.Orikasa (Osaka), SI
PTEP 2013,023B08 & arXiv:1304.0293
"TeV scale B-L model with a Flat Higgs potential at the Planck scale"
- in view of the Hierarchy problem -
Two issues:
- Is it possible to generate the wine-bottle potential at IR?
- What is the origin of flatness at UV?

Today I will answer the IR issue in an affirmative way.
Outline

Motivation for $V(H)=0 \ @ M_{PL}$
[1] Revisiting the Naturalness Problem

Model realizing the radiative generation of $V(H) @ M_{EW}$

Today I do not talk about the Phenomenology of the model
[4] Neutrino oscillation, Leptogenesis, etc.
[1] Naturalness problem
It is commonly stated that naturalness problem is caused by quadratic divergence of a scalar mass.

Is quadratic divergence physically relevant?

Bardeen (1995)

H Aoki, SI (2012)

3 reasons why I think *power divergences are physically irrelevant* in the IR effective theory:

1. they can be always **subtracted**
 unlike multiplicatively renomalized logarithmic divergences

2. In the Wilsonian RG, power divergences determine the position of the critical surfaces, and have nothing to do with the RG flow.

3. power divergences are **not generally covariant**.

ex.) EMT of a massive field on a curved space-time

\[\text{Energy} = \int \text{d}k \omega k^2, \quad \text{pressure} = \int \text{d}k k^4/3\omega, \quad \omega^2 = (k^2 + m^2) \]

So \(\Lambda^4 \) term has \(w=1/3 \) (so it is not proportional to \(g^{\mu\nu} \))

\(m^4 \log \Lambda \) term gives the covariant EMT with \(w=-1 \) (DE).
Classification of divergences

1. Power divergences Λ^2

 It can be simply subtracted at UV scale, and gives a boundary condition at UV. Once subtracted, no longer appears.

2. Logarithmic divergences $m^2 \log (\Lambda/m)$

 $$\frac{dm^2}{dt} = \frac{m^2}{16\pi^2} \left(12\lambda + 6Y_t^2 - \frac{9}{2}g^2 - \frac{3}{2}g_1^2 \right)$$

3. Logarithmic but quadratic-like: $M^2 \log (\Lambda/M)$

 $$\frac{dm^2}{dt} = \frac{m^2}{16\pi^2} \left(12\lambda + 6Y_t^2 - \frac{9}{2}g^2 - \frac{3}{2}g_1^2 \right) + \frac{M^2}{8\pi^2} \lambda_{mix}$$

 $m \ll M$

 Low energy physics High energy physics

It is important to distinguish 1 and 3.
In order to solve the “naturalness problem”, of IR theory embedded in UV completion theory, we need to control

(a) “M_{PL}^2 term” \rightarrow correct boundary condition at Planck

The most natural b.c. is NO MASS TERMS at Planck

($=$ classical conformal)

\[V = -\mu^2 |H|^2 + \lambda(|H|^2)^2 \]

(b) “large logarithmic divergence” by mixing with a large mass M

No large intermediate scales beyond EW up to Planck

“Classical conformal theory with no intermediate scale” can be an alternative solution to the naturalness problem.

Foot Kobakhidze Macdonald Volkas (07), Shaposhnikov (07), Meissner Nicolai (07), SI, Okada,Orikasa (09), Holthausen Lindner Schmidt (09), Nunneley Pilaftsis (10), Iwashita(11), Lee Pilaftsis(12), Englert Jaekel Khoze Spannovski (13), Chun Jun Lee (13), Carone Ramos(13), , , ,

Satoshi Iso @ SUSY2013
New physics at 10^{12} GeV is necessary to stabilize the vacuum.

\[M_H \geq 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}} \right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007} \right) \pm 1.0 \text{ GeV}. \]

Flat Higgs potential at Planck scale

very sensitive to top quark mass

(Also sensitive to higher dim op. and nonperturbative behavior of RG)

Satoshi Iso @ SUSY2013
If this is the case?

\[\lambda(\Lambda_0) = \beta_\lambda(\Lambda_0) = 0 \]

\[V = -\mu^2|H|^2 + \lambda(|H|^2)^2 \]

Direct window to Planck scale

Frogatt Nielsen (96)
M. Shaposhnikov (07)

N Okada, Y Orikasa, SI
0902.4050 (PLB)
0909.0128 (PRD)
Y Orikasa, SI
1210.2848 (PTEP)
Indication on the Higgs potential

\[V = -\mu^2 |H|^2 + \lambda (|H|^2)^2 \]

flat potential \[\phi \]

Radiatively generate

Coleman-Weinberg mechanism

\[\text{EWSB @ } M_{EW} \]

flat potential \(V(H) = 0 \) at Planck. \(M_{PL} \)
CW mechanisms = dimensional transmutation

Coleman-Weinberg radiative breaking

\[\lambda \]

\[\frac{\lambda \phi^4}{4} \]

Symmetry is broken near the scale where the running coupling crosses zero.

\[M_{CW} = M_{UV} \exp \left(-\frac{\lambda_{UV}}{b} - \frac{1}{4} \right) \]

Positive beta function in IR region

cf. Dimensional transmutation in QCD

\[\Lambda_{QCD} = M_{UV} \exp \left(-\frac{2\pi}{b_0 \alpha_s(M_{UV})} \right) \]
But CW does not work in SM.

the large top Yukawa coupling invalidates the CW mechanism

Extension of SM is necessary!

(B-L) extension of SM with flat Higgs potential at Planck

"Occam’s razor" scenario

that can explain

- 126 GeV Higgs
- Naturalness problem
- ν oscillation, baryon asymmetry

N Okada, Y Orikasa, & SI
0902.4050 (PLB)
0909.0128 (PRD)
1011.4769 (PRD)
1210.2848(PTEP)
B-L is broken through the Coleman-Weinberg mechanism. How does it trigger the EWSB?

\[V(H) = \lambda_H H^4 + \lambda_{mix} \Phi^2 H^2 \quad @ \ M_{EW} \]

Radiatively generated key to relate EW and TeV

\[\langle H \rangle = \sqrt{\frac{-\lambda_{mix}}{\lambda_H}} M_{B-L} \]

A small negative scalar mixing is radiatively generated though the mixing of U(1)\(_Y\) and U(1)\(_{B-L}\)

\[\langle H \rangle = \sqrt{\frac{-\lambda_{mix}}{\lambda_H}} M_{B-L} \sim c \frac{\alpha_{B-L} \alpha_Y}{\sqrt{\lambda_H}} M_{B-L} \]

\[\rightarrow \text{EW and B-L scales are related in terms of gauge couplings.} \]
In order to realize EWSB at 246 GeV, B-L scale must be around TeV (for a typical value of α_{B-L}).

LHC reach
14 TeV 100 fb$^{-1}$

ILC
$\sqrt{s} = 1$ TeV

$M_{B-L} \sim \frac{1}{\alpha_{B-L}} \times 35$ GeV.

$m_{Z'} \sim \frac{1}{\sqrt{\alpha_{B-L}}} \times 250$ GeV

$m_{\phi} \sim 0.1 \ m_{Z'}$

$m_{Z'}^2 = \frac{16\pi \alpha_{B-L}(0) M^2_{B-L}}{B-L}$
Summary

- 126 GeV Higgs = border of the stability bound of SM vacuum.
 → Direct window to Planck scale → Flat Higgs potential @Planck
 Hint for the origin of Higgs in string theory
- Occam’s razor scenario beyond SM
 “Classically conformal B-L model” is proposed

(1) it solves naturalness problem
(2) it explains why B-L breaking scale is around TeV.
(3) phenomenologically viable
 Neutrino oscillation, resonant leptogenesis
(4) Prediction
 Z’ around several TeV, \(M_\phi < M_{Z'} \), Leptogenesis at TeV
Grazie mille !