Electroweak precision fit and model-independent constraints on new physics

Satoshi Mishima

Univ. of Rome "La Sapienza" & INFN Rome

SUSY2013, ICTP Trieste, Aug. 26-31, 2013

with Marco Ciuchini, Enrico Franco and Luca Silvestrini, JHEP 08 (2013) 106 [arXiv:1306.4644[hep-ph]]

Contents

- I. Introduction
- 2. SM fit
- 3. Oblique parameters
- 4. HVV coupling
- 5. Zbb couplings
- 6. Dim. 6 operators
- 7. Summary

Model-indep. NP

1. Introduction

- Electroweak precision fits have played a key role in constraining NP.
- The precise measurement of the Higgs mass at LHC as well as those of the W and top masses at Tevatron make improvement in EW fits.
- It is therefore phenomenologically relevant to reassess the constraining power of EW fits in the light of the recent exp. and theo. Mass of the Top Quark CDF-I dileptor DØ-I dileptor improvements. Mass of the W Boson CDF-II dilepton

EW precision observables

Precision observables:

 $M_W, \ \Gamma_W \ \text{and} \ 13 \ \text{Z-pole observables}$ (LEP2/Tevatron) (LEP/SLD)

Z-pole obs' are given in terms of effective couplings:

$$\begin{split} \mathcal{L} &= \frac{e}{2s_W c_W} Z_\mu \sum_f \bar{f} \left(g_V^f \gamma_\mu - g_A^f \gamma_\mu \gamma_5 \right) f \,, \\ &= \frac{e}{2s_W c_W} Z_\mu \sum_f \bar{f} \left[g_L^f \gamma_\mu (1 - \gamma_5) + g_R^f \gamma_\mu (1 + \gamma_5) \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \end{split} \qquad \begin{aligned} \rho_Z^f &= \left(\frac{g_A^f}{I_3^f} \right)^2 (= 1 \text{ at tree level}) \\ \kappa_Z^f &= \frac{1}{4|Q_f|s_W^2} \left(1 - \frac{g_V^f}{g_A^f} \right) \end{split}$$

$$egin{aligned} &A_{ ext{LR}}^{0,f} = \mathcal{A}_f = rac{2\, ext{Re}\left(g_V^f/g_A^f
ight)}{1+\left[ext{Re}\left(g_V^f/g_A^f
ight)
ight]^2} & A_{ ext{FB}}^{0,f} = rac{3}{4}\mathcal{A}_e\mathcal{A}_f & (f=\ell,c,b) \ &P_{ au}^{ ext{pol}} = \mathcal{A}_{ au} & \sin^2 heta_{ ext{eff}}^{ ext{lept}} = ext{Re}(\kappa_Z^\ell)s_W^2 \end{aligned}$$

$$\Gamma_f = \Gamma(Z \to f\bar{f}) \propto \left| \rho_Z^f \right| \left[\left| \frac{g_V^f}{g_A^f} \right|^2 R_V^f + R_A^f \right] \quad \Longrightarrow \quad \Gamma_Z, \ \sigma_h^0 = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_h}{\Gamma_Z^2}, \ R_\ell^0 = \frac{\Gamma_h}{\Gamma_\ell}, \ R_{c,b}^0 = \frac{\Gamma_{c,b}}{\Gamma_h}$$

Theoretical status

Mw has been calculated with full EW two-loop and leading higher-order contributions.

Awramik, Czakon, Freitas & Weiglein (04)

Satoshi Mishima (Univ. of Rome)

■ $\sin^2 \theta_{\text{eff}}^f$ (equivalent to κ_Z^f) have been calculated with full EW two-loop (bosonic is missing for b) and leading higher-order contributions.

Awramik, Czakon & Freitas (06); Awramik, Czakon, Freitas & Kniehl (09)

Solution EW two-loop corrections to ρ_Z^f (normalization of Γ_f) were calculated in the large mt expansion.

Barbieri et al. (92,93); Fleischer et al. (93,95); Degrassi et al. (96,97,00)

see also Sirlin; Marciano&Sirlin; Bardin et al; Djouadi&Verzegnassi; Djouadi; Kniehl; Halzen&Kniehl; Kniehl&Sirlin; Djouadi&Gambino; Avdeev et al; Chetyrkin et al; Freitas et al; Awramik&Czakon; Onishchenko&Veretin; Van der Bij et al; Faisst et al; Awramik et al

Theoretical status

Recently, the full fermionic EW two-loop corrections to $R_b^0 = \Gamma_b / \Gamma_h$ beyond the large mt expansion have been calculated. Freitas & Huang (12)

Subleading power corrections are much larger than expected: cf. $(\Delta R_{h}^{0})_{exp} = \pm 0.00066$

 $R_{_{D}}^{0}=0.21576
ightarrow 0.21493~(\Delta R_{_{D}}^{0}=-0.00083)$

allow us to compute $R_c^0 = \Gamma_c / \Gamma_h$ in addition to R_b^0 .

Subleading corr's: $\delta \rho_Z^{u(d)} - \delta \rho_Z^b \approx 0.0048(0.0044)$

 $|\Gamma_f \propto |
ho_Z^f| = (\delta \Gamma_Z, \delta \sigma_{
m h}^0, \delta R_\ell^0)_{
m exp} \sim 0.1\%$

le expect significant corrections also in $\Gamma_Z, \sigma_{\rm h}^0, R_{\ell}^0$! Satoshi Mishima (Univ. of Rome)

2. SM fit

Jacobi Two options:

- 1. "old Rb": use ρ_Z^f in the large mt expansion
- 2. "new Rb": use $R_{c,b}^0$ from Freitas and Huang, introducing $\delta \rho_z^{\nu,\ell,\vec{b}}$ to account for possibly large unknown corrections.
- We adopt the on-shell renormalization scheme, and include up-to-date SM radiative corrections.
- We have developed our own codes for EWPO, tested against ZFITTER.
- We perform a Bayesian analysis with MCMC by using the Bayesian Analysis Toolkit (BAT) library.

Caldwell, Kollar & Kroninger cf. Erler with GAPP for PDG MS, frequentist LEP EWWG with ZFITTER; Gfitter (Baak et al.); on-shell, frequentist Eberhardt et al. with ZFITTER; and others..... Satoshi Mishima (Univ. of Rome)

SM input parameters

$$\begin{split} G_{\mu} &= 1.1663787 \times 10^{-5} \text{ GeV}^{-2} \quad \text{PDG} \\ \alpha &= 1/137.035999074 \quad \text{PDG} \\ \alpha_s(M_Z^2) &= 0.1184 \pm 0.0006 \quad \text{PDG excl. EW} \\ \Delta \alpha_{had}^{(5)}(M_Z^2) &= 0.02750 \pm 0.00033 \quad \begin{array}{l} \text{Burkhardt \& Pietrzyk (11) (see also Davier et al(11); \\ Hagiwara et al(11) ; Jegerlehner(11)) \\ measured with inclusive processes. \\ smaller uncertainty if using exclusive processes with pQCD, etc. \\ M_Z &= 91.1875 \pm 0.0021 \text{ GeV} \quad \text{LEP} \end{split}$$

 $m_t = 173.2 \pm 0.9 \; ext{GeV}$ Tevatron (cf. LHC: $173.3 \pm 1.4 \, ext{GeV}$)

 $m_h = 125.6 \pm 0.3 \; \mathrm{GeV}$ ATLAS&CMS (naive average)

 $+ \delta \rho_Z^{\nu}, \ \delta \rho_Z^{\ell}, \ \delta \rho_Z^{b}$ for "new Rb"

SM fit with the old Rb

	Data	Fit	Indirect	Pull
$\alpha_s(M_Z^2)$	0.1184 ± 0.0006	0.1184 ± 0.0006	0.1193 ± 0.0027	+0.3
$\Delta \alpha^{(5)}_{ m had}(M_Z^2)$	0.02750 ± 0.00033	0.02740 ± 0.00026	0.02725 ± 0.00042	-0.5
$M_Z [{ m GeV}]^2$	91.1875 ± 0.0021	91.1878 ± 0.0021	91.197 ± 0.012	+0.8
$m_t \; [{ m GeV}]$	173.2 ± 0.9	173.5 ± 0.8	176.3 ± 2.5	+1.1
$m_h \; [{ m GeV}]$	125.6 ± 0.3	125.6 ± 0.3	97.3 ± 26.9	-0.9
$M_W \; [{ m GeV}]$	80.385 ± 0.015	80.367 ± 0.007	80.362 ± 0.007	-1.4
$\Gamma_W ~[{ m GeV}]$	2.085 ± 0.042	2.0891 ± 0.0006	2.0891 ± 0.0006	+0.1
$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023	2.4953 ± 0.0004	2.4953 ± 0.0004	+0.0
$\sigma_h^0 \; [{ m nb}]$	41.540 ± 0.037	41.484 ± 0.004	41.484 ± 0.004	-1.5
$\sin^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.2324 ± 0.0012	0.23145 ± 0.00009	0.23144 ± 0.00009	-0.8
$P^{ m pol}_{ au}$	0.1465 ± 0.0033	0.1476 ± 0.0007	0.1477 ± 0.0007	+0.3
$\dot{\mathcal{A}_{\ell}}$ (SLD)	0.1513 ± 0.0021	0.1476 ± 0.0007	0.1471 ± 0.0008	-1.9
\mathcal{A}_{c}	0.670 ± 0.027	0.6682 ± 0.0003	0.6682 ± 0.0003	-0.1
\mathcal{A}_b	0.923 ± 0.020	0.93466 ± 0.00006	0.93466 ± 0.00006	+0.6
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.0163 ± 0.0002	0.0163 ± 0.0002	-0.8
$A_{ m FB}^{ar 0,c}$	0.0707 ± 0.0035	0.0740 ± 0.0004	0.0740 ± 0.0004	+0.9
$A_{ m FB}^{ ilde{0}, ar{b}}$	0.0992 ± 0.0016	0.1035 ± 0.0005	0.1039 ± 0.0005	+2.8 large deviation!
R_{ℓ}^{0}	20.767 ± 0.025	20.735 ± 0.004	20.734 ± 0.004	-1.3
$R_c^{ m \check{0}}$	0.1721 ± 0.0030	0.17223 ± 0.00002	0.17223 ± 0.00002	+0.0
$R_b^{\breve{0}}$	0.21629 ± 0.00066	0.21575 ± 0.00003	0.21575 ± 0.00003	<u>−0.8</u> ← old Kb

Fit: our fit results

Indirect: determined w/o using the corresponding experimental information

Pull: in units of standard deviations evaluated from the p.d.f.'s of "Data" and "Indirect"

SM fit with the new Rb

	Data	Fit	Indirect	Pull	
$lpha_s(M_Z^2)$	0.1184 ± 0.0006	0.1184 ± 0.0006	0.078 ± 0.024	-1.9	mot precise!
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	0.02750 ± 0.00033	0.02742 ± 0.00026	0.02728 ± 0.00043	-0.4	•
$M_Z ~[{ m GeV}]$	91.1875 ± 0.0021	91.1878 ± 0.0021	91.204 ± 0.013	+1.2	
$m_t \; [{ m GeV}]$	173.2 ± 0.9	173.5 ± 0.8	175.7 ± 2.6	+0.9	
$m_h [{ m GeV}]$	125.6 ± 0.3	125.6 ± 0.3	98.5 ± 27.7	-0.8	
$\delta ho_Z^ u$	<u> </u>	-0.0052 ± 0.0031	<u> </u>		
δho_Z^ℓ		-0.0002 ± 0.0010			
δho_Z^b		-0.0021 ± 0.0011			
$M_W \; [{ m GeV}]$	80.385 ± 0.015	80.366 ± 0.007	80.361 ± 0.007	-1.4	
$\Gamma_W [{ m GeV}]$	2.085 ± 0.042	2.0890 ± 0.0006	2.0890 ± 0.0006	+0.1	
$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023	2.4952 ± 0.0023	—		
$\sigma_h^0 [{ m nb}]$	41.540 ± 0.037	41.539 ± 0.037			ů, l
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.23145 ± 0.00009	0.23145 ± 0.00009	-0.8	0.0008 50
$P^{ m pol}_{ au}$	0.1465 ± 0.0033	0.1476 ± 0.0007	0.1476 ± 0.0007	+0.3	40
$\mathcal{A}_\ell~(\mathrm{SLD})$	0.1513 ± 0.0021	0.1476 ± 0.0007	0.1470 ± 0.0008	-1.9	0.0006
\mathcal{A}_{c}	0.670 ± 0.027	0.6681 ± 0.0003	0.6681 ± 0.0003	-0.1	0 0004
\mathcal{A}_b	0.923 ± 0.020	0.93466 ± 0.00006	0.93466 ± 0.00006	+0.6	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.0163 ± 0.0002	0.0163 ± 0.0002	-0.8	0.0002
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.0739 ± 0.0004	0.0740 ± 0.0004	+0.9	
$A_{ extsf{FB}}^{ ilde{ extsf{0}}, ilde{ extsf{b}}}$	0.0992 ± 0.0016	0.1034 ± 0.0005	0.1038 ± 0.0005	+2.7	0.215 0.216 0.217 0.218
$R_{\ell}^{\dot{0}}$	20.767 ± 0.025	20.768 ± 0.025			R _b ⁰
$R_c^{ m \check{0}}$	0.1721 ± 0.0030	0.17247 ± 0.00002	0.17247 ± 0.00002	+0.1	
$R_b^{reve{0}}$	0.21629 ± 0.00066	0.21492 ± 0.00003	0.21492 ± 0.00003	-2.1	← new Kb

Solution New Rb increases the pull from -0.8σ to -2.1σ .

 $\int \delta \rho_Z^{\nu,\ell,b}$ are of $O(10^{-3})$, compatible to Freitas & Huang.

$\alpha_s(M_Z^2)$ from the EW fit

Not precise due to the inclusion of the unknown subleading corrections!

Top mass vs. (meta-)stability

The measurement of the top mass is crucial for testing the stability of the SM vacuum. Degrassi et al.(12); Buttazzo et al.(13)

 $m_t^{
m pole} < (171.36 \pm 0.46) \; {
m GeV}$

J Tevatron pole(?) mass: 173.2 ± 0.9 GeV

- **9** Pole from MSbar: $173.3 \pm 2.8 \text{ GeV}$
- **J** Indirect determination from EW fit: 175.7 ± 2.6 GeV

"new Rb"

Significant subleading corrections in Γ_Z , σ_h^0 , R_ℓ^0 We do not use them in NP fits with the new $R_{c,b}^0$.

"old Rb"

For comparison, we also present fit results with the old $R_{c,b}^0$ and Γ_Z , σ_h^0 , R_ℓ^0 calculated using the large mt expansion.

3. Oblique parameters

Suppose that dominant NP effects appear in the vacuum polarizations of the gauge bosons:

EWPO depend on the combinations:

$$\delta M_W, \, \delta \Gamma_W \propto -S + 2c_W^2 T + rac{(c_W^2 - s_W^2) U}{2s_W^2}$$

 $\delta \Gamma_Z \propto -10(3 - 8s_W^2) S + (63 - 126s_W^2 - 40s_W^4) T$
others $\propto S - 4c_W^2 s_W^2 T$

Solution $\mathbf{\Gamma}_{\mathbf{Z}}$ with the new Rb.

cannot fit all S,T and U.

Oblique parameters

4. HVV coupling

 $S=rac{1}{12\pi}(1-a^2)\ln\left(rac{\Lambda^2}{m_h^2}
ight)$

only a Higgs below cutoff + custodial symmetry:

$$\mathcal{L} = rac{v^2}{4} \operatorname{Tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) \left(1 + 2a \, rac{h}{v} + \cdots
ight) + \cdots$$
 SM: $a = 1$

 $T = -\frac{3}{16\pi c_W^2} (1 - a^2) \ln\left(\frac{\Lambda^2}{m_h^2}\right)$ Barberi, Bellazzini, Rychkov & Varagnolo (07)

Implication on composite Higgs models

Some strain for the second strain of the second

$$\xi = \left(rac{v}{f}
ight)^2 = 1 - a^2$$

a>1 \Rightarrow WLWL scattering is dominated by isospin 2 channel Falkowski, Rychkov & Urbano (12)

Extra light states are required to fix the EW fit.

Fermionic resonances can give desired shifts in S and T.

Grojean et al. (13); Azatov et al. (13)

The result is less sensitive to the current LHC data.

See, e.g., Azatov et al. (13); Falkowski et al. (13); Giardino et al. (13).

5. Zbb couplings

Four solutions from Z-pole data, while two of them are disfavored by off Z-pole data for AFBb.

Choudhury et al. (02)

The solution, closer to the SM:

6. Dim. 6 operators

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$

$$\mathcal{O}_{WB} = (H^{\dagger} \tau^{a} H) W^{a}_{\mu\nu} B^{\mu\nu}, \qquad \mathcal{O}_{H} = |H^{\dagger} D_{\mu} H|^{2},$$

$$\mathcal{O}_{LL} = \frac{1}{2} (\overline{L} \gamma_{\mu} \tau^{a} L)^{2}, \qquad \mathcal{O}'_{HL} = i (H^{\dagger} D_{\mu} \tau^{a} H) (\overline{L} \gamma^{\mu} \tau^{a} L),$$

$$\mathcal{O}'_{HQ} = i (H^{\dagger} D_{\mu} \tau^{a} H) (\overline{Q} \gamma^{\mu} \tau^{a} Q), \qquad \mathcal{O}_{HL} = i (H^{\dagger} D_{\mu} H) (\overline{L} \gamma^{\mu} L),$$

$$\mathcal{O}_{HQ} = i (H^{\dagger} D_{\mu} H) (\overline{Q} \gamma^{\mu} Q), \qquad \mathcal{O}_{HE} = i (H^{\dagger} D_{\mu} H) (\overline{E} \gamma^{\mu} E),$$

$$\mathcal{O}_{HU} = i (H^{\dagger} D_{\mu} H) (\overline{U} \gamma^{\mu} U), \qquad \mathcal{O}_{HD} = i (H^{\dagger} D_{\mu} H) (\overline{D} \gamma^{\mu} D).$$

Switching on one operator at a time:

	"old Rb"			"new Rb"		
	$C_i/\Lambda^2 ~[{ m TeV^{-2}}]$	Λ [TeV]		$C_i/\Lambda^2 ~[{ m TeV^{-2}}]$	$\Lambda \ [\text{TeV}]$	
Coefficient	at 95%	$C_i = -1$	$C_i = 1$	at 95%	$C_i = -1$	$C_i = 1$
C_{WB}	[-0.0096, 0.0042]	10.2	15.4	[-0.0095, 0.0045]	10.3	15.0
C_{H}	[-0.030,0.007]	5.8	12.1	[-0.031,0.008]	5.7	11.5
C_{LL}	[-0.011, 0.019]	9.5	7.2	[-0.016,0.023]	8.0	6.6
C'_{HL}	[-0.012,0.005]	9.2	14.1	[-0.017, 0.009]	7.6	10.8
C'_{HQ}	[-0.010,0.015]	10.2	8.2	[-0.40,0.20]	1.6	2.2
C_{HL}	[-0.007, 0.010]	12.2	10.0	[-0.034,0.022]	5.5	6.7
C_{HQ}	[-0.023,0.046]	6.6	4.7	[-0.01, 0.11]	11.7	3.0
C_{HE}	[-0.014, 0.008]	8.4	11.1	[-0.029,0.019]	5.9	7.2
C_{HU}	[-0.061,0.087]	4.0	3.4	[-0.37,0.08]	1.6	3.5
C_{HD}	[-0.15,0.05]	2.6	4.6	[-1.1,-0.2]	1.0	

Constraints on dim. 6 operators

Fit multiple op's simultaneously:

	"new Rb"
Coefficient	$C_i/\Lambda^2~[{ m TeV^{-2}}]$ at 95%
C_{WB}	[-0.009,0.021]
C_H	[-0.068,0.016]
C'_{HL}	[-0.029,0.006]
C'_{HQ}	[-0.34,0.31]
C_{HL}	
C_{HQ}	[-0.07,0.12]
C_{HE}	
C_{HU}	[-0.26, 0.49]
C_{HD}	$[-1.2, \ -0.2]$
$C[\mathcal{A}_{\ell}]$	$\left[-0.0021,0.0050 ight]$
C'_{HL}	[-0.029,0.006]
C_{HL}	
C_{HE}	
C_{HU_2}	[-0.32,0.55]
C_{HD_3}	$[-1.2, \ -0.2]$
$C'_{HQ_1} + C'_{HQ_2}$	[-0.68,0.61]
$C'_{HQ_2} - C_{HQ_2}$	[-0.67,0.55]
$C'_{HQ_3} + C_{HQ_3}$	[-0.77,0.63]
$C[\mathcal{A}_{\ell}]$	[-0.0021, 0.0050]
$C[\Gamma_{uds}]$	[-0.42, 0.43]

w/o quark-flavor universality:

	"new Rb"				
	$C_i/\Lambda^2 ~[{ m TeV^{-2}}]$	Λ [Τ	$\Lambda ~[{ m TeV}]$		
Coefficient	at 95%	$C_i = -1$	$C_i = 1$		
C'_{HQ_1}	[-0.19,0.01]	2.3	11.9		
C'_{HQ_2}	[-0.20,0.01]	2.3	10.8		
$C_{HQ_3}^\prime, \dot{C}_{HQ_3}$	[0.00, 0.10]	15.6	3.1		
\ddot{C}_{HQ_1}	[-1.9,0.1]	0.7	3.9		
C_{HQ_2}	[-0.25,0.15]	2.0	2.6		
C_{HU_1}	[-0.97,0.03]	1.0	5.6		
C_{HU_2}	[-0.39,0.21]	1.6	2.2		
C_{HD_1}, C_{HD_2}	[-0.1,1.9]	3.8	0.7		
C_{HD_3}	[-0.66, -0.13]	1.2			

Recent exp. improvements strengthen the bounds on NP!

7. Summary

- We have updated the EW fit with the recent exp. and theo. improvements, discussing in detail the impact of the recently computed two-loop fermionic EW corrections to the Zff couplings.
- We have derived constraints on oblique parameters, HVV coupling, Zbb couplings and dim. 6 operators.
- The constraining power of the EW fit have been improved.
- **Solution** Full two-loop calculations of Γ_Z , σ_h^0 , R_ℓ^0 need to be completed.
- Future data (LHC, ILC, LEP3/TLEP,...) strengthen greatly the power of the EW fit.

Backup

Comparison to ZFITTER

For a given set of the input parameters,

	ZFITTER	OURS	$\frac{\rm OURS-ZFITTER}{\rm ZFITTER} * 100$	Exp uncertainty
M_W	80.362216	80.362499	0.00035%	0.02%
Γ_{W}	2.0906748	2.0887391	-0.093%	2.0 %
Γ_Z	2.4953142	2.4951814	-0.0053%	0.09%
σ_h^0	41.479103	41.483516	0.011%	0.09%
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.23149326	0.23149297	-0.00012%	0.52 %
$P_{ au}^{ m Pol}$	0.14724705	0.14724926	$\boldsymbol{0.0015\%}$	$\mathbf{2.2\%}$
\dot{A}_{ℓ}	0.14724705	0.14724926	$\boldsymbol{0.0015\%}$	1.4%
A_{c}	0.66797088	0.66799358	$\boldsymbol{0.0034\%}$	4.0%
A_b	0.93460981	0.93464051	0.0033 %	$\mathbf{2.2\%}$
$A^{0,\ell}_{ m FB}$	0.016261269	0.016261758	$\boldsymbol{0.0030\%}$	5.5 ~%
$A^{\boldsymbol{0,c}}_{\textbf{FB}}$	0.073767554	0.073771169	0.0049%	5.0%
$A^{0,b}_{ m FB}$	0.10321390	0.10321884	$\boldsymbol{0.0048\%}$	1.6%
$\hat{R_{\ell}^0}$	20.739702	20.735130	-0.022%	0.12%
$R_c^{\check{0}}$	0.17224054	0.17222362	-0.0098%	1.7~%
$R_b^{reve{0}}$	0.21579927	0.21578277	-0.0077%	0.31 %

Our results are in agreement with ZFITTER v6.43.

Impact of parametric uncertainties

	Prediction	$lpha_s$	$\Delta lpha_{ m had}^{(5)}$	M_Z	m_t
$M_W \; [{ m GeV}]$	80.362 ± 0.008	± 0.000	± 0.006	± 0.003	± 0.005
$\Gamma_Z [{ m GeV}]$	2.4951 ± 0.0005	± 0.0003	± 0.0003	± 0.0002	± 0.0002
$P^{\mathrm{pol}}_{ au} = \mathcal{A}_{\ell}$	0.1472 ± 0.0009	± 0.0000	± 0.0009	± 0.0001	± 0.0002
$A_{ m FB}^{0,b}$	0.1032 ± 0.0007	± 0.0000	± 0.0006	± 0.0001	± 0.0002
$R_b^{\bar{0}}$	0.21493 ± 0.00004	± 0.00001	± 0.00000	± 0.00000	± 0.00003

- **(** $\Delta \alpha_{had}^{(5)}(M_Z^2)$ and mt are the most important sources of parametric uncertainty.

Individual constraints on the Higgs mass

Other plots in the SM fit

Constraints on the epsilon parameters

- Unlike STU, the epsilon parameters involve SM contributions.
 Altarelli et al. (91,92,93)
 - Flavour non-universal VCs in the SM have to be taken into account.

		ຜິ ×10 ⁻³	ω ⁻³	
	"old Rb"	8 SM prediction [95%]	8 = 1 1 1 1 1 1 1 1	A _{FE}
Parameter	$\epsilon_{1,2,3,b} ext{ fit } \epsilon_{1,3} ext{ fit }$		SM prediction [9	15%]
$\epsilon_1 \ [10^{-3}]$	5.6 ± 1.0 6.0 ± 0	<u> </u>	6-	
$\epsilon_2 \; [10^{-3}]$	-7.8 ± 0.9 —			
$\epsilon_3 \; [10^{-3}]$	5.6 ± 0.9 5.9 ± 0	8		
$\epsilon_b \ [10^{-3}]$	-5.8 ± 1.3 —	4	4	
		-		$\varepsilon_2 = \varepsilon_2^{\text{SM}}, \varepsilon_b = \varepsilon_b^{\text{SM}}$
		$2 \frac{1}{2} 4 6$	8 2 4	6 8 ×10 ⁻³
			ε ₁	٤ ₁

Top mass uncertainty for HVV

1

1.1

1.15

а

If using the pole mass derived from the MS mass,

 $m_t^{
m MS} {
m from total } \sigma_{tar{t}} ~~
ightarrow ~~ m_t^{
m pole} = 173.3 \pm 2.8 {
m \,GeV}$ Alekhin et al. (12) "old Rb" "new Rb" $m_t \; [{
m GeV}]$ 173.2 ± 0.9 1.024 ± 0.021 1.024 ± 0.022 173.3 ± 2.8 1.025 ± 0.030 1.027 ± 0.031 20 Probability density Probability density 15 10 10 0.9 0.9 0.95 1.05 0.95 1.05 1.1 1 1.1 1.15 1 1.15 а а Probability density Probability density 10 0.9 0.95 1.05 0.9 0.95 1.05

Satoshi Mishima (Univ. of Rome)

1

1.1

1.15

а

Summary of fit results w/o new Rb

Summary of fit results with new Rb

